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Abstract

Precision genomic oncology–applying high throughput sequencing (HTS) at the point-of-
care to inform clinical decisions–is a developing precision medicine paradigm that is seeing
increasing adoption. Simultaneously, new developments in targeted agents and immunotherapy,
when informed by rich genomic characterization, offer potential benefit to a growing subset of
patients. Multiple previous studies have commented on methods for identifying both germline
and somatic variants. However, interpreting individual variants remains a significant challenge,
relying in large part on the integration of observed variants with biological knowledge. A
number of data and software resources have been developed to assist in interpreting observed
variants, determining their potential clinical actionability, and augmenting them with ancillary
information that can inform clinical decisions and even generate new hypotheses for exploration
in the laboratory. Here, we review available variant catalogs, variant and functional annotation
software and tools, and databases of clinically actionable variants that can be used in an ad
hoc approach with research samples or incorporated into a data platform for interpreting and
formally reporting clinical results.

1 Introduction

Genomic technologies and approaches have transformed cancer research and have led to the pro-
duction of large-scale cancer genomics compendia (International Cancer Genome Consortium n.d.;
Cancer Genome Atlas Research Network et al. 2013). The resulting molecular characterization and
categorization of individual samples from such compendia has driven development of molecular sub-
types cancers as well as enhanced understanding of the molecular etiologies of carcinogenesis (Cancer
Genome Atlas Network 2012; Cancer Genome Atlas Research Network 2015; Network 2008). The
development of novel and effective targeted therapies has proceeded in parallel with and been accel-
erated by deeper, faster, and broader genomic characterization (Blumenthal, Mansfield, and Pazdur
2016), enabling early application of molecular characterization at the point of care to inform clinical
decision-making (Flaherty et al. 2012; Shaw et al. 2013; Maemondo et al. 2010; Druker et al. 2006)
and to address resistance to primary therapy (Ai and Tiu 2014). Genomic characterization also has
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applications in immune approaches to cancer. For example, chimeric antigen receptor T-cell (CARt)
therapy have shown great success in diseases with well-characterized antigens that are relatively
tumor-specific (Grupp et al. 2013) as identified by genomic profiling. Variously referred to as preci-
sion oncology (Sohal et al. 2015), genomics-driven oncology (Garraway 2013), genomic oncology, and
even simply as precision medicine, the paradigm of applying high-throughput genomic approaches
to patient samples is rapidly changing the landscape of oncology care and clinical oncology research.

Conventional approaches to clinical trials design may be inadequate due to molecular hetero-
geneity of tumors derived from a single primary tissue (Simon 2016), leading to the adoption of
basket, umbrella, and hybrid trials designs. A number of studies are ongoing to determine feasibility
and potential impact of precision genomic oncology at the point-of-care (Cheng et al. 2015; NCI-
MATCH Trial (Molecular Analysis for Therapy Choice) n.d.; Lopez-Chavez et al. 2015). In addition
to studies focused on identifying targetable mutations, immune-based therapeutic approaches are
also being informed by HTS applied to patient samples (Bethune and Joglekar 2017; Chalmers et al.
2017; Faltas et al. 2016).

One of the most recent developments in the field of precision oncology is the approval of Pem-
brolizumab (Keytruda), a anti-PD-1 antibody that functions as a checkpoint inhibitor, by the US
Food and Drug Administration for treatment of solid tumors that show genetic evidence of mismatch
repair and therefore carry very high mutational burdens (Le et al. 2017). Pembrolizumab was previ-
ously approved for use in melanoma, but the most recent approval is the first that is targeting allows
a drug to be used in a non-tissue-specific context in patients showing a specific genomic marker in
any solid tumor (Garber 2017).

