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Abstract

The study of the relationships between two compositions by means of canonical correlation anal-

ysis is addressed. A compositional version of canonical correlation analysis is developed, and called
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CODA-CCO. We consider two approaches, using the centred log-ratio transformation and the calcu-

lation of all possible pairwise log-ratios within sets. The relationships between both approaches are

pointed out, and their merits are discussed. The related covariance matrices are structurally singular,

and this is efficiently dealt with by using generalized inverses. We develop compositional canon-

ical biplots and detail their properties. The canonical biplots are shown to be powerful tools for

discovering the most salient relationships between two compositions. Some guidelines for compo-

sitional canonical biplots construction are discussed. A geological data set with X-ray fluorescence

spectrometry measurements on major oxides and trace elements is used to illustrate the proposed

method. The relationships between an analysis based on centred log-ratios and on isometric log-

ratios are also shown.

KEY WORDS: Canonical weights, canonical loadings; biplot; log-ratio transformation; generalized least

squares; goodness-of-fit, biplot ray, biplot link, Moore-Penrose inverse.
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1 Introduction

Canonical correlation analysis (CCO) is an important classical multivariate method developed by Ho-

telling (1935; 1936) dedicated to the study of relationships between two sets of multiple variables, an

X-set and a Y -set. Statistics courses on multivariate analysis usually cover the method, and textbooks in

the field typically dedicate a chapter to the technique (Anderson 1984, Mardia et al. 1979, Johnson and

Wichern 2002, Dillon and Goldstein 1984, Manly 1989). The monograph by Gittins (1985) is entirely

dedicated to canonical analysis. Canonical correlation analysis offers a unifying theoretical framework,

since several multivariate techniques are particular cases of it. CCO is a generalization of multiple re-

gression with more than one response variable (Mardia et al., 1979; Gittins, 1985), relates to multivariate

analysis of variance (MANOVA) and discriminant analysis when one of the two sets of variables consists

of indicator variables (Gittins, 1985, Section 4.6), and is also intricately related to correspondence anal-

ysis (Greenacre, 1984, Section 4.4) when both the X variables and the Y variables consist of indicator

variables. CCO has been greatly enhanced by the development of biplots that efficiently depict the cor-

relation structure of the variables. The method provides a generalized least squares approximation to the

between-set correlation matrix. Haber and Gabriel (1976), Ter Braak (1990) and Graffelman (2005) have

shown that canonical correlation analysis allows the construction of a biplot of the between-set corre-

lation matrix. The biplot greatly helps the interpretation of the output of a canonical correlation analysis.

Over the last decades, compositional data analysis (Aitchison, 1986) has experienced a strong devel-

opment. Scientists have become increasingly aware of the fact that compositional data are special data

and this has to be taken into account in any statistical analysis. Recent books by Pawlowsky-Glahn and

Buccianti (2011), Van den Boogaart and Tolosana-Delgado (2013), and Pawlowsky-Glahn et al. (2015)

show that the analysis of compositional data is an active field of research. Compositional data sets are

inherently of multivariate nature. Log-ratio principal component analysis (Aitchison 1983) has become

a standard multivariate technique in compositional data analysis, and is often one of the first tools used

to explore a compositional data set. Specific compositional biplots (Aitchison & Greenacre 2002) have

been proposed that allow efficient visualization of compositional data sets. Compositional data often

goes together with other variables that can appear as predictors of the compositions, or that can appear

as responses explained by compositions. In this paper we address the situation where there are two sets

of variables which are both compositional in nature, and our goal is to study the relationships between

the two sets by means of a canonical correlation analysis. Such data sets can arise in many settings.
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For example, in microbiological, nutritional and physiological studies it is of interest to study the rela-

tionships between food composition and body or microbial gut composition of the food consumers. In

agricultural and ecological studies it is of interest to study the relationship between soil composition and

plant composition. In geology, relationships between (sub)compositions with different types of com-

pounds can be of interest. In biochemical studies often several kinds of components are measured such

as proteins, carbohydrates, vitamins and fats. A compositional CCO allows one to study the relation-

ships between the different kinds of compositions. The structure of this paper is as follows. In Section 2

we provide the theory for our compositional version of CCO, hereafter called CODA-CCO, and develop

the corresponding compositional biplots. In Section 3 we illustrate our methodology with an artificial

miniature example and with the analysis of a geological data set of major oxides and trace elements

measured in European floodplain sediments. A discussion completes the paper.

2 Theory

In this section we establish our notation, briefly summarize classical CCO and then develop a composi-

tional version of CCO.

2.1 Classical CCO

We consider one set containing p predictor variables (X-variables) and a second set containing q criterion

variables (Y -variables). Both sets are assumed real, that is, the sample space is the ordinary Euclidean

space. The Y -variables can be thought of as response variables, though not necessarily so, as the analysis

treatsX and Y in a symmetric fashion. The main aim of a CCO is to search for linear combinations U =

XcA and V = YcB of the column-mean centreed variables in Xc and Yc that have maximal correlation.

The coefficient matrices A and B are known as the canonical weights or the canonical coefficients,

and the constructed linear combinations are known as the canonical variables (also termed canonical

variates by some authors). The solution of a CCO is efficiently calculated by using the singular value

decomposition (s.v.d.) of the transformed between-set covariance matrix. In particular, the canonical

coefficients and correlations can be obtained by the s.v.d. of

K = S−1/2xx SxyS
−1/2
yy = ÃDB̃′ , (1)

where Sxx, Syy and Sxy are the sample covariance matrices of the X-variables, the Y -variables, and the

between-set covariances, respectively. Matrix Ã is a p × r orthonormal matrix of left singular vectors
4
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(Ã′Ã = Ir) and matrix B̃ is a q× r orthonormal matrix of right singular vectors (B̃′B̃ = Ir). Diagonal

matrix D is of rank r (r = min (p, q)) and contains the canonical correlations in non-increasing order

of magnitude (Gittins, 1985, Section 2.3.2). The canonical coefficients are related to the left and right

singular vectors by

A = S−1/2xx Ã , B = S−1/2yy B̃ . (2)

The canonical coefficients are normalized so that A′SxxA = Ir and B′SyyB = Ir and, consequently,

the canonical variables are standardized variables,

(1/n)(XcA)′XcA = A′SxxA = Ir .

The singular value decomposition in (1) shows that we do a weighted least squares approximation of

given rank to the between-set covariance matrix Sxy. Row markers (F) and column markers (G) for the

biplot can be obtained by:

Fp = SxxAD , Gs = SyyB . (3)

We use the subindices p and s to indicate “principal” and “standard” coordinates, respectively. This

convenient terminology was proposed by Greenacre (1984) in the context of correspondence analysis,

and was previously used in CCO by Graffelman (2005); it serves to distinguish the different biplot scal-

ings. The principal coordinates are characterized by the presence of diagonal matrix D in the formula,

whereas standard coordinates refer to coordinates without matrix D in their formula. An alternative

scaling for the biplot is to have rows in standard coordinates, and columns in principal coordinates:

Fs = SxxA , Gp = SyyBD . (4)

In CCO all these sets of coordinates for biplots can be interpreted as covariances. The principal coor-

dinates Fp are cross covariances between X-variables and canonical Y -variables. The standard coordi-

nates Gs are the covariances between canonical Y -variables and the original Y -variables. In the same

manner, the standard coordinates Fs are intra-set covariances for the X-variables and the canonical X-

variables, and the principal coordinates Gp are cross covariances between Y -variables and X-variables.
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This is shown by the following set of equations,

Sxu =
1

n
X′cU =SxxA = Fs , (5)

Sxv =
1

n
X′cV =SxyB = SxxAD = Fp , (6)

Syu =
1

n
Y′cU =SyxA = SyyBD = Gp , (7)

Syv =
1

n
Y′cV =SyyB = Gs . (8)

A biplot of the between-set covariance matrix Sxy can be obtained as FpGs
′ in Equation (3) or as

FsGp
′ in Equation (4). Numerical output of a CCO typically also includes the canonical loadings. The

canonical loadings are the correlations between the original variables and the canonical variables and

can be used to interpret the canonical variables. In a correlation-based CCO the previous covariance

expressions (Equations (5)-(8)) are in fact equal to the canonical loadings. If a covariance-based CCO

is used, then the loadings are obtained by premultiplying the previous covariances with the inverse of a

diagonal matrix containing the standard deviations (Dsx,Dsy), so that the loadings are obtained by:

Rxu =D−1sx Sxu = D−1sx Fs , (9)

Rxv =D−1sx Sxv = D−1sx Fp , (10)

Ryu =D−1sy Syu = D−1sy Gp , (11)

Ryv =D−1sy Syv = D−1sy Gs . (12)

Note that, in order to obtain the loadings, post-multiplication by the inverse of the standard deviation of

the canonical variables is not needed, as the latter are already standardized by virtue of the normalization

constraints on the singular vectors in Equation (1). This shows that the correlation-based and covariance-

based biplots are almost identical, and that the only difference is a rescaling of the variable vectors. In

correlation-based CCO biplots all variable vectors will be within the unit circle. In covariance-based

CCO biplots, variable vectors can be outside the unit circle. The angles between the variable vectors are

the same in both types of analysis, and the goodness-of-fit of Sxy equals the goodness of fit of Rxy.

