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Abstract 

Transcriptome measurements and other -omics type data are increasingly more used in 
epidemiological studies. Most of omics studies to date are small with samples sizes in the tens, or 
sometimes low hundreds, but this is changing. Our Norwegian Woman and Cancer (NOWAC) 
datasets are to date one or two orders of magnitude larger. The NOWAC biobank contains about 
50000 blood samples from a prospective study. Around 125 breast cancer cases occur in this cohort 
each year. The large biological variation in gene expression means that many observations are needed 
to draw scientific conclusions. This is true for both microarray and RNA-seq type data. Hence, larger 
datasets are likely to become more common soon.  

Technical outliers are observations that somehow were distorted at the lab or during sampling. If not 
removed these observations add bias and variance in later statistical analyses, and 
may skew the results. Hence, quality assessment and data cleaning are important. We find common 
quality assessment libraries difficult to work with for large datasets for two reasons: slow execution 
speed and unsuitable visualizations.  

In this paper, we present our standard operating procedure (SOP) for large-sample transcriptomics 
datasets. Our SOP combines automatic outlier detection with manual evaluation to avoid removing 
valuable observations. We use laboratory quality measures and statistical measures of deviation to aid 
the analyst. These are available in the nowaclean R package, currently available on GitHub 
(https://github.com/3inar/nowaclean). Finally, we evaluate our SOP on one of our larger datasets with 
832 observations. 

Keywords: Outlier removal; Standard operating procedure; Transcriptomics; NOWAC postgenome 
cohort; Systems epidemiology 

  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 31, 2017. ; https://doi.org/10.1101/144519doi: bioRxiv preprint 

https://doi.org/10.1101/144519
http://creativecommons.org/licenses/by/4.0/


2 
 

1 Introduction 
The use of –omics data in epidemiological studies is now common. Typical studies comprise sample 
sizes in the tens or low hundreds, but sizes in the order of thousands will soon be common. The 
NOWAC postgenome cohort (1) contains blood samples from 50000 women. In this cohort there are 
approximately 125 new breast cancer cases per year, and we have thus far extracted and processed 
blood samples from 1660 case—control pairs, or 3320 blood samples in total. Omics experiments are 
elaborate procedures with several steps. In the case of microarrays, these include mRNA isolation, 
hybridization, washing, and scanning. Each step may add random or systematic errors. Technical 
errors may also come from supplies or instruments. Mishaps may occur in the lab. The samples 
themselves can get contaminated in various ways. In whole-blood samples, there is also the added 
challenge of mRNA degradation due to high RNase activity. All this may be detrimental to the quality 
of the data and hence affect downstream analyses.  

The goal of gene expression experiments is to detect differences in gene expression levels between 
groups. This is usually evaluated gene-by-gene or for sets of related genes. The methods for such 
analyses depend on accurate estimation of the sample variance. If there are technical outliers 
contributing unnecessary variance, removing these should increase power. However, removing 
biological outliers will result in underestimation of the natural biological variance. This in turn will 
increase the risk of spurious conclusions. There is a fine line to tread, and the accurate identification 
of technical outliers is important for later analysis.  

Many publications guide the identification of outliers in gene expression data (2–5). Yet, there is no 
real consensus on the best approach. For example, some authors such as (6) propose automated 
procedures for outlier removal. Others such as (4) warn against automation and instead 
recommend careful investigation.  

Outlier removal is particularly challenging for studies based on blood samples, since there is larger 
biological variation in gene expression data from blood than in tumor tissue (7). The strength of the 
signal in tumor tissue makes it much more robust to variance than the signal in blood samples, which 
is weak and variable. This makes it more difficult to distinguish outliers from non-outliers and signal 
from noise. It is not well known whether lifestyle factors like medication use affect blood gene 
expression. All this complicates outlier identification, and it’s inadvisable to remove outliers in a 
systematic, automated way.  

R-packages such as arrayQualityMetrics (AQM) (3) and lumi (8) implement the most popular outlier 
detection methods for gene expression data. Important to these approaches is the combination of 
computational methods with interactive visualization. However, when dealing with several hundreds 
of observations, these methods are cumbersome for two reasons. First, some methods are slow and 
thus inefficient for interactive use. Second, their visualizations do not work well for larger sample 
sizes due to overplotting. The latter is in our opinion the most important aspect, as the decision to 
remove an outlier often rests on visual inspection by the analyst. 