As with any clinical testing modality, whether in a research setting or at the point-of-care, a
clear understanding of the goals of applying the test is necessary when first designing the test and
its validation. However, the flexibility and number of potential data items that arise from even a
limited application of HTS has lead the US Food and Drug Administration (FDA) has begun to
define its regulatory role (FDA 2015) and, critically, how existing knowledge bases can be applied
in real time to address findings from clinical HTS testing (FDA 2016).

This review aims to provide an organized set of biological knowledge bases with relevance to the
interpretation of small variants, defined as single nucleotide variants or short (on the order of 20 base
pairs or fewer) insertions and deletions. The catalogs of observed variants section lists large-scale
catalogs of variants, useful for filtering known common polymorphisms and identifying previously-
identified cancer variants. When a variant observed in a clinical sample has not been seen but
appears to affect the protein coding sequence, the functional annotation resources section presents a
sampling of some of the most common software and databases for predicting the impact on protein
function. Finally, we catalog several data products and knowledgebases have been developed to
provide decision support (with strong disclaimers and caveats) directly linking observed variants to
clinical intervention in point-of-care HTS applications. Integrating the various data sources described
in this review with variants observed in individual patients can be accomplished with combinations
of software tools for the manipulation of variant datasets.

1.1 Catalogs of observed germline and somatic variants

Databases of observed variation in normal populations, diseased individuals, and cancer compendia
form the map onto which observed variants in patients are projected. Because of the vast quantities
of genomic data and, specifically, DNA variants, there is a tension between providing rich, highly-
curated information about individual variants and producing the largest possible catalog of variants
with manageable levels of curation. This section reviews some of the available catalogs (Table 1)
of genomic variation observed in the germline as well as those that appear in tumors as somatic
mutations. Note that many of the databases mentioned below overlap in data sources (some nearly
completely), but they may differ in the amount and depth of curation, additional metadata added
to each variant, speed of updates, and methods or formats for access.
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1.2 Germline

Comprehensive catalogs of germline variants inform decisions about the frequency of variants as seen
in the general population as well as to identify variants that are annotated as cancer-associated. In
the context of tumor sequencing, common variants are unlikely to be genomic drivers of carcino-
genesis and are often filtered from a report of potential somatic variants. This filtering process is
particularly important when tumor sequencing is not accompanied by matched normal sequencing.
Additional germline databases that catalog disease-associated variants can be useful to begin to
address familial risk and potentially pharmacogenomic loci (Wheeler et al. 2013; Relling and Evans
2015).

Perhaps the oldest of the variant catalogs, dbSNP contains 325,658,303 individual variant records
(build 150, accessed May 30, 2017) and is available in multiple formats, searchable, and linked to
records in literature and other data resources and databases. While the vast majority of variants
in dbSNP have been observed in individuals without cancer, somatic variants are included and an-
notated in the database. Because dbSNP is driven by community submission of variants, levels of
evidence vary among individual variants. The genome Aggregation Database, or gnomAD, (Lek
et al. 2016; gnomAD browser n.d.) contains information from 123,136 exomes and 15,496 whole-
genomes from unrelated individuals sequenced as part of various disease-specific and population
genetic studies (accessed May 30, 2017). These data were collected by numerous collaborations,
underwent standard processing, and unified quality control and results area accessible as a search-
able online database and as a downloadable VCF-format text file. ClinVar (Landrum et al. 2016),
maintained by the NIH National Center for Biotechnology Information (NCBI), is a freely available
archive for interpretations of clinical significance of variants for reported conditions. Entries in Clin-
Var are taken directly from submitters and represent the relationship between variants and clinical
significance. When multiple submissions concerning a single variant are available, ClinVar supplies
high-level summaries of agreement or disagreement across submitters. Importantly, though, clinical
significance in ClinVar is reported as supplied by the submitter. The Personalized Genome Project
(Church 2005) provides a limited number of fully open-access genome sequencing results provided
by volunteers with trait surveys and even some microbiome surveys of participants. A catalog of
germline variants derived from 69 genomes sequenced using the Complete Genomics sequencing
platform (Drmanac et al. 2010) may be useful for groups who have data generated from the same
platform, particularly for identifying sequencing-platform-specific false positive results.