We briefly summarize the main measures of goodness-of-fit in canonical analysis. The goodness-of-fit
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of the between-set covariance matrix in a k-dimensional biplot is given by

∑k
i=1 d

2
i∑min(p,q)

i=1 d2i

. (13)

Matrix Xc is approximated by the inner products between the rows of U and the columns of Fs. If the

X-set is the smaller set (p ≤ q) then, in the full space of the solution, Xc is perfectly recovered, because

UFs
′ = XcAFs

′ = XcAA′Sxx = Xc . (14)

In a k-dimensional biplot Xc is approximated by X̂ = U(k)Fs(k)
′ . The total variance of the X variables

accounted for by a given number of canonical U variables, called the adequacy coefficient (Thompson,

1984), is
tr(Sxu(k)Sxu(k)

′)

tr(Sxx)
, (15)

where Sxu(k) refers to the covariance matrix between X variables and the first k canonical X variables.

Note that the adequacy coefficient is not scale-invariant under standardization of the original variables.

With standardized variables, the adequacy coefficients are obtained by changing all covariances in Equa-

tion (15) by correlations, and this reduces to 1
p

∑p
i=1

∑k
j=1 r

2(xi, uj). The latter is also the average of

the coefficients of determination (R2) obtained by regressing all X variables onto k canonical variables.

Likewise, the inner products of U with the Y -variables in principal scaling approximate the Y -measure-

ments in the full space, and we have

UGp
′ = UU′Yc(1/n) = U(U′U)

−1
U′Yc = Ŷ , (16)

which can be interpreted as the fitted values obtained in a regression of Yc onto the canonical X-

variables. In general, it will not be possible to exactly recover the measurements of the variables in

principal scaling, even if we use the full space of the solution. The amount of explained variation of the

Y -variables in a k-dimensional solution, known as the redundancy coefficient (Stewart and Love, 1968),

is
tr(Syu(k)Syu(k)

′)

tr(Syy)
. (17)

The redundancy coefficients are neither scale-invariant under standardization of the original variables.

With standardized variables, the redundancy coefficients are obtained by changing the covariances in

Equation (17) by correlations, and reduce to q−1
∑q

i=1

∑k
j=1 r

2(yi, uj) . Analogous adequacy and re-
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dundancy coefficients can be calculated for the canonical Y variables.

In conclusion, classical CCO basically provides a biplot of the between-set covariance or correlation

structure, in which the original observations are absent. Classical biplots made by principal component

analysis (Gabriel, 1971) provide more information, since they do not only represent the variables, but

also the original samples. In previous work, Graffelman (2005) has shown that it is possible to represent

the original samples in the CCO biplot by using regression results for the representation of supplemen-

tary information (Graffelman and Aluja-Banet, 2003). If samples are fitted to the biplot by generalized

least squares, it is particularly simple to represent them in the biplot: the FsGp
′ biplot should be over-

plotted with the canonical X variables, and the FpGs
′ biplot should be overplotted with the canonical

Y variables. These results are of particular relevance for a compositional version of CCO, as they will

allow the representation of the original compositions in the CCO biplot (See Section 2.2). The corre-

sponding plots could be termed triplots because they represent three entities: X variables, Y variables

and data points. The term triplot stems from ecological multivariate analysis, as triplots are commonly

made in canonical correspondence analysis (Ter Braak, 1986; Ter Braak and Smilauer, 2002) and redun-

dancy analysis (Ter Braak and Looman, 1994).

We finish this section with a few remarks on the scaling of the original data matrix, as this is also relevant

for the compositional analysis that is to follow. One can decide to perform CCO using covariance

matrices (as outlined above), or using correlation matrices. A correlation based analysis is possible

by simply standardizing the data matrices prior to the analysis, e.g. dividing the columns of X and Y

by their respective standard deviations. CCO is, to a large extent, invariant to such standardization.

Canonical correlations, canonical variables, and canonical loadings will all be the same in a covariance-

based and a correlation-based analysis. In this sense CCO differs from principal component analysis

(PCA), being it well known that a PCA of the centreed data matrix is different from the PCA of the

standardized data matrix, giving rise to two “variants” of PCA. The main difference between a covariance

based CCO and a correlation based CCO concerns the biplot: the first produces a biplot of the between-

set covariance matrix, whereas the latter produces a biplot of the between-set correlation matrix. The

goodness-of-fit of these matrices will be the same in both approaches. Finally, the goodness-of-fit of the

original data matrices, as expressed by the adequacy and redundancy coefficients, differ in a covariance-

based and correlation-based analysis as explained above.
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2.2 Compositional CCO

In the development in the previous section, X and Y typically stand for matrices of quantitative real

variables. We now consider X and Y to be matrices with n compositions in their rows, and having Dx

and Dy parts (columns) respectively. Recall that compositional data can be defined as strictly positive

vectors for which the information of interest is in the ratios between components. There are several

ways to perform a CODA-CCO, depending on how the compositions are transformed. One can use the

additive, the centred or the isometric log-ratio transformation, or one can also use the matrices with all

pairwise log-ratios of the X-set and the Y -set. The different approaches are largely equivalent, though

the biplots obtained will be different. We develop two approaches to CODA-CCO in the corresponding

subsections below, using the canonical analysis of the clr transformed compositions (2.2.1), and, largely

equivalently, the canonical analysis of all pairwise log-ratios of the X-set and the Y -set (2.2.2). Both

these transformations lead to a visualization of the pairwise log-ratios which form the most simple

representation of the data, and from which more complex ratios can be build. The clr-based approach is

also the usual approach take in log-ratio principal component analysis (Pawlowsky-Glahn et al., 2015;

Aitchison and Greenacre, 2002). Some invariance properties for the isometric log-ratio transformation

are derived in Appendix A.

2.2.1 The centred log-ratio (clr) approach

We consider the centred log-ratio transformation (clr) of a composition x given by

clr(x) =

[
ln

(
x1

gm(x)

)
, ln

(
x2

gm(x)

)
, · · · , ln

(
xD

gm(x)

)]
, (18)

where gm(x) is the geometric mean of the components of the composition x. Let Xl be the log trans-

formed compositions, that is Xl = ln (X) with the natural logarithmic transformation applied element-

wise. The clr transformed data can be obtained by just centring the rows of this matrix, using the centring

matrix Hr = I− 1
D11′, with D equal to Dx or Dy as corresponds. Then

Xclr = XlHr, Yclr = YlHr . (19)

These clr transformed data matrices have the same dimensions as X and Y. The columns of Xclr and

Yclr are subject to a zero sum constraint because Hr1 = 0. The column rank of these matrices is,

in the absence of additional linear constraints, equal to Dx − 1 and Dy − 1 , respectively. We now
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column-centre the clr transformed data, producing data matrices that have column means that are zero,

Xcclr = HcXclr = HcXlHr, Ycclr = HcYclr = HcYlHr , (20)

where Hc is the idempotent centring matrix Hc = I − (1/n)11′. Thus, Xcclr and Ycclr have zero row

means due to the subtraction of the geometric means, and zero column means due to centring operation

Hc. We propose to use Xcclr and Ycclr as the input matrices for a classical covariance-based CCO

described in Section 2.1. Due to the zero row sum constraint, the covariance matrices of Xcclr and Ycclr

are singular. In CCO the covariance (or correlation) matrices of the X and Y variables are inverted.

