Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

A Self-Organizing Short-Term Dynamical Memory Network

Callie Federer, Joel Zylberberg
doi: https://doi.org/10.1101/144683
Callie Federer
1Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Joel Zylberberg
1Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus
2Learning in Machines and Brains Program, Canadian Institute For Advanced Research
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Working memory requires information about external stimuli to be represented in the brain even after those stimuli go away. This information is encoded in the activities of neurons, and neural activities change over timescales of tens of milliseconds. Information in working memory, however, is retained for tens of seconds, suggesting the question of how time-varying neural activities maintain stable representations. Prior work shows that, if the neural dynamics are in the ‘null space’ of the representation - so that changes to neural activity do not affect the downstream read-out of stimulus information - then information can be retained for periods much longer than the time-scale of individual-neuronal activities. The prior work, however, requires precisely constructed synaptic connectivity matrices, without explaining how this would arise in a biological neural network. To identify mechanisms through which biological networks can self-organize to learn memory function, we derived biologically plausible synaptic plasticity rules that dynamically modify the connectivity matrix to enable information storing. Networks implementing this plasticity rule can successfully learn to form memory representations even if only 10% of the synapses are plastic, they are robust to synaptic noise, and they can represent information about multiple stimuli.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted January 04, 2018.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
A Self-Organizing Short-Term Dynamical Memory Network
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
A Self-Organizing Short-Term Dynamical Memory Network
Callie Federer, Joel Zylberberg
bioRxiv 144683; doi: https://doi.org/10.1101/144683
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
A Self-Organizing Short-Term Dynamical Memory Network
Callie Federer, Joel Zylberberg
bioRxiv 144683; doi: https://doi.org/10.1101/144683

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Neuroscience
Subject Areas
All Articles
  • Animal Behavior and Cognition (4234)
  • Biochemistry (9128)
  • Bioengineering (6781)
  • Bioinformatics (23998)
  • Biophysics (12124)
  • Cancer Biology (9534)
  • Cell Biology (13776)
  • Clinical Trials (138)
  • Developmental Biology (7635)
  • Ecology (11698)
  • Epidemiology (2066)
  • Evolutionary Biology (15508)
  • Genetics (10642)
  • Genomics (14324)
  • Immunology (9479)
  • Microbiology (22836)
  • Molecular Biology (9089)
  • Neuroscience (48987)
  • Paleontology (355)
  • Pathology (1482)
  • Pharmacology and Toxicology (2570)
  • Physiology (3845)
  • Plant Biology (8330)
  • Scientific Communication and Education (1471)
  • Synthetic Biology (2296)
  • Systems Biology (6190)
  • Zoology (1300)