We also wish to provide numerical measures and standardized guidelines to help the user. The 
measures are statistics of deviation, derived from the data, and laboratory quality metrics. We believe 
that standardization removes some of the subjectivity from the task. Standardizing the outlier removal 
procedure as much as possible will enhance reproducibility and consistency. 

Below we describe our standard operating procedure (SOP) for outlier removal in large-sample 
transcriptomics datasets. We believe our SOP will strengthen the reporting of observational studies in 
epidemiology (9). We have implemented the SOP as an open source R package that combines 
automated outlier detection with expert evaluation. The automated part consists of ranking 
observations by deviation metrics. We base these metrics on standard methods for outlier removal in 
data from microarrays. Our improvements are faster execution and easier-to-read visualizations. 
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We provide a unified, interactive interface, saving computations for tinkering with thresholds and 
using standard R methods where available. We use data from the NOWAC study (10) for 
demonstration and evaluation.  

Our R package is open source and available at: 

https://github.com/3inar/nowaclean 

2 Methods 

2.1 Data 

The NOWAC study is a nation-wide, population-based cancer study (1).  A thorough description of 
the NOWAC postgenome cohort can be found in (10). To summarize: 97.2% of the women in the 
NOWAC cohort consented to donate a blood sample to research. Out of these, about two thirds ended 
up providing an actual blood sample. Blood sampling kits were sent out in batches of 500. These kits 
included a two-page questionnaire and a PAXgene tube (PreAnalytiX GmbH, Hembrechtikon, 
Switzerland). For the most part, the family general practitioner drew the actual blood sample. The 
sample was then mailed overnight to Tromsø. Between 2003 and 2006 the NOWAC biobank grew to 
comprise 48,692 blood samples. These make up the NOWAC postgenome cohort. The Norwegian 
Cancer Registry provides yearly updates about cancer cases. Statistics Norway provides yearly 
updates about emigrations and deaths. A control sample is assigned to each breast cancer case in the 
cohort yielding a nested case-control design. These are matched on mailing batch, time of blood 
sampling and year of birth. We keep each case—control pair together through every step in the 
laboratory. The statistical analysis of microarray data is described in (11). 

In this paper, we use a subset of 832 observations from the NOWAC cohort. The Genomics Core 
Facility at the Norwegian University of Science and Technology provided the laboratory work. They 
processed the samples on Illumina Whole-Genome Gene Expression Bead Chips 
(http://technology.illumina.com/technology/beadarray-technology.html), HumanHT-12 v4. The raw 
microarray images are processed in GenomeStudio 
(http://bioinformatics.illumina.com/informatics/sequencing-microarray-data-
analysis/genomestudio.html). This is Illumina's own software for processing data from 
their platforms. The result is a table of 47323 probes for 832 observations on the summary level: one 
number per probe per observation. 

2.2 The NOWAC pipeline 

The outlier SOP is part of our data processing pipeline in NOWAC. The pipeline (Fig. 1) contains 
three major steps where outlier removal is Step 2. We briefly describe the data preparation (Step 1) 
and the preprocessing (Step 3) to provide context for the SOP. 

STEP 1.1: Described in the “Data” section above. 

STEP 1.2: Microarray gene expression measurements from the lab are merged into an R LumiBatch-
object (8) based on a unique lab number, along with external information from questionnaires, the 
Norwegian Cancer Registry, and Statistics Norway. 

STEP 1.3: Yearly updates from the Cancer Registry can reveal that controls have become cases, or 
that cases have received a second cancer diagnosis. We considered these individuals non-eligible, and 
remove them along with their matching case/control.  

For multivariate analyses, we remove 38 probes related to blood type, specifically the human 
leukocyte antigen (HLA) system. These are usually expressed strongly and have high variance, which 
will affect multivariate analyses. We have seen that they can dominate the variance-covariance pattern 
in the principal component analysis (PCA) transformation of the data (will be described in detail in 
the next section), and as such other patterns might be obscured. This is relevant for our SOP as we do 
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PCA, so we recommend to take these out before outlier detection. It is possible to put these probes 
back after outlier detection. The decision will depend on whether the genes are interesting for 
subsequent analyses. 