In order to be able to deal with the structural singularity due to the compositional nature of the data,

we use a generalized inverse, the Moore-Penrose inverse (Searle, 1982), in order to be able to proceed

with the analysis. In CCO with non-singular covariance matrices, the inverse of the square roots of the

covariance matrices are needed (Equation 1) and these can be obtained from the spectral decomposition

of the covariance matrices, in particular

S−1/2xx = WΛ−1/2W′, (21)

where W and Λ contain eigenvectors and eigenvalues obtained in the spectral decomposition of Sxx =

WΛW′. Under singularity of Sxx, the Moore-Penrose inverse denoted by S+
xx is obtained by WΛ̃W′,

with Λ̃ = diag(1/λ1, 1/λ2, ..., 1/λD−1, 0), which satisfies the four Moore-Penrose conditions. Com-

positional canonical correlation analysis (CODA-CCO) can then be carried out using the singular value

decomposition

K =
(
S+
xx

) 1
2 Sxy

(
S+
yy

) 1
2 = ÃDB̃′, (22)

Due to the compositional nature of the data, the number of dimensions in the solution, the rank of D, is

now given by r = min (Dx − 1, Dy − 1). The canonical coefficients are now obtained as

A =
(
S+
xx

) 1
2 Ã, B =

(
S+
yy

) 1
2 B̃. (23)

The biplot coordinates and the canonical loadings of a CODA-CCO are now obtained by the same

expressions given for the classical analysis in Equations (3) and (4) and (5) through (8). Note that the

between-set covariance matrix of the clr coordinates Sxy has dimensionDx×Dy, but that the generalized

inverses have at most rank Dx − 1 and Dy − 1, respectively. Consequently, matrix K is not full rank,

but has at most rank min (Dx − 1, Dy − 1). We note that computer programs typically produce an s.v.d.
10

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 31, 2017. ; https://doi.org/10.1101/144584doi: bioRxiv preprint 

https://doi.org/10.1101/144584
http://creativecommons.org/licenses/by-nc-nd/4.0/


where D has dimensions (r+1)× (r+1), implying that D has a trailing zero on the diagonal which is

consequence of the singularity of the covariance matrices of the clr transformed data. If the s.v.d. in (22)

is conceived that way, the corresponding normalization of the canonical coefficients is affected, and one

has that A′SxxA = Ĩ and B′SyyB = Ĩ, where Ĩ is a diagonal matrix with r ones and one trailing zero

on its diagonal. In the remainder, we conceive D of dimension r× r, without trailing zero, such that the

canonical coefficient matrices have no trailing column of zeros and can be considered to be full column

rank, and satisfy the usual normalizations A′SxxA = Ir and B′SyyB = Ir. Note that the columns

of the matrices of canonical coefficients sum to zero. A justification for this is given in appendix A.

We complete this section enumerating some properties of the compositional canonical biplots obtained.

Most of these properties are relatively straightforward extensions of the previous work on compositional

biplots (Aitchison and Greenacre, 2002) and canonical biplots (Haber and Gabriel, 1976; Ter Braak,

1990; Graffelman, 2005). For a treatment of compositional biplots, see also Section 5.4 of Pawlowsky

et al. (2015).

1. Biplot origin. The origin of the biplot represents the vector of geometric means of the n compo-

sitions. In FsGp
′ scaling the origin corresponds to the geometric mean vector of the X compo-

sitions, whereas in FpGs
′ scaling, the origin corresponds to the geometric mean vector of the Y

compositions. This can be seen from equations U = XcclrA and V = YcclrB. If the double

centring operation is applied to the vector of geometric means, a zero vector is obtained, and con-

sequently the values of the canonical variables are zero. At the same time, the origin of the biplot

is also the point from which the biplot vectors representing the clr components emanate.

2. Biplot vector (ray) length. Due to the symmetric nature of CCO, we can assume Dx ≤ Dy

without loss of generality. The length of variable vectors plotted in standard coordinates is, for

the smallest composition (the one with fewer parts), in the full space of the solution, equal to the

standard deviation of the corresponding clr transformed part. This follows from

FsFs
′ = SxxAA′Sxx = Sxx, (24)

where the last equality follows from the fact that AA′ is the Moore-Penrose inverse of Sxx. If a

two-dimensional biplot is used as an approximation of the data set, ray length will underestimate

the observed sample standard deviation. It also follows that the length of a biplot vector can

never exceed the sample standard deviation of the corresponding clr component. For the larger
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composition (the one with more parts), we have, in the full r dimensional space

GsGs
′ = SyyBB′Syy ≈ Syy, (25)

where the LHS has rank r, but Syy has rank Dy − 1 ≥ r. Thus, for the larger composition, the

length of the rays will be smaller than the standard deviation of the corresponding clr transformed

part. Finally, biplot rays of parts that are plotted in principal coordinates are shrunk with respect

to the standard coordinates due to the postmultiplication by the canonical correlations (see Equa-

tions (3) and (4)) and will always fall short of the observed sample standard deviation, and give

a worse approximation to it compared with the standard coordinates. This is consistent with pre-

vious work (Graffelman, 2005), where it was shown that the within-set covariance matrices are

better approximated with biplot vectors in standard coordinates.

3. Inner products between biplot vectors. It follows from Equation (24) that the inner product be-

tween two biplot vectors of the same set (again in the full space, using standard coordinates, and

correspondingly the set with the smaller composition) equals the covariance of the corresponding

clr components. Inner products of biplot vectors between subsets (one set in standard and the

other set in principal coordinates) approximate the between-set covariance matrix of clr trans-

formed parts. This is justified by

FsGp
′ = SxxADB′Syy = Sxy. (26)

This approximation is optimal in the generalized least squares sense as guaranteed by the s.v.d in

Equation (22), and it is the same in both biplot scalings, and in fact the focus of the analysis.

4. Cosine of angle between two biplot vectors. The cosine of the angle between the two vectors

within sets (again referring to the standard coordinates of the smaller composition) equals the

sample correlation of the clr components in the full space. In a two-dimensional subspace this

will be “approximately so”, being it unknown if the approximation is optimal in some sense.

Cosines of angles of biplot vectors between subsets will exaggerate the correlations between trans-

formed clr components of the two subsets, even in the full space of the solution. This is because

the ray lengths of the larger composition underestimate the standard deviation of the correspond-

ing part (see the previous point 2). Importantly, the approximation to the correlations offered by

using cosines depends on the biplot scaling. It is not the same in the FsGp
′ and the FpGs

′ scal-
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ing. This is because the length of the biplot vectors in the rows of Gp and Fp fall short of the

corresponding standard deviation to a different extent.

5. Link length. A biplot link is the difference vector of two biplot rays. In CODA biplot interpreta-

tion, the links are very important because they represent the log-ratio of the connected parts. For

the composition that is represented in standard coordinates, the length of a link in the full space of

the solution equals the standard deviation of the corresponding log-ratio. Let fi and fj represent

the rays of parts i and j respectively (rows of Fs). The squared length of their link is given by

‖ fi − fj ‖2 = fi
′fi + fj

′fj − 2fi
′fj

= Var (clr(xi)) + Var (clr(xj))− 2Cov (clr(xi), clr(xj)) (27)

= Var

(
ln

(
xi

gm(x)

)
− ln

(
xj

gm(x)

))
= Var

(
ln

(
xi
xj

))
.

Under the considered scaling, the links of the larger composition will necessarily be represented

in principal coordinates. Let gi and gj represent the rays of parts i and j respectively (rows of

Gp). The squared length of their link is given by

‖gi − gj ‖2 = gi
′gi + gj

′gj − 2gi
′gj

≈ Var (clr(yi)) + Var (clr(yj))− 2Cov (clr(yi), clr(yj)) (28)

= Var

(
ln

(
yi

gm(y)

)
− ln

(
yj

gm(y)

))
= Var

(
ln

(
yi
yj

))
.

This shows there is no corresponding full space result for the length of the links in principal

coordinates (note the use of ≈ in the last equation). As argued above, the terms gi
′gi and gj

′gj

underestimate the corresponding standard deviation, even in the full space. The principal links

will equal the corresponding standard deviations in the full space only in the case of equally sized

compositions (p = q) and all canonical correlations equal to 1.

6. Inner products between links. Since the focus of the analysis is on relationships between the log-

ratios of the two sets, inner products and angles between X and Y links are of interest. Links

are vectors of differences, and the inner product between two links corresponding to the log-ratios

ln (xi/xj) and ln (yr/ys) is, in full space, the covariance between the two corresponding log-ratios

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 31, 2017. ; https://doi.org/10.1101/144584doi: bioRxiv preprint 

https://doi.org/10.1101/144584
http://creativecommons.org/licenses/by-nc-nd/4.0/


because

(fi − fj)
′(gr − gs) = fi

′gr − fi
′gs − fj

′gr + fj
′gs

= Cov (clr(xi), clr(yr))− Cov (clr(xi), clr(ys))

− Cov (clr(xj), clr(yr)) + Cov (clr(xj), clr(ys)) (29)

= Cov

(
ln

(
yr
ys

)
, ln

(
xi
xj

))
.

This equation is exact in the full space and has interesting implications. Since all four clr covari-

ances are optimally approximated in the analysis, the implication is that the covariances between

log-ratios of the X set and the Y set are also optimally approximated. An alternative way to con-

struct a CODA-CCO biplot is then to depict only links as arrows emanating from the origin and

leave the clr components out of the biplot (e.g. see Figures 2A and 3A in the Example section,

where the links in 2A are identified as the rays in 3A), this gives precisely the CODA-CCO biplot

obtained in the pairwise log-ratio approach (See subsection 2.2.2).