1.3 Somatic

Whereas databases of germline variants are useful to filter out variants unlikely to be directly involved
in carcinogenesis, databases of somatic variants are useful to identify variants and their frequencies
as observed in tumors. In some cases, identified variants may be associated with specific tumor types,
offering mechanistic clues, particularly in the rare cancer setting where biological understanding may
be limited.

Several catalogs of somatic variants have, at their core, variants derived from The Cancer Genome
Atlas (TCGA). These databases vary in the pipelines used to define the variants, the level of an-
notation associated with individual variants, the proportion of TCGA included, and methods for
accessing or querying. Recently, National Cancer Institute (NCI) has established the Genomic Data
Commons (GDC) to harmonize clinical information and genomic results across enterprise cancer
datasets (Grossman et al. 2016), particularly those funded by NCI, such as TCGA. In addition
to the adult tumors profiled as part of the TCGA, the NCI GDC also contains data from several
pediatric tumors profiled as part of the Therapeutically Applicable Research To Generate Effective
Treatments (TARGET) project (Therapeutically Applicable Research to Generate Effective Treat-
ments (TARGET) n.d.). Cancer cell line data from the Cancer Cell Line Encyclopedia (CCLE)
are also included (Barretina et al. 2012) in the GDC data collection. The GDC is a modern data
platform that provides multiple access methods including a programmatic application programming
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interface (API), data file download, and web browser based text and graphical queries and visualiza-
tion. The International Cancer Genome Consortium (ICGC) is a large, international collaboration
with a collection of 76 studies (including TCGA studies) encompassing 21 tissue primary sites. Like
the NCI GDC, the ICGC data portal provides modern data platform approaches to data access, vi-
sualization, and query (Zhang et al. 2011). The Catalog of Somatic Mutations in Cancer (COSMIC)
database is perhaps the largest and best-known cancer variant database. It presents a unified dataset
consisting of curated cancer variants for specific genes as well as genomic screens from projects such
as TCGA. Several other cancer variant data resources are listed in Table 1.

2 Functional Annotation Resources

When faced with variants with little or no literature or database support, differentiating those that
variants that are likely to be deleterious, perhaps contributing to carcinogenesis, versus those that
likely are tolerated by the cell is a critical task, particularly in the setting of clinical precision
genomic oncology. Note that determing that a variant is deleterious is not likely to result in a
change in diagnosis, prognosis, or therapy. However, prioritizing variants for further study, research
interest, and for discussion in forums such as a molecular tumor board is a valuable and necessary
aspect of applying genomic technologies in the clinical arena.

A number of algorithms and methods have been developed to predict the effect of observed vari-
ants on protein structure and function as well as the potential for clinical impact. These prediction
methods utilize features of the variant and its context such as sequence identity, sequence conser-
vation, evolutionary relationship, protein primary and secondary structure, entropy based protein
stability and approaches such as clustering based on sequence alignments and machine learning.
Some of them are specific to the type of variant or mutation, some to a disease type, and some
more general. Therefore, applying these functional annotational tools and interpreting the results
in a clinical or research setting may require significant human curation before being recognized as
clinically actionable. Here we present a review of a representative set of approaches for predicting
pathogenicity of different variants. For a comprehensive list of prediction tools and their details
see Table 2. For more detailed scientific and technical explanations of these methods, we refer the
reader to a comprehensive review (Addepalli 2014).