 

Fig. 1 NOWAC (10) standardized data analysis pipeline for cleaning and preprocessing the data. The pipeline 
is split into three steps, where all steps up to and including Step 3.3 are performed using all cases and controls 
that are eligible and not considered as outliers. Step 3.4 needs to be performed for each specific study/question 
at hand, fine-tuning the data to optimize the power of the analysis. Abbreviation: GE=Gene expression. 

STEP 2: Described in detail below in the “Outlier Removal SOP” section. 

STEPS 3.1 and 3.2: We apply the normal-exponential background adjustment method to make 
signals comparable across individuals (12,13). We also use quantile normalization (14) and log2-
transform the data to stabilize the variance. 

STEP 3.3: Batch effects are systematic errors introduced when processing blood samples in multiple 
batches in the laboratory. Examples of a batch are all chips that are processed at the same day (named 
plate), laboratory technician, or the batch of laboratory regents used. It’s important to adjust for batch 
effects with methods like e.g. ComBat (15).  

STEP 3.4: We filter out probes that are likely to be below the level of detection, probes that are 
expressed in only a few arrays, and probes that are known to have unreliable annotation. This reduces 
the number of probes and the risk of false positives in subsequent analysis.  

2.3 Outlier removal SOP 

Outlier removal is a subjective task. Our SOP combines guidelines, visualizations, and quantitative 
measures to help. An outlier should only be excluded if it is of technical origin, since biological 
outliers are valuable. Technical measures from the microarray lab describe the quality of the blood 
sample. They include information on RNA abundance, mRNA contamination, etc. They may provide 
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hints to why an array might look wrong and help make the distinction between technical outliers and 
biological outliers. We describe the lab measures in detail further below. As extreme outliers have a 
strong influence on many of the plots and measures we use, we do outlier detection/removal in two 
rounds. In case—control designs, when an outlying observation is removed, the matching case/control 
will also be removed. An overview of the SOP is provided in Fig. 2. 

1. Log2-transform your data to ameliorate heteroscedasticity. This is because you can expect higher 
variance for signals with higher intensity. 

2. Find outlier candidates by looking at different views of the data with the methods detailed below: 
MA-plots, PCA-plots, and boxplots. 

3. Investigate each candidate outlier by examining density plots and lab quality assessment 
measures, as described below. 

4. Exclude observations that look irreparably strange. When in doubt, the standard cutoffs for lab 
measures may provide insight and help take a decision. Repeat steps 2-4 once more to be sure that 
no outliers are left in the data. 

Fig. 2: Our outlier removal standard operating procedure 

We evaluate individual array quality with array-wise MA-plots (16) where we compare each array 
with the median array. An MA-plot is a mean—difference plot that compares two assays on the log2 
scale. Specifically, let A1 be a given array, and A2 the median array constructed by taking gene-wise 
medians over all arrays. Then, compute the two statistics: ܯ ൌ	 logଶሺ

஺భ
஺మ
ሻ, ܣ ൌ

ଵ

ଶ
logଶሺܣଵܣଶሻ. 

You should expect M to be constant as a function of A in well-behaved arrays (Fig. 3, bottom panel). 
A trend in M as a function of A would indicate that gene expression values are somehow 
systematically skewed away from the median array (Fig. 3, top panel). 

 

Fig. 3 Illustrations of MA plots. On top: a potential outlier array. On bottom: a well-behaved array. 
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You can measure independence of M and A in several ways, AQM uses Hoeffding’s D statistic, 
which measures squared deviance from independence (difference between joint density and product 
of marginal densities). We use the similar measure of mutual information (MI), defined as 

ሻܯ,ܣሺܫ ൌ ∑ 	௠∈ெ ∑ 	௔∈஺ ሺܽ,݉ሻ݌ log 	
௣ሺ௔,௠ሻ

௣ሺ௔ሻ௣ሺ௠ሻ
	, 

simply because the R-implementation is considerably faster (17). The joint density of the two 
statistics must be discretized, so some information may be lost. For this and many other reasons it’s 
important to inspect the outliers yourself. 