7. Cosines of angles between links. Equations (27), (28) and (29) show that, in the full space, cosines

of angles between links are “close to” the correlations of the corresponding log-ratios. However,

because of the aforementioned inexact nature of Equation (28), cosines of angles will not equal

sample correlations between log-ratios exactly.

Up to this point, CODA-CCO has been developed using a covariance-based approach, mainly because

all clr transformed parts have the same log-ratio scale. This implies that inner products in the CODA-

CCO biplots (Equations (24) through (26)) represent covariances between clr transformed parts as well.

Covariances are only indicative of the nature of the relationship (direct or indirect) but not about the

strength of the observed relationship. For the latter purpose, correlations are far more useful. From the

foregoing it is clear that in CODA-CCO the approximation of the correlations by cosines is problematic

for two reasons: first, for being inexact in the full space (when the larger composition is considered, or

when principal coordinates are involved), and second, for having no justification that approximations in

low-dimensional biplots are optimal. In order to avoid these problems, one might therefore consider to

standardize the clr transformed data, such that the scalar products in Equations (24) through (26) will

approximate the correlations. This however, yields a biplot that approximates correlations between clr

transformed parts, which do not seem particularly interesting. Note that the covariance on the right hand

side of Equation (29) is not converted into a correlation by standardizing the clr data. Potentially more
14
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interesting biplots, tightly related to the clr approach exposed here, are obtained in the pairwise log-ratio

approach in the next section.

2.2.2 The pairwise log-ratio (plr) approach

An alternative approach to CODA-CCO is to use the pairwise log-ratios (plr for short) of the X-set

and the Y -set, and to submit these to a canonical analysis. First, we define two matrices Xplr and Yplr

with all possible log-ratios for the X and Y set respectively, having dimensions n× 1
2Dx(Dx − 1) and

n× 1
2Dy(Dy − 1) respectively. We column-centre these matrices to obtain

Xcplr = HcXplr, Ycplr = HcYplr. (30)

CODA-CCO is now performed by the s.v.d. of the transformed between-set covariance matrices of Xcplr

and Ycplr, that is, by applying Equation (22) to the covariance matrices of the newly defined data matri-

ces. Because of the structural singularity of Sxx and Syy, again the Moore-Penrose inverse of the latter

two is used. It is immediately clear that the clr-approach and plr-approach are “equivalent” to a large

extent. Any pairwise log-ratio is a linear combination of the clr transformed parts because

ln

(
xi
xj

)
= ln

(
xi

gm(x)

)
− ln

(
xj

gm(x)

)
. (31)

It therefore follows that Xplr and Yplr have the same rank as Xclr and Yclr respectively, and the number

of dimensions with non-zero singular values is the same in both analysis. Moreover, Equation (29)

already showed that the covariances of the plr data are linear combinations of the covariances of the clr

data. Canonical correlation analysis is known to be invariant under linear transformations of the data.

It is thus clear that the canonical correlations and the canonical variables obtained are the same in both

types of analysis. The canonical coefficients are however, not invariant, and this implies, by virtue of

Equations (3) and (4), that the biplot is affected. In the plr approach, biplots will generally be crowded

with more rays, n× 1
2Dx(Dx−1) and n× 1

2Dy(Dy−1), respectively, for each set. These biplot vectors

now directly represent the pairwise log-ratios. In the plr approach, biplots properties are straightforward

to infer using the results in subsection 2.2.1. We express these therefore more concisely, but emphasize

some novelties.

1. Biplot origin. The origin of the biplot now represents the mean of each pairwise log-ratio, both

for the pairwise log-ratios of the X set and the Y set.
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2. Biplot vector (ray) length. The length of a variable vector plotted in standard coordinates is,

for the smallest composition, in the full space of the solution, according to Equation (24) now

equal to the standard deviation of the corresponding log-ratio. Correspondingly, ray lengths in

standard coordinates for the larger composition will underestimate the standard deviation of the

corresponding log-ratio. Also correspondingly, biplot rays of parts plotted in principal coordinates

give poorer approximation of the corresponding standard deviations of the the log-ratios.

3. Inner products between biplot vectors. Equation (24) now shows, with again the same conditions

(full space, standard coordinates, the smaller composition), that the inner product between two

biplot vectors of the same set equals the covariance of the corresponding log-ratios. Inner products

of biplot vectors between subsets approximate the between-set covariance matrix of log-ratios, the

latter being optimal in the generalized least squares sense.

4. Cosine of angle between two biplot vectors. The cosine of the angle between the two vectors

within sets (standard coordinates, the smaller composition, full space) equals the sample correla-

tion between two log-ratios. Cosines of angles of biplot vectors between subsets exaggerate the

correlations between the log-ratios of the two subsets and depend on the biplots scaling for reasons

previously described.

5. Links. A biplot link now becomes the difference vector of two log-ratios. If the two log-ratios

share a part, having it both in the numerator, or both in the denominator, the link is another log-

ratio because

ln

(
xi
xj

)
− ln

(
xi
xk

)
= ln

(
xk
xj

)
. (32)

Representing this link is superfluous, as the biplot already shows all pairwise log-ratios as vectors

emanating from the origin. If the two log-ratios don’t share parts, we have

ln

(
xi
xj

)
− ln

(
xk
xl

)
= ln

(
xi
xk

)
− ln

(
xl
xj

)
= ln

(
xixj
xkxl

)
, (33)

showing that the biplot will have identical, duplicated links, to be interpreted as “differences in

log-ratios”. If the two log-ratios share a part, one having it in the numerator and one having it in

the denominator, we have

ln

(
xi
xj

)
− ln

(
xk
xi

)
= ln

(
x2i
xjxk

)
. (34)
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Equation (32) is a simple log-ratio, whereas Equations (33) and (34) are examples of balances (Pawlowsky-

Glahn et al., 2015). Balances can be very useful and can have substantive interpretation depending

on the context of the data being analysed. At this point we refrain from developing inner prod-

ucts and cosines for links in the pairwise approach, and will focus mainly on the rays (pairwise

log-ratios) for interpretation.

We argued above that in the clr approach standardization of the data did not seem very useful. In the

plr approach, standardization can be highly useful, and it is probably often to be recommended. The

reason is that standardization of the pairwise log-ratios now converts Equations (24), (25) and (26) into

correlation matrices. In particular, Equation (26) implies the biplot can now efficiently visualize the

correlation structure of the pairwise log-ratios, and that optimal low-dimensional approximations to this

correlation structure can be obtained. This was not possible in the clr approach given in Section 2.2.1.

3 Examples

In this section we present two examples of a compositional canonical correlation analysis. The first

example concerns two synthetic 3-part compositions registered for the same set of subjects. The advan-

tage of this example is that the between-set covariance matrix is of rank two, and that everything can be

represented without error in two-dimensional space. The second example is geological and concerns the

chemical composition (major oxides and trace elements) of European floodplain sediments.

3.1 Two sets of compositions of three parts

We show 100 observations on two 3-part compositions, x and y, in the ternary diagrams in Figure 1.

The ternary diagram of the X-set reveals a clear pattern, having an approximately constant x1/x2 ra-

tio, whereas the Y -set shows, at first sight, no clear structure. These ternary plots only reveal marginal

information on the X and Y compositions, and are not informative about the relationships between the

X-set and the Y -set. We calculate the centred log-ratio transformation of compositions x and y sepa-

rately, and perform the clr-based compositional canonical correlation analysis developed in the previous

section. Table 1 shows the classical numerical output of a CCO analysis. Initially, we use a covariance-

based analysis, because all variables are in a commensurable log-ratio scale.

Table 1 shows that the first canonical correlation is very high, 0.94, implying that the two variable sets

share a large part of their variation. All of the variance of clr(x) and clr(y) is accounted for by the two

canonical variables, as expected. The goodness-of-fit of the between-set covariance matrix Sxy is also
17
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Figure 1: Ternary diagrams of two compositions, x and y, of three parts.

100 percent, as predicted. Considering only one dimension, it is 0.9442/(0.9942 + 0.1292) = 0.982.

