New Results
A standard operating procedure for outlier removal in large-sample epidemiological transcriptomics datasets
Hege Marie Bøvelstad, View ORCID ProfileEinar Holsbø, View ORCID ProfileLars Ailo Bongo, Eiliv Lund
doi: https://doi.org/10.1101/144519
Hege Marie Bøvelstad
1Norwegian Institute of Public Health, N-0403 Oslo, Norway.
Einar Holsbø
2Department of Computer Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway.
Lars Ailo Bongo
2Department of Computer Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway.
Eiliv Lund
3Department of Community Medicine, UiT The Arctic University of Norway, N-9037 Tromsø, Norway.
Article usage
Posted May 31, 2017.
A standard operating procedure for outlier removal in large-sample epidemiological transcriptomics datasets
Hege Marie Bøvelstad, Einar Holsbø, Lars Ailo Bongo, Eiliv Lund
bioRxiv 144519; doi: https://doi.org/10.1101/144519
Subject Area
Subject Areas
- Biochemistry (13008)
- Bioengineering (9888)
- Bioinformatics (31684)
- Biophysics (16353)
- Cancer Biology (13404)
- Cell Biology (19118)
- Clinical Trials (138)
- Developmental Biology (10351)
- Ecology (15358)
- Epidemiology (2067)
- Evolutionary Biology (19618)
- Genetics (13005)
- Genomics (17993)
- Immunology (13106)
- Microbiology (30638)
- Molecular Biology (12777)
- Neuroscience (66890)
- Paleontology (490)
- Pathology (2070)
- Pharmacology and Toxicology (3564)
- Physiology (5555)
- Plant Biology (11460)
- Synthetic Biology (3189)
- Systems Biology (7851)
- Zoology (1775)