We evaluate homogeneity between arrays by inspecting boxplots. As we have hundreds to 
thousands of arrays, doing regular boxplots will result in overplotting. Hence, we use “compressed” 
boxplots where each quantile is represented by a single point, and the points for corresponding 
quantiles are connected by lines. The same is implemented for the lower and upper whiskers of the 
boxplot, given by the most extreme data point within 1.5 times the interquartile range from the 
median. This results in a plot with five continuous horizontal lines (Fig. 4). We measure deviation 
from normal data by comparing the empirical cumulative distribution function (ECDF) of the 
expression intensities for each array with the ECDF of all arrays pooled. Distance from the pooled 
ECDF is measured by the Kolmogorov-Smirnov (KS) statistic (18), which measures the largest 
distance between two distribution functions. By default, we order the boxplots by their respective KS 
statistic, but it may also be interesting to order by other things such as plate number to look for batch 
effects.  

We define outliers as those observations that fall outside m standard deviations from the mean 
observed KS statistic. The value of m will depend on how conservative the analyst is in its search for 
outliers. The higher value of m, the fewer individuals will be marked as outliers. For the example 
shown in Fig. 4 we used m = 3 (indicated by a red line).  

 

Fig. 4 Boxplots, ordered by the KS-statistics. The individuals with a boxplot to the right of the red line has a KS-
statistics above m=3 standard deviations from the mean observed KS-statistics. Points in this plot represent the 
components of a boxplot: median, lower and upper quartiles, lower and upper whiskers. Points of the same type 

(e.g. median) are joined by a line. 

For between-array comparison we apply principal component analysis (PCA) (19) to the data, 
and display the first two principal components in a scatterplot. As a quantitative measure to guide the 
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outlier identification, we compute the Mahalanobis distance of all arrays to the mean array. In PCA-
transformed data the Mahalanobis distance and Euclidean distance are necessarily equal. As shown in 
the top panel of Fig. 5. there can be a distinct shape and rotation to the data that’s not captured due to 
outliers. Hence, we define a “central cluster” that’s used to compute distances. We obtain this central 
cluster by ignoring points that are less likely than 99% (adjustable) by Chebyshev’s inequality. This 
leads to distances that fit the shape and rotation of the data better, see the bottom panel of Fig. 5. 
Outliers are then defined as those more than n standard deviations from the data center in 
Mahalanobis distance. Once again, the value of n must be determined by the analyst; We used n = 3 
in the analysis below.  

 

Fig. 5 PCA plots. The lines show Mahalanobis distance to the center of the data (in standard deviations). The 
red points are considered potential outliers as they are farther away than two standard deviations. The top 

panel shows the distances computed from all data points. The bottom panel shows the same when leaving out 
the least likely points by Chebyshev’s inequality. 

Finally, we use density plots to inspect observations we suspect to be technical outliers based on the 
methods described above. These plots show distribution properties that are hidden in the other plots 
like severely skewed modes or several modes, neither of which you should expect to see in well-
behaved data. Fig. 7 below in the Results section shows an example of a density plot. 

 RIN value < 7, 
 260/280 ratio < 2, 
 260/230 ratio < 1.7, 
 and, RNA abundance outside the range of (50, 500) 

Fig. 6 Standard exclusion thresholds for technical measures from the laboratory 
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After exploring different outlier detection methods, the analyst is left with a selection of outliers and 
must decide which are technical outliers that should be discarded. Several technical measures from 
the laboratory may help guide this decision. These measures include information on RNA 
abundance; the quality of the blood sample in terms of mRNA degradation, quantified by RNA 
Integrity Number (RIN); and the level of contamination in the blood sample, quantified by NanoDrop 
260/230 and 280/230 ratios. These values may help the analyst understand why some observations 
have outlying values. For borderline outliers, where the analyst is uncertain, we provide standard 
exclusion thresholds for each lab measure (Fig. 6). If the observation is suspect and it falls outside of 
any of these thresholds, it may be regarded as an outlier and thus discarded. It is entirely possible for 
observations to look perfectly sensible despite bad lab measures, hence we don’t exclude observations 
based purely on these numbers. We consult the lab measures only once we suspect an array to be a 
technical outlier based on the plots. 