This suggests there is only one important dimension. The cumulative adequacy coefficients (R2
y|u) show

that a two-dimensional FsGp
′ biplot explains 100% of the variance of the clr transformed X parts, and

36.3% of the variance of the clr transformed Y parts. Most of the variance of the clr transformed parts is

accounted for by the first dimension of the analysis. This dimension accounts for 91.3% of the variance

in the transformedX parts, and for 35.3% of the variance in the transformed Y parts. The first canonical

variate U1 correlates strongly with all X parts, and V1 correlates strongly with y1 and y2. The second

canonical correlation is small, and non-significant in a permutation test (see below). Log-ratio CODA-

CCO biplots are shown in various scalings in Figure 2. Biplots have been overplotted with the canonical

variables (multiplied by a single convenient scaling factor, using the rows of matrix U in Figures 2A

and 2C, and the rows of matrix V in Figures 2B and 2D) in order to represent the original compositions

in the biplot. The variable labels Xi, Yj in the plot actually represent the clr transformed parts. A link

between rays i and j within a subset represents the corresponding log-ratio ln (xi/xj). The key point of

these biplots is to look for parallel links of each subset that run parallel to a canonical variable with a

high correlation. The canonical variables “channel” the correlation structure of the variables and repre-

sent the most correlated feature of the data. Figure 2A shows parallel links between (clr(x1), clr(x2))

and (clr(y2), clr(y3)), implying that the log-ratios ln(x1/x2) and ln(y2/y3) are correlated. However,

the corresponding link is not parallel to the first canonical variable, and these log-ratios have only weak

correlation. Moreover, Figures 2B, 2C and 2D do not show this parallelism, suggesting that it is acciden-
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r1 = 0.944 r2 = 0.129

U1 U2

clr(x1) 0.001 (-0.886) 3.847 ( 0.464)
clr(x2) -0.799 (-0.983) -3.447 (-0.184)
clr(x3) 0.798 ( 0.994) -0.401 (-0.109)
R2

x|u 0.913 0.087
R2

x|u 0.913 1.000
R2

x|v 0.813 0.001
R2

x|v 0.813 0.815
V1 V2

clr(y1) 0.762 ( 0.852) -0.050 (-0.523)
clr(y2) -0.717 (-0.610) -0.521 (-0.793)
clr(y3) -0.046 (-0.303) 0.572 ( 0.953)
R2

y|v 0.397 0.603
R2

y|v 0.397 1.000
R2

y|u 0.353 0.010
R2

y|u 0.353 0.363

Table 1: Canonical correlations (r1, r2), canonical weights, canonical loadings (between parentheses),
adequacy coefficients (R2

x|u, and cumulative R2
x|u) and redundancy coefficients (R2

x|v, and cumulative
R2

x|v) obtained in a CODA-CCO of two sets of clr transformed compositions of three parts.

tal. More interestingly, Figure 2A also shows long parallel links through (clr(x2), clr(x3)) and through

(clr(y1), clr(y2)) that run parallel to the first canonical variate, suggesting that the log-ratios ln(x2/x3)

and ln(y1/y2) are highly correlated. These interpretations are confirmed by the sample correlations

between these log-ratios; r(ln(x1/x2), ln(y2/y3)) = −0.14 and r(ln(x2/x3), ln(y1/y2)) = −0.94.

Correlations inferred from the biplot can be corroborated by making a scatterplot matrix of all possible

log-ratios, as is shown in supplementary Figure S1. An additional approximately parallel pair of links

with some inclination is observed in Figure 2A between (clr(x1), clr(x3)) and (clr(y1), clr(y3)). The

corresponding log-ratios have a correlation of -0.56. The presence of the samples in the biplot aids

interpretation and illustrates the observed correlations: the compositions projecting high onto the link

through (clr(x2), clr(x3)) also project high onto the link through (clr(y1), clr(y2)) and so confirm the

correlated nature of the corresponding log-ratios.

An alternative biplot for the same data, using the FpGs
′ scaling from Equation 3, is shown in Figure 2B.

This biplot explains 81.5% of the variance of the clr transformed X parts, and 100% of the variance

of the clr transformed Y parts. The goodness-of-fit of the between-set covariance matrix is the same

as in Figure 2A (100%). However, the biplot in Figure 2B seems to be the more interesting option if

the original compositions are added to the biplot, because overall it accounts for more variability of
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Figure 2: CODA-CCO clr biplots of two three-part compositions using different scalings. Rays represent
clr-transformed parts. Links (clr(x1), clr(x2)), (clr(x2), clr(x3)), (clr(y1), clr(y2)), (clr(y2), clr(y3))
are indicated by dotted lines. Panels A (FsGp

′ scaling) and B (FpGs
′ scaling) are biplots made with a

covariance-based analysis. Panels C (FsGp
′ scaling) and D (FpGs

′ scaling), with unit circle, are biplots
made with a correlation-based analysis.

the clr transformed data. Note that the links corresponding to the log-ratios ln(x1/x2) and ln(y2/y3)

are now not far from orthogonal, whereas in Figure 2A they were virtually parallel. This shows that

one needs to be cautious when interpreting the biplot, and that parallelism of links does not necessarily

imply strong correlation of the corresponding log-ratios. Also note that the links corresponding to the

log-ratios ln(x2/x3) and ln(y1/y2) are close to parallel in the direction of the first canonical variate,

and that this is observed in both biplot 2A and 2B. This is the most salient relationship between the

two compositions. Figure 2B also shows almost horizontal parallel links through (clr(x1), clr(x3)) and

(clr(y1), clr(y2)), and more clearly reveals the correlation between the corresponding log-ratios. Fig-

ures 2C and 2D show CODA-CCO biplots of the same data, but with the clr-data standardized prior to

the canonical analysis. In these plots, scalar products between the sets correspond to correlations be-
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tween the clr components of each set. These plots resemble Figures 2A and 2B, but with rescaled rays.

This is precisely what is expected as a consequence of the invariance of CCO under linear transforma-

tion. Note that the goodness-of-fit of the between-set covariance matrix and the between-set correlation

matrix is the same as expected. However, plots 2C and 2D do add value to the previous graphs in two

ways: firstly, due to the presence of the unit circle it is possible to infer that the clr transformed X

components are perfectly represented in Figure 2C and the Y -parts in Figure 2D. Secondly, Figures 2C

and 2D provide optimal approximations of the between-set correlation structure of the clr transformed

components, whereas Figures 2A and 2B do not. Because of the small size of the miniature example,

and because Dx = Dy = 3, cosines of angles in Figures 2A and 2B do coincide with the between-set

sample correlations, but for larger compositions with Dx 6= Dy this will generally not be the case.

CODA-CCO biplots that are based on the analysis of pairwise log-ratios are shown in Figure 3. Now,

each biplot vector represents a log-ratio. Due to the aforementioned invariance, goodness-of-fit of the

covariance and correlation matrices of the log-ratios is the same as in the previous clr-based approach.

Note that in Figures 3A and 3B, each biplot vector equals the sum or difference of the other two vectors

of its set, which is a consequence of Equation (32).

In all biplots in Figure 3 the log-ratios ln (x2/x3) and ln (y1/y2) virtually coincide with the first canon-

ical variate. Indeed, the first canonical variate can be interpreted as the difference between these two

log-ratios, and confirms this is the most correlated aspect of the data. Results obtained with standardiza-

tion of log-ratios shown in Figures 3C and 3D do leave angles between vectors unaltered, but this is only

because Figure 3 represents full space results with Dx = Dy. Between-set inner products in 3C and 3D

are now correlations and identify ln (y2/y3) as uncorrelated with all log-ratios except ln (y1/y3).

3.2 Geochemical data: the composition of European floodplain sediments

The analysed data base is given by the chemical composition of floodplain sediments and is drawn

from the FOREGS Geochemical Baseline Mapping Program initiated in 1998 to provide high quality

environmental geochemical baseline data in Europe (http://weppi.gtk.fi/publ/foregsatlas/). The data set

consists of 747 samples, stratified by European country. The concentrations, expressed as weight % for

10 major oxides (SiO2, Al2O3, Na2O, MgO, P2O5, K2O, CaO, TiO2, MnO, Fe2O3) and in ppm for

18 trace elements (V, Cr, Co, Ni, Cu, Zn, Ga, As, Rb, Sr, Zr, Nb, Sn, Cs, Ba, Pb, Th, U), were

determined by X-Ray Fluorescence (XRF) spectrometry. XRF spectrometry is one of the most widely

used and versatile of all instrumental analytical techniques for bulk chemical analysis of materials in
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Figure 3: CODA-CCO biplots using pairwise log-ratios of two three-part compositions using different
scalings. Rays represent log-ratios. Panels A (FsGp

′ scaling) and B (FpGs
′ scaling) are biplots made

with a covariance-based analysis. Panels C (FsGp
′ scaling) and D (FpGs

′ scaling), with unit circle, are
biplots made with a correlation-based analysis.

several fields (Fitton, 1997). An XRF spectrometer uses primary radiation from an X-ray tube to excite

secondary X-ray emissions from the sample. The radiation emerging from the sample includes the

characteristic X-ray peaks of major and trace elements present in the sample. Samples were prepared

by mixing with a binder, then pressing into pressed powder pellets. Usually the technical apparatus and

standards used for major oxides are not the same for trace elements, so that XRF analysis produces two

different compositional data sets for the same powdered sample. We applied CODA-CCO to the XRF

data set in order to investigate the relationships between the major oxide compositions (%) and the trace

element compositions (ppm). Before doing any biplot interpretation, we first comment the numerical

output of the analysis given in Table 2. This validation is important, because patterns detected in a biplot

are unreliable when the overall goodness-of-fit is low, or if the involved variables are poorly represented.
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The full space of the solution of this data set has 9 dimensions, and Table 2 provides the numerical

output for the first three dimensions of the analysis. The first three canonical correlations are high.