2.1 SIFT

Sorting Intolerant From Tolerant, or SIFT, predicts functional impacts of amino acid substitutions
(Ng and Henikoff 2003) is one of the earliest variant effect prediction tools and represents the class
of prediction algorithms that utilizes protein conservation. It has since been updated and an online
version of the tool is available (Kumar, Henikoff, and Ng 2009). SIFT uses sequence homology, as
measured by protein-level conservation, to classify variants based as tolerated or deleterious based
on the associated protein coding changes. SIFT has served as a benchmark against which other
methods are compared because of its relative simplicity. SIFT considers the type of amino acid
change induced by a genomic variant and the position at which the change/mutation occurs. SIFT
relies on the presence of sequences from which conservation can be determined; variants for which
such databases are limited will potentially lack robust predictions.

2.2 PolyPhen-2

Polymorphism Phenotyping v2, or PolyPhen2, predicts the effecting of coding nonsynonymous SNPs
on protein structure and function and annotates them (Adzhubei, Jordan, and Sunyaev 2013). This
algorithm uses a naive Bayes approach to combine information across a panel of 3D structural,
sequence-based, and conservation-based features. Trained on two datasets, HumDiv and HumVar,
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and associated non-deleterious controls, the PolyPhen2 algorithm represents a class of multivariate
prediction algorithms that employ machine learning and multiple features of variant impact.

2.3 Mutation Assessor

Mutation Assessor is an algorithm and tool that, like SIFT, uses a conservation-based approach.
However, Mutation Assessor also incorporates evolutionary information in an attempt to account
for shifts in function between subfamilies of proteins (Reva, Antipin, and Sander 2011), potentially
extending the functional annotation of variants to “switch of function” as well as loss or gain of func-
tion. By quantifying the impact to conserved residues both globally and within subfamilies (residues
that distinguish subfamilies from each other are thought to be less tolerant to change), Mutation
Assessor defines a functional impact score to predict which variants are likely to be deleterious.

2.4 CONDEL

The CONsensus DELeteriousness, or CONDEL score, is an integrated prediction method for mis-
sense mutations that is relatively easy to extend with additional prediction resources (Gonzlez-Prez
and Lpez-Bigas 2011). Originally implemented as a weighted average of the normalized scores from
the output of two computational tools, Mutation Assessor and FATHMM, CONDEL can be extended
or adapted to data at hand and represents an “aggregator” approach to variant effect prediction.
Condel scores can be derived for a limited set of specified mutations via an online web application.
The Ensembl database provides a variation of position-specific CONDEL predictions that combine
SIFT and Polyphen-2 for every possible amino acid substitution in all human proteins.

2.5 CHASM

Cancer-specific High-throughput Annotation of Somatic Mutations, or CHASM, is a computational
method that identifies and prioritizes the missense mutations likely to enhance tumor cell prolif-
eration (Carter et al. 2009). CHASM uses machine learning to classify putative “driver” cancer
mutations as distinct from “passenger” mutations. Training the CHASM model employed in-silico
simulation to generate realistic “passenger” mutations, specifically modeled to represent variant con-
text and genes that are observed in cancer settings. Multiple features of the variants including their
DNA and protein contexts were then used to build a machine learning approach that attempted to
maximize the specificity of separating driver mutations from passenger mutations. CHASM repre-
sents a relatively specific algorithm focused not on “deleteriousness” but, rather, on the likelihood
that an observed variant is a cancer “driver”.

2.6 dbNSFP

Recognizing that applying all of the effect prediction tools available is potentially challenging, Liu
et al. 2016 developed a database that aggregates predictions for all possible SNVs associated with
coding changes (in Gencode gene models). With more than ten different prediction algorithms and
extensive additional annotation, this database can be a useful one-stop-shop for adding annotations
to variant datasets. The snpEff suite (described below) can be used in conjunction with dbNSFP to
efficiently annotate SNPs with the potential to effect coding genes.