2.4 The nowaclean R Package 

The nowaclean R package (for details and source code, see https://github.com/3inar/nowaclean) 
implements our standard operating procedure for detecting and removing technical outliers in the 
NOWAC microarray data. As mentioned above, the functionality we provide already exists 
elsewhere. The novelty of this R-package is the improved speed and visualizations for data sets with a 
large number of arrays. 

We have through this work identified four design principles that we believe improve the user 
experience: i) save computations so that users can tune thresholds; ii) force the use of names instead 
of indices into a matrix, in case several representations of the data are in use; iii) have a unified 
interface to the different methods: always use R’s standard predict and plot methods, and provide the 
same set of arguments to these as far as possible; and finally iv) decouple the methods from special 
types of objects such as the Bioconductor standard esets and work on built-in matrices instead. This 
last point is to provide functionality to a broader user base.  

2.5 Evaluation methods for outlier removal 

To study how our SOP affects downstream analysis we need to quantify the effect of the outlier 
removal. As removing individuals may reduce power, removing technical outliers identified in our 
SOP should on the contrary increase the power and make sure that the downstream analysis leads to 
more sound and biologically reliable results. One way to quantify the effect of the SOP outlier 
removal is to count the number of genes that are differentially expressed between cases and controls 
before and after outlier removal, as described in (6). A gene G is differentially expressed between 
cases and controls if ߤሺGcasesሻ	്	ߤሺGcontrolsሻ,	i.e. the average expression ߤሺGሻ	of	gene	G	in one group is 
different from that of the other, as determined by the limma moderated t-test (20).	

We will examine the number of significant findings in two situations. First in a situation where we 
know there is no difference between groups. We create a pseudosample by assigning observations  to 
groups randomly to ensure no relationship between group and gene expression levels (i.e. 

permutation). In this pseudosample we compute the statistic ߠ ൌ 	
#	௡௨௟௟ି௥௘௝௘௖௧௜௢௡௦

#	௚௘௡௘௦	
, i.e. the proportion 

of significant genes. To get a distribution over ߠ, we will repeat the procedure for 1500 random 
pseudosamples. In this situation there is no difference between groups, and thus the null hypothesis 
should be rejected for about 5% of all genes tested when using a significance level of ߙ	ൌ	0.05. Hence 
 .is in effect an estimate of type-I error rate, the effective size of the hypothesis test ߠ

In the second situation, we count the number of rejected null hypotheses when we expect a difference 
between groups. We will use an anonymized group variable from the NOWAC questionnaires, and 
generate data where we draw (observation, group) pairs with replacement from the real data, 
replicating the original dataset size (i.e. bootstrapping). We then compute the statistic ߠ defined 
above, and repeat the procedure for 1000 bootstrap samples. By doing this we get an estimate of the 
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variance of ߠ, and not just a point estimate. In this situation ߠ says something about statistical power, 
but is not a direct estimate. We are primarily interested in a comparison of outlier removal strategies, 
so change in ߠ is what is most important. 

The fraction of outliers to non-outliers is likely to be small, and their effect might be subtle in large 
samples. For this reason, we will inspect three dataset sizes: all of our data, half the data, and 10% of 
the data. We do this by, for each new pseudosample, removing the correct fraction of observations 
from the full data set but making sure that the identified outliers are kept in the pseudosample. This is 
done for both the permutation and the bootstrapping experiment. We then perform the preprocessing 
described in STEP 3 of Fig. 1, and finally compute ߠ for the data with and without outliers.  

As for any procedure involving hypothesis testing you ideally want as high a statistical power as 
possible, and it’s nice if you get the correct test size. That is, you want as many type-I errors as you’d 
expect so that ߙ ൌ  .level ߙ at the ߠ

3 Results 
We demonstrate our methods on a typical NOWAC raw data set comprising 47323 probes for 832 
observations. After applying our SOP, we have identified four observations as technical outliers. We 
describe this process in detail in Online Resource 1. We used version 0.2.8 of nowaclean for these 
computations. The source code is available as Online Resource 2, although it is simpler to install 
from the instructions at https://github.com/3inar/nowaclean. 

Fig. 7 shows the expression densities of the four outliers (red lines) along with all the other 
observations (black lines). If by some chance the three right-skewed observations are e.g. all cases 
and the left-skewed observation is a control, the result would almost certainly be overestimation of 
differential expression. These same four observations are the ones highlighted in red above in the 
PCA plot of Fig. 5. 