This means that the two measurement domains, centred log-ratios of oxides and of trace elements, share

variation to a large extent. Statistical significance of the canonical correlations was assessed by means of

a permutation test. Such a test is performed by keeping one matrix fixed, say X, and randomly permuting

the rows of Y. The permuted data set is analysed by CODA-CCO, and the canonical correlations are

registered. This procedure is repeated 10,000 times and in this way the distribution of the canonical

correlations under the null hypothesis of no association between X and Y is generated. The observed

canonical correlations of the original data set are compared against the generated distribution, and a

p-value is calculated as the percentage of times the generated values exceed the observed canonical

correlations. We found all nine canonical correlations to be highly significant with vanishingly small

p-values. Results of the permutation test are given for all nine dimensions in supplementary Figure S2.

Test results suggest all nine dimensions potentially could have a geological interpretation, though for

reasons of space we limit ourselves to interpreting the first two dimensions.
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r1 = 0.936 r2 = 0.895 r3 = 0.814
U1 U2 U3

SiO2 -0.253 (-0.653) 0.092 (-0.366) -1.501 (-0.556)
Al2O3 0.110 (-0.056) 0.092 (-0.446) 0.401 (0.372)
Na2O -0.057 (-0.344) 0.263 (-0.234) 0.438 (0.439)
MgO 0.145 (0.415) 0.083 (0.357) 0.071 (0.426)
P2O5 0.017 (0.001) 0.028 (-0.016) -0.140 (-0.328)
K2O -1.524 (-0.812) -0.145 (-0.481) 1.314 (0.190)
CaO -0.033 (0.112) 0.551 (0.918) -0.096 (-0.227)
TiO2 0.738 (0.236) -1.069 (-0.838) -0.840 (-0.094)
MnO -0.054 (0.302) -0.244 (-0.404) -0.180 (-0.263)
Fe2O3 0.910 (0.628) 0.350 (-0.488) 0.532 (-0.019)
R2
x|u 0.193 0.269 0.110

R2
x|u 0.193 0.463 0.572

R2
x|v 0.169 0.216 0.073

R2
x|v 0.169 0.385 0.458

V 0.579 (0.693) -0.114 (-0.053) 0.426 (0.334)
Cr -0.067 (0.467) 0.106 (0.191) -0.144 (-0.182)
Co 0.372 (0.700) -0.399 (0.032) 0.180 (0.154)
Ni 0.012 (0.577) 0.266 (0.324) -0.215 (-0.042)
Cu -0.046 (0.450) 0.074 (0.284) -0.125 (-0.158)
Zn 0.144 (0.281) -0.006 (-0.016) -0.239 (-0.289)
Ga 0.541 (-0.110) -0.214 (-0.104) 0.858 (0.670)
As 0.091 (0.181) 0.038 (-0.201) -0.133 (-0.231)
Rb -1.848 (-0.762) 0.138 (-0.189) 1.309 (0.517)
Sr -0.137 (-0.153) 1.200 (0.859) -0.087 (0.108)
Zr -0.443 (-0.463) -0.218 (-0.292) -1.236 (-0.441)
Nb 0.622 (-0.046) -0.544 (-0.284) -0.220 (0.102)
Sn 0.089 (-0.046) -0.067 (-0.091) -0.011 (-0.012)
Cs -0.057 (-0.502) -0.107 (-0.151) -0.303 (-0.195)
Ba -0.140 (-0.507) -0.450 (-0.265) 0.105 (0.162)
Pb -0.097 (-0.168) 0.114 (-0.109) -0.017 (-0.307)
Th 0.401 (-0.410) 0.191 (-0.222) -0.275 (0.208)
U -0.016 (-0.351) -0.007 (-0.141) 0.126 (0.342)
R2
y|v 0.194 0.078 0.088

R2
y|v 0.194 0.272 0.360

R2
y|u 0.170 0.062 0.058

R2
y|u 0.170 0.233 0.291

Table 2: Canonical correlations (r1, r2, r3), canonical weights, canonical loadings (between parenthe-
ses), adequacy coefficients (R2

x|u, and cumulative R2
x|u) and redundancy coefficients (R2

x|v, and cu-
mulative R2

x|v) obtained in a CODA-CCO of major oxides and trace elements of European floodplain
sediments. Major oxides and trace elements with a canonical coefficient larger than 0.25 in absolute
value are marked in bold for the first two dimensions.
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Inspection of Table 2 shows that the oxides SiO2,K2O,Fe2O3 and TiO2 and the trace elements V,

Co, Rb, Ga, Zr, Nb and Th are important contributors to the first dimension of the analysis. For the

second dimension these are the oxides CaO and TiO2, trace Sr, and to a lesser extent trace elements

Zr,Ni,Nb,Ba,Co and Ga. We focus on parts with canonical coefficient above 0.25 in absolute value.

Often, though not always, these parts also have large canonical loadings. When interpreting the biplot,

we will mainly focus on links involving these components. The biplot of the analysis is shown in

Figures 4A (major oxides in standard coordinates) and 4B (trace elements in principal coordinates).

Plots 4A and 4B can be overlaid, but are presented separately to avoid an overcrowded display. We again

look for links that run parallel to the canonical variables, which are represented by the perpendicular

coordinate axes. Such links, representing approximately the standard deviation of the logarithm of ratios,

can be expected to have particular strong correlations. The first three canonical correlations are 0.94,
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Figure 4: CODA-CCO biplot of major oxides (in standard coordinates) and trace elements (in principal
coordinates). Rays represent clr-transformed parts.

0.89 and 0.81. Numerical output of the CODA-CCO indicates that the two dimensional biplot accounts

for 44% of the variation in the between-set covariance matrix of the clr transformed compositions,

accounting, in the scaling used, for 46% of the total variance of clr transformed oxides, and 23% of the

total variance of clr transformed trace elements. Log-ratios of the oxides that have large correlation with

the first canonical variate are ln(K2O/Fe2O3), ln(K2O/TiO2), and ln(SiO2/Fe2O3), while for the

trace elements these are ln(Rb/V), ln(Rb/Co), and ln(Ba/Co). The association among K2O, SiO2,

Rb and Ba for negative values of the first canonical variate has a well defined geochemical meaning.

They trace the behavior of lithofile elements that follow Potassium geochemistry and the relative increase
25
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in Silica content (mainly presence of K-Feldspars) in the bedrock nature across Europe. On the other

hand, positive values associated with Fe2O3, TiO2, V and Co point out the presence of mafic and

ultramafic lithologies (relative decreasing Silica content) as well as mineralizations and presence of clay-

rich soil with relatively high Al2O3 contents. The second canonical variate points out the association

among Ca and Sr versus that of TiO2, Fe2O3, MnO, Nb, Ga and Ba. This shows the presence of

carbonatic lithologies versus the presence of mafic and ultramafic rocks, felsic crystalline rocks or clay-

rich soils with high Al2O3 contents, as well as the presence of mineralization (i.e. Ba). We confirmed the

relationships between log-ratios inferred from the biplot by making a scatterplot matrix, where the most

prominent log-ratios are shown (see supplementary Figure S3 for log-ratios related to the first canonical

variate).

When the canonical correlation analysis is stratified on a country-wise basis (biplots and tables not re-

ported), using countries where a sufficient numbers of samples is available, interesting features emerge

that can be related to general geochemical laws. In fact, the major oxides K2O and Rb are closely

related to the first canonical variate across all countries (ignoring Austria and Poland because of small

sample size), while Al2O3 and Sr are quite related to the second one. The result describes well the geo-

chemical affinity between K2O and Rb. Both the elements pertaining to group 1 of the periodic table

and the Rb+ ion (ionic radius 152 pm) substitute for K+ (138 pm) in several minerals, thus tracing its

geochemical distribution in outcrops across all Europe. The association between Al2O3 and Sr appears

to point out sedimentary processes, where the distribution of Sr may be affected by strong adsorption

on clay minerals containing Al2O3. The 747 samples can be projected onto the biplot in Figure 4 and

this can aid interpretation (Graffelman, 2005). Supplementary Figure S4 shows this more dense biplot.

