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Fig. 8 below shows our results. There are 18 experiments in total. There are three outlier removal 
strategies: manual removal, no removal, and automatic removal. There are three dataset sizes: all data, 
half of the data, and 10% of the data. Finally, there are two hypothesis testing situations: one where 
we expect no difference between groups (denoted as the permutation situation), and one where we do 
expect differences (the bootstrap situation) for some genes. We show the usual type of boxplot: 
median, quartiles, and whiskers that extend to the outmost points no farther away from the median 
than 1.5 times the interquartile range.  

In the permutation	situation there is no clear advantage to any method, though the no outlier removal 
strategy has a slightly lower ߠ than expected, which is especially clear for the smallest dataset. Both 
manual and automatic outlier removal push this value closer to the 0.05 error rate you would expect. 
We suspect we still get a slightly lower error rate than 0.05 due to dependence between genes. 

In the bootstrap situation careful, manual outlier removal improves power over no outlier removal for 
all dataset sizes. This effect goes away for the automatic removal as you start removing useful 
information. For the smallest dataset, any removal is better than none at all.  

All in all, there is some evidence that manual outlier removal increases power and that it calibrates 
your error rate under the null. 

 

Fig. 8 Fraction of null-hypotheses rejected at a 5% significance level. The boxplots are the standard kind, with 
whiskers extending to the most extreme points within 1.5 times the interquartile range from the median. We have 
examined three different data sizes: all 832 observations of our data (green boxes), half of these data (orange), 
and 10% of them (violet). There are three different approaches to outlier removal: no outlier removal, manual 
removal, and automatic removal. We have examined rejection rates in two situations, one where the null 
hypothesis of no difference between genes is true, and one where we expect to observe a difference between the 
two groups for some genes. We see slightly improved error rate calibration and increased power for manual 
outlier removal in all cases. 

4 Discussion 

4.1 Conclusions 

This paper describes the NOWAC standard operating procedure for the removal of technical outliers. 
We have described the methods we use and provide an R-package implementation at 
https://github.com/3inar/nowaclean. By defining a common set of methods and lab measure cutoffs to 
detect and evaluate technical outliers, we believe we ensure greater consistency in the preprocessing 
of large sample microarray data sets. Further, by providing a detailed stand-alone documentation of 
how we do this, we believe we make it easier to understand and reproduce the research conducted. 
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4.2 Future work 

As future work, we plan to improve the R package. Specifically, at the time of writing, some of the 
functions need better documentation. We would also like to provide interactive reports in Shiny, to 
make the SOP faster and easier to apply. These changes will be committed to the nowaclean git 
repository. We will eventually submit the package to CRAN or Bioconductor. 

The microarray as a platform seems to be on its way out, and it seems likely that there will be a 
general move toward using RNA-Seq instead. We are uncertain to what extent our approach is 
applicable in an RNA-Seq setting. The lab measures will certainly change, and sequencing data is in 
its purest form count data. We need to provide an evaluation of this in the near future. 

Finally, we plan to investigate whether outlier removal should be performed on a dataset-by-dataset 
basis, as we currently do it, of whether it would be better to merge all our datasets and do the outlier 
removal for this large combined dataset. The latter may have a smaller chance of removing valuable 
biological outliers. 

5 Supporting Information 
Online Resource 1: Full report of outlier removal in the demo data set. 

Online Resource 2: The source code for the package version used in Online Resource 1. 

We have made the demo dataset and our experiment code available online as 
http://dx.doi.org/10.18710/FGVLKS. 
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