3 Clinical Actionability

The ultimate goal for many of the above-mentioned resources is to develop an individualized approach
to the diagnosis, prevention and treatment of cancer, or precision oncology. However, despite recent
advances in HTS, determining the clinical relevance of experimentally observed cancer variants
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remains a challenge in the application of HTS in clinical practice. Difficulties in differentiating driver
and passenger mutations, lack of standards and guidelines in reporting and interpretation of genomic
variants, lack of clinical evidence in associating genomic variants to clinical outcome, lack of resources
to disseminate clinical knowledge to the cancer community and the precise definition of actionability
have been reported to contribute to the bottleneck (M. M. Li et al. 2017; Prawira et al. 2017; Uzilov
et al. 2016; Hedley Carr et al. 2016). Comprehensive resources linking experimentally determined
cancer variants and clinical actionability have been developed to address some of these challenges and
address various aspects of translating research results into clinical valuable information to support
clinical decisions in precision oncology (See Table 3). In recognition of the fact that central curation
of information regarding actionability is extremely challenging, several of the resources below use
crowdsourcing as a means of gathering updates and enhancing curation efforts. In addition to
a web interface, some tools provide additional access via API, mobile app, and/or social media
tagging to facilitate dissemination of information and enhance accessibility. While some of these
tools share similar functions, in the section below, we highlight distinct features and capabilities
for a representative set of resources that might be used as a “starter” set for clinical annotation of
variants.

The myvariant.info database is one of the newest and attempts to provide a “one-stop-shop” for
variants. It is included in this section because it has recently incorporated the CIViC and Cancer
Genome Interpreter databases. In addition, it provides annotations for SNVs from multiple other
data sources (a growing list, so see the site for updates) and aggregates functional annotations for
variants present in its database, making it a good all-around tool for cancer variant annotation. It
is available as a performant web API only at this time.

Clinical Interpretation of Variants in Cancer (CIViC) is an open access and open source platform
for community-driven curation and interpretation of cancer variants. It is based on a crowdsourc-
ing model where individuals in the community can contribute to produce a centralized knowledge
base with the goal of disseminating knowledge and encouraging active discussion. Users, including
patients, patient advocates, clinicians and researchers, can participate, along with community edi-
tors, in various stages of interpreting the clinical significance of cancer variants using standards and
guidelines developed by community experts (M. M. Li et al. 2017; M. Griffith, Spies, et al. 2016).

The Drug Gene Interaction Database (DGIdb) is an open source and open access platform for
gene and drug annotation for known interaction and potential druggability. Users can can cross-
reference genes of interest and drugs against up to 15 sources and in functionally classified gene
categories (Wagner et al. 2016; M. Griffith, O. L. Griffith, et al. 2013). Cancer Genome Interpreter
(CGI) identifies mutational events that are biomarkers of drug response or interact with known chem-
ical compounds (Tamborero et al. 2017). PharmGKB is a pharmacogenomic resource for building
clinical implementation and interpretation based on annotating, integrating and aggregating knowl-
edge extracted from research-level publications. It provides scored clinical annotation, prescription
annotation (drug dosing, prescribing information), as well as pharmacokinetics/pharmacodynamics
(PK/PD) annotation, with primary literature reference.

OncoKb contains information on the clinical implication of specific genetic alterations in cancer.
Each variant is annotation from multiple sources and scored using Levels of Evidence ranging from
Level 1, which includes FDA approved biomarker predictive of response to an FDA-approved drug,
to Level 2, which includes variants for which an FDA-approved or standard of care treatment is
available, Level 3 and Level 4 contain variants with investigational and hypothetical therapeutic im-
plications, respectively. A similarly structured scoring system is available for indicating therapeutic
implications for variants associated with resistance (Chakravarty et al. 2017). Cancer Driver Log
(CanDL), an expert-curated database for potential driver mutations in cancer, employs a similar
four-level scoring system based on FDA approval, clinical, pre-clinical and experimental functional
evidence (Damodaran et al. 2015).