This plot shows some French samples (top-right) which are relatively high in Sr,MgO and CaO, a set

of Spanish samples relatively high in Sr, and a set of Polish samples which are relatively low on the first

canonical variate. However, in general, the samples of the different countries overlap to a large extent.

CODA-CCO biplots based on a pairwise log-ratio approach are shown in Figure 5, where oxides (5A

and 5C, in standard coordinates) and traces (5B and 5D, in principal coordinates) are presented sepa-

rately. Figures 5A and 5B show the covariance-based analysis, whereas Figures 5C and 5D show the

correlation-based analysis. 5A and 5B should be overlaid for interpretation, and 5C and 5D too. We

emphasize that between-set scalar products of Figures 5A and 5B approximate between-set covariances,

whereas between-set scalar products of Figures 5C and 5D approximate correlations. Because of the

large canonical correlations, there is little difference between the use of standard and principal coordi-
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nates. Because there are so many pairwise log-ratios, the pairwise log-ratios in Figure 5 were filtered

by goodness-of-fit, and only those log-ratios that have 75% or more of their variance accounted for are

shown. For log-ratios in principal coordinates, this threshold was lowered to 60%, as the goodness-of-

fit in this scaling is typically worse. We summarize the main relationships uncovered by these biplots:

ln(K2O/TiO2) and ln(K2O/Fe2O3) are positively correlated, and have strong negative correlation with

two log-ratios involving Rb, ln(Co/Rb) and ln(V/Rb). Samples with high values on the latter two log-

ratios have low values on the log-ratios ln(K2O/TiO2) and ln(K2O/Fe2O3). This is the most salient

feature of the dataset uncovered by the first canonical variate. These relationships were also uncovered

in the previous clr-based analysis. The second canonical variable is associated with at least six log-ratios

that all involve CaO, and at the same time with at least eight traces that all involve Sr. The biplots in

Figure 5 represent in fact two approximately orthogonal sets, if CaO and Sr are consistently placed in

the numerators (or denominators) of all involved log-ratios. Note that the results are consistent with

the clr-based analysis, where CaO and Sr had the longest biplot vectors and therefore many long links

involving these components. The goodness-of-fit of the between-set covariance and correlation matri-

ces in Figure 5 is 44.4%, and coincides with the goodness-of-fit of the between-set clr covariances in

Figure 4.
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Figure 5: CODA-CCO biplot of major oxides (in standard coordinates) and trace elements (in principal
coordinates). Rays represent pairwise log-ratios. Panels A and B show a covariance-based analysis,
whereas C and D show a correlation-based analysis.
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4 Conclusions and discussion

Compositional canonical correlation analysis (CODA-CCO) has been presented as a technique for analysing

two compositional datasets, an X set and a Y set, potentially measuring different kinds of compositions,

e.g. X may refer to a microbial composition and Y to the biochemical composition of the same set of

subjects. We note that the method presented here has a wider scope of application, because it can also be

applied to two subcompositions (that do not share parts) build from the same composition. The method

will then act as a magnifying glass focusing on the relationships between the two subcompositions.

Canonical correlation analysis provides the best approximation, in the generalized least squares sense,

to the between-set covariance matrix. In the context of compositional data, as treated in this paper, the

CODA-CCO biplot gives the optimal approximation for the between-set covariance matrix of the clr

transformed parts in the clr-based approach, and the optimal approximation for the between-set covari-

ance matrix of the pairwise log-ratios in the plr based approach. The same goodness-of-fit is obtained

for both covariance matrices, as justified by Equation (24), and as could be observed in both examples.

Biplots in both approaches are fully equivalent if data is not standardized. If all within-set links in the

clr-based biplot are “extracted” by calculation of all possible difference vectors, and plotted as vectors

emanating from the origin, then the biplot of the pairwise log-ratio approach will be obtained. This

property holds for any chosen dimensionality. Because the representation of the links is explicitly op-

timized in the pairwise approach, it follows that the links are also optimally displayed in the clr-based

biplots. This equivalence is clearly visible by comparing the full space solutions in Figures 2A and 2B

with Figures 3A and 3B, but it also holds for approximate solutions like the ones given in Figures 4A, 4B

and 5A, 5B respectively.

The aforementioned equivalence between the clr and plr biplot may suggest the latter to be superfluous,

but in our opinion this is not the case for several reasons. First, the clr-based approach is limited in the

sense that links always represent pairwise log-ratios. In the plr approach, links between pairwise log-

ratios correspond to balances, and the pairwise approach may uncover the existence of balances, or even

correlations between balances, so allowing for a richer and more refined analysis. If the analysis is lim-

ited to the clr biplot, potentially interesting balances that invoke more than two parts may go unnoticed.

Second, in the clr-based approach correlations between log-ratios are not optimally displayed, whereas

they can be optimally represented in the pairwise approach. By standardization of the pairwise log-ratios
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by division by their standard deviation prior to canonical analysis, biplots with an optimal approxima-

tion to the correlation structure of the pairwise log-ratios are obtained. In the latter plots, unit circles are

illustrative, as the goodness-of-fit of the pairwise log-ratios can be inferred from the ray’s length. We

note that these considerations carry over to compositional biplots made by principal component analysis

as well.

Biplots are not unique, and in practical data analysis it may be daunting to choose the most appropri-

ate plot for representing a given data set. This is particularly true for the rich family of compositional

canonical biplots proposed in this paper. The analyst is confronted with at least three decisions in the

analysis: a) whether to use a clr or plr based approach, b) to standardize the data prior to analysis or not

and c) whether to use standard coordinates for rows and principal coordinates for columns or the other

way around. We present some considerations on these issues, hoping this will help analysts to make a

sensible choice.

The clr-based approach has the advantage of producing less dense plots having fewer rays. In principle,

all pairwise log-ratios are present in this biplot by means of the links. The analyst will have to make the

mental effort to search for interesting links, in particular by looking at links that run parallel to canonical

variables with a high correlation. Standardization by division by the standard deviation of the clr trans-

formed data, prior to the canonical analysis will differentially scale the columns of the clr transformed

data. This complicates the interpretation of the links, and seems therefore generally not indicated. Re-

garding the biplot scaling, if there is particular interest in representing the within-set correlation of one

set, that set should be represented in standard coordinates to enhance the representation of its correlation

structure. If both sets are equally important, then a pragmatic rule is to choose that scaling that explains

most of the total variance of the data, as expressed by the adequacy and redundancy coefficients. For

instance, biplot 2A of the artificial data in Section 3.1 explains 100% and 36.3% of the variance of the

X and Y data in FsGp
′ scaling, but respectively 81.5% and 100% in FpGs

′ scaling. The latter may

be preferred for giving, overall, a better approximation to the transformed data matrices. To safeguard

against erroneous interpretations, we recommend always to explore the data using both biplot scalings

used in this paper (Equations (3) and (4)). Patterns like parallel links that show up in both biplots are

more likely to be real.

The pairwise log-ratio biplot has the advantage that pairwise log-ratios are directly displayed as rays
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in the biplot. With large compositions the number of links can be prohibitive, and produce very dense

biplots. However, as shown in the geological example in subsection 3.2, by removing all links with a

low goodness-of-fit these plots can be improved, and salient features of the data can be made visible.

In compositional data analysis, several log-ratio transformations are in use. In particular, the isometric

log-ratio (ilr) transformation is increasing in popularity, as it provides Cartesian coordinates to represent

the compositions. We show in Appendix A that a CODA-CCO of the ilr transformed compositions will

yield the same canonical correlations and the same canonical variables. An advantage of using ilr co-

ordinates is that the singularity of the covariance matrices is avoided, which frees one from the need to

calculate generalized inverses. For biplot construction however, a clr based or plr based analysis seems

to be the most straightforward approach to CODA-CCO. Given that the clr, plr and ilr transformations

are linearly related to each other, the proposed compositional biplots could also be derived from a canon-

ical analysis of ilr transformed compositions.
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Appendices

A Appendix

In this appendix we show the invariance of the canonical correlations and the canonical variables when the ilr

transformation is used instead of the clr transformation. The singular value decomposition in Equation (22) can

be rewritten as an equivalent eigenvalue decomposition:

(
Sclr
yy

)+
Sclr
yx

(
Sclr
xx

)+
Sclr
xyB = BD2 = BDλ, (35)

where Dλ contains the eigenvalues (squares of the singular values) of the spectral decomposition. The clr and ilr

coordinates are linearly related by the following expressions (Egozcue et al., 2003)

Xclr = XilrUx and Xilr = XclrU
′
x, (36)

where Ux is a Dx− 1×Dx matrix with orthonormal rows, satisfying UxUx
′
= I and Ux

