New Results
A standard operating procedure for outlier removal in large-sample epidemiological transcriptomics datasets
Hege Marie Bøvelstad, View ORCID ProfileEinar Holsbø, View ORCID ProfileLars Ailo Bongo, Eiliv Lund
doi: https://doi.org/10.1101/144519
Hege Marie Bøvelstad
1Norwegian Institute of Public Health, N-0403 Oslo, Norway.
Einar Holsbø
2Department of Computer Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway.
Lars Ailo Bongo
2Department of Computer Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway.
Eiliv Lund
3Department of Community Medicine, UiT The Arctic University of Norway, N-9037 Tromsø, Norway.
Posted May 31, 2017.
A standard operating procedure for outlier removal in large-sample epidemiological transcriptomics datasets
Hege Marie Bøvelstad, Einar Holsbø, Lars Ailo Bongo, Eiliv Lund
bioRxiv 144519; doi: https://doi.org/10.1101/144519
Subject Area
Subject Areas
- Biochemistry (12980)
- Bioengineering (9850)
- Bioinformatics (31597)
- Biophysics (16287)
- Cancer Biology (13362)
- Cell Biology (19055)
- Clinical Trials (138)
- Developmental Biology (10324)
- Ecology (15332)
- Epidemiology (2067)
- Evolutionary Biology (19581)
- Genetics (12988)
- Genomics (17959)
- Immunology (13074)
- Microbiology (30572)
- Molecular Biology (12753)
- Neuroscience (66702)
- Paleontology (490)
- Pathology (2065)
- Pharmacology and Toxicology (3551)
- Physiology (5539)
- Plant Biology (11419)
- Synthetic Biology (3181)
- Systems Biology (7841)
- Zoology (1769)