 

Fig. 7: Densities of gene expression intensity across the arrays of the four SOP outliers (in red) along with the 
densities of the rest of the data (black lines). 

 

We remove the four observations we consider technical outliers and compare with a fully-automated 
approach where we remove all suggested outliers without looking at them. This is done in one round 
with a cutoff of two standard deviations for all three methods of boxplots, PCA, and MA-plots. 
Accepting all outliers results in the removal of 59 observations. We also compare against removing no 
outliers. We refer to these three approaches as manual-, automatic-, and no outlier removal below. 	
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Fig. 8 below shows our results. There are 18 experiments in total. There are three outlier removal 
strategies: manual removal, no removal, and automatic removal. There are three dataset sizes: all data, 
half of the data, and 10% of the data. Finally, there are two hypothesis testing situations: one where 
we expect no difference between groups (denoted as the permutation situation), and one where we do 
expect differences (the bootstrap situation) for some genes. We show the usual type of boxplot: 
median, quartiles, and whiskers that extend to the outmost points no farther away from the median 
than 1.5 times the interquartile range.  

In the permutation	situation there is no clear advantage to any method, though the no outlier removal 
strategy has a slightly lower ߠ than expected, which is especially clear for the smallest dataset. Both 
manual and automatic outlier removal push this value closer to the 0.05 error rate you would expect. 
We suspect we still get a slightly lower error rate than 0.05 due to dependence between genes. 

In the bootstrap situation careful, manual outlier removal improves power over no outlier removal for 
all dataset sizes. This effect goes away for the automatic removal as you start removing useful 
information. For the smallest dataset, any removal is better than none at all.  

All in all, there is some evidence that manual outlier removal increases power and that it calibrates 
your error rate under the null. 

 

Fig. 8 Fraction of null-hypotheses rejected at a 5% significance level. The boxplots are the standard kind, with 
whiskers extending to the most extreme points within 1.5 times the interquartile range from the median. We have 
examined three different data sizes: all 832 observations of our data (green boxes), half of these data (orange), 
and 10% of them (violet). There are three different approaches to outlier removal: no outlier removal, manual 
removal, and automatic removal. We have examined rejection rates in two situations, one where the null 
hypothesis of no difference between genes is true, and one where we expect to observe a difference between the 
two groups for some genes. We see slightly improved error rate calibration and increased power for manual 
outlier removal in all cases. 

4 Discussion 

4.1 Conclusions 

This paper describes the NOWAC standard operating procedure for the removal of technical outliers. 
We have described the methods we use and provide an R-package implementation at 
https://github.com/3inar/nowaclean. By defining a common set of methods and lab measure cutoffs to 
detect and evaluate technical outliers, we believe we ensure greater consistency in the preprocessing 
of large sample microarray data sets. Further, by providing a detailed stand-alone documentation of 
how we do this, we believe we make it easier to understand and reproduce the research conducted. 
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4.2 Future work 

As future work, we plan to improve the R package. Specifically, at the time of writing, some of the 
functions need better documentation. We would also like to provide interactive reports in Shiny, to 
make the SOP faster and easier to apply. These changes will be committed to the nowaclean git 
repository. We will eventually submit the package to CRAN or Bioconductor. 

The microarray as a platform seems to be on its way out, and it seems likely that there will be a 
general move toward using RNA-Seq instead. We are uncertain to what extent our approach is 
applicable in an RNA-Seq setting. The lab measures will certainly change, and sequencing data is in 
its purest form count data. We need to provide an evaluation of this in the near future. 

Finally, we plan to investigate whether outlier removal should be performed on a dataset-by-dataset 
basis, as we currently do it, of whether it would be better to merge all our datasets and do the outlier 
removal for this large combined dataset. The latter may have a smaller chance of removing valuable 
biological outliers. 

5 Supporting Information 
Online Resource 1: Full report of outlier removal in the demo data set. 

Online Resource 2: The source code for the package version used in Online Resource 1. 

We have made the demo dataset and our experiment code available online as 
http://dx.doi.org/10.18710/FGVLKS. 
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