′
Ux = I− 1

Dx
11′. We

use the Ux notation in order to follow the usual notation in CODA (Egozcue et al., 2003), but put a bar in order

not to create confusion with the previously defined canonicalX variables (U), and use a subindex x to show that it

applies to the X composition. Note that Ux
′
Ux is an idempotent centring matrix. The analogous transformation

for the Y variables is given by a Dy − 1 ×Dy matrix Uy , as the X and Y set may not have the same number of

parts. By substitution we obtain straightforward expressions for the relationships between ilr and clr within-set

and between-set covariance matrices of the X and Y compositions, given by:

Sclr
xx = Ux

′
Silr
xxUx, Sclr

xy = Ux
′
Silr
xyUy, Sclr

yy = Uy
′
Silr
yyUy, Sclr

yx = Uy
′
Silr
yxUx. (37)

Premultiplication by Ux and postmultiplication by Ux
′

(or Uy and Uy
′
, as corresponds) allows us to obtain the

ilr covariance matrices from the clr covariance matrices:

Silr
xx = UxS

clr
xxUx

′
, Silr

xy = UxS
clr
xyUy

′
, Silr

yy = UyS
clr
yyUy

′
, Silr

yx = UyS
clr
yxUx

′
. (38)

Substituting (37) in (35) gives

(
Uy
′
Silr
yyUy

)+
Uy
′
Silr
yxUx

(
Ux
′
Silr
xxUx

)+
Ux
′
Silr
xyUyB = BDλ. (39)

At this point we note that Ux has rank D − 1, and that the rows of Ux are linearly independent. In that case, the

Moore-Penrose inverse of Ux is given by

U
+

x = Ux
′ (

UxUx
′)−1

= Ux
′
.
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Similarly, we also have U
+

y = U
′
y . Equation (39) can now be simplified to

Uy
′ (

Silr
yy

)+
Silr
yx

(
Silr
xx

)+
Silr
xyUyB = BDλ. (40)

Since the covariance matrices of the ilr coordinates are invertible, premultiplying by Uy this can be rewritten as

Silr
yx

(
Silr
xx

)−1
Silr
xy

(
Silr
yy

)−1
Bilr = BilrDλ. (41)

with Bilr = UyB, satisfying Bilr′Silr
yyB

ilr = I. Equation (40) is the eigenvalue-eigenvector decomposition cor-

responding to a canonical correlation analysis of X and Y compositions in ilr coordinates. Finally, canonical

variables obtained in the clr based and in the ilr based approach will be identical because V = HYclrB =

HYilrUyB = HYilrBilr. Equation (40) shows that a clr-based and ilr-based CODA-CCO yield the same canon-

ical correlations, yield canonical coefficients that are related by a linear transformation, and yield the same canon-

ical variables. Equations (40) and (41) show that in the clr-based approach the canonical coefficients of one

canonical variate (columns of matrices A and B) sum to zero. Since U satisfies UU
′
= I and U

′
U = I− 1

D11′

we have that 1′U
′
= 0′. From Equation (40) it follows that the columns of B sum to zero. By using a spectral

decomposition analogous to Equation(35) with A as eigenvectors, the same property can also be shown for A.
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Supplementary figures

Scatterplot matrix of pairwise log-ratios of artificial 3-part compositions

ln


x1

x2




−2 0 2

●●

●

●

● ●
●●

●●

●

●
●●

●

●

●
●

●

●
●●

●

●●
●

●
●

●

●

●

●

●

● ●
●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●● ●

●

●

●

●
●●

●

●

●

●●

●

●

● ●
●●

●●

●

●
●●

●

●

●
●

●

●
●●

●

●●
●

●
●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●● ●

●

●

●

●
●●

●

●

●

−3 −1 1 3

●●

●

●

●●
●●

●●

●

●
● ●

●

●

●
●

●

●
● ●

●

● ●
●
●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●
● ●●

●

●

●

●
●●

●

●

●

●●

●

●

●●
●●

●●

●

●
●●

●

●

●
●

●

●
●●

●

● ●
●

●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●
●
●●

●

●

●

●

●
●
●

●

●

●

●

●

●
● ●●

●

●

●

●
● ●

●

●

●

−4 0 2 4

−
1.

0
0.

0●●

●

●

●●
●●

●●

●

●
●●

●

●

●
●

●

●
●●

●

● ●
●

●
●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●
●● ●

●

●

●

●
● ●

●

●

●

−
2

0
2

●
●

●
●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

● ●

●●

●

●

●
●

●

●
●● ●

● ●

●

●

●
●

●
●

●

●

●
●

●● ●●

●

●

●
●

●
●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●●
●

●

●

●●

●

●

●

ln


x1

x3




●
●

●
●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●●

● ●

●

●

●
●
●

●
●●●

●●

●

●

●
●

●
●

●

●

●
●

● ●●●

●

●

●
●

●
● ●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●●
●

●

●

●●

●

●

● ●
●

●
●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

● ●

●●

●

●

●
●

●

●
●● ●

● ●

●

●

●
●

●
●

●

●

●
●

●● ●●

●

●

●
●

●
●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●●
●

●

●

●●

●

●

● ●
●

●
●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

● ●

● ●

●

●

●
●

●

●
● ●●

●●

●

●

●
●

●
●

●

●

●
●

● ●●●

●

●

●
●

●
●●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

● ●
●

●

●

● ●

●

●

● ●
●

●
●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●
●●

● ●

●

●

●
●
●

●
● ●●

●●

●

●

●
●

●
●

●

●

●
●

● ●● ●

●

●

●
●

●
●●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

● ●
●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

● ●

●● ●
●

●

●

●●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●●

●

●●
●

●

●
●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●

●●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

● ●
●

●
●

●

●

●

●

●
●

●

●●

●● ●
●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●
●●

●

●●
●

●

●
●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●

●●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

ln


x2

x3




●
●

●
●

●

●

●

●

●
●

●

●●

●● ●
●

●

●

●●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●●

●

●●
●

●

●
●

●

●
●

● ●

●

●

●

●

●
●

●
●

●

●

●●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

● ●
●

●
●

●

●

●

●

●
●

●

● ●

●●●
●

●

●

● ●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●●

●

● ●
●

●

●
●

●

●
●

● ●

●

●

●

●

●
●

●
●

●

●

● ●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

−
3

−
1

1
3

●
●

●
●

●

●

●

●

●
●

●

● ●

●●●
●

●

●

● ●

●

●

●

●

●

●

●●●

●

●

●

●

●
●●

●

● ●
●

●

●
●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●

● ●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

−
3

−
1

1
3

●●

●
●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●
●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●
●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

ln


y1

y2




●●

●
●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●
●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●
●●

●

●●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●●

●

●

●

●
● ●

●
●●

●
●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●● ●●

●
●

●

●

●

●
●

●
● ●

●

●●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●
●●

●
● ●

●
●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●● ●●

●
●

●

●

●

●
●

●
● ●

●

●●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●
●●

●
● ●

●
●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●● ●●

●
●

●

●

●

●
●

●
●●

●

●●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●●

●

●

●

●
●●

●
●●

●
●

●

●

●

●

● ●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

ln


y1

y3




−
4

0
2

4

●●

●
●

●

●

●

●
●

●
● ●

●

●●

●
●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●
● ●

●
● ●

●
●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

−1.0 0.0

−
4

0
2

4

●
● ●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●●

●

●

●●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●● ●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

● ●
● ●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

● ●

●

●

●●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●● ●

●

●

●
●

● ●

●

●

●

●

● ●

●

●

●

●

●

−3 −1 1 3

●
● ●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

● ●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●● ●

●

●

●
●

● ●

●

●

●

●

● ●

●

●

●

●

● ●
●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●●

●

●

● ●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●●●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

−4 0 2 4

●
●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●●

●

●

● ●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●●●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

● ln


y2

y3




Figure S1: Scatterplot matrix of all log-ratios of two compositions of three parts.
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Results of permutation test for European floodplain sediments
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Figure S2: Permutation test of nine canonical correlations obtained in a CODA-CCO of oxides and
trace elements of European floodplain sediments. Histograms show the distribution of the canonical
correlation obtained in 10, 000 permutations of the data. The vertical red line indicates the observed
sample canonical correlation.
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Scatterplot matrix of selected pairwise log-ratios for European floodplain

sediments.
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Figure S3: Scatterplot matrix of log-ratios of major oxides and trace elements of European floodplain
sediments related to the first canonical variate.
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Biplot enhanced with samples for European floodplain sediments.
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Figure S4: Biplot of CODA-CCO of major oxides and trace elements of European floodplain sediments,
with added samples. Symbols and colour are used to indicate country of origin.
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