MyCancerGenome (MCG) is a knowledge resource highlighting the implication of tumor muta-
tion on cancer care. It allows users to access its content via a mobile app and provide patient-focused
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information. Patients can access a database entitled DNA-mutation Inventory to Refine and Enhance
Cancer Treatment (DIRECT) for Epidermal Growth Factor Receptor (EGFR) mutation for non-
small cell lung cancer (NSCLC). Personalized Cancer Therapy (PCT) at the MD Anderson Cancer
Center is a resource for clinical response associated with cancer variants and aims to facilitate pa-
tient involvement in biomarker-related clinical trials. Drug effectiveness is associated with a specific
biomarker and scored based on prospective clinical study as well as Food and Drug Administration
(FDA) approval.

4 Tools for manipulating variant datasets

Processing sequence data with the goal of determining variants (somatic or germline) often ends
with a file in Variant Call Format (VCF format), a loose, self-describing data standard describing
variants along a genome, associated statistical and numeric metrics for each variant, and information
integrated from data resources such as those described in the preceding sections (Danecek et al.
2011). An ecosystem of tools, listed in Table 4, has been developed for basic transformations,
manipulations, merge operations, and for adding transcript, protein, and higher-level functional
annotations to variants in a VCF file. The vt and bcftools software suites perform operations
such as slicing by genomic coordinate, data compression, and, importantly variant normalization,
rendering variants more readily comparable across resources. Annovar (Yang and K. Wang 2015;
K. Wang, M. Li, and Hakonarson 2010) and the SnpEff suite (Cingolani 2012) add annotations
relative to gene annotations, including information about transcript and protein-coding changes.
The Ensembl Variant Effect Predictor (VEP) utilizes Ensembl gene models to annotate variants in
gene context and offers an interesting plugin architecture that supports adding variant information
from resources in table ?? (McLaren et al. 2016). Recently, several software developers of variant
annotation tools have developed a standard for reporting gene-centric annotations that has simplified
post-processing of variants after annotation. Finally, tools such as Vcfanno (Pedersen, Layer, and
Quinlan 2016) have been developed that can flexibly add fields to variants in a VCF file based on
relatively sophisticated logic and data transformations, reducing the number of tools required to
bring a new data resource into the annotation pipeline.

5 Discussion

5.1 Pragmatic details

Despite advanced toolsets for manipulating variant files and increasing adoption available standard
formats, practical pitfalls and challenges remain to the basic manipulation of variant datasets. Some
data resources are available in multiple formats and not all formats contain identical information.
Matching variants between resources and observed variants can be challenging, as some variants can
be represented validly in multiple forms. Ideally, variants are cataloged with clarity with respect
to a reference genome and, whenever possible, using HGVS nomenclature (Dunnen et al. 2016).
In spite of increasing awareness and uptake of HGVS standard nomenclature, the critical step of
matching variants across tools and databases in assessing clinical significance is still hampered by
inconsistencies across tools and databases (Yen et al. 2017). Particularly when handling clinical
samples, an information system that provides results from multiple resources when assessing novel
variants, incorporates in silico controls when adding or updating data resources (to avoid introducing
errors), and adheres to HGVS nomenclature wherever possible in data processing pipelines can
increase the likelihood of discovering potentially relevant variants.
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5.2 Where to start?

This review is meant to be comprehensive, so the reader might wonder “Where do we start?”. While
it is difficult to make hard-and-fast recommendations about what resources, tools, and databases are
“the best” given the lack of gold-standard datasets on which to base such evalutations, annotations
in tables 1, 2, and 3 are meant to provide context for prioritization. The context for sequencing
(clinical or not, targeted mutations, trial setting, or novel variant and biomarker discovery) will
also drive annotation pipeline development. Not all data resources need to be added simultaneously
if developing a pipeline for annotating cancer variants for precision oncology applications. In a
clinical setting, targeting the reporting workflow and working with clinicians to understand the most
relevant annotations is the most efficient approach to determining relevant resources for annotation.
Developing a modular informatics pipeline, perhaps using a computational workflow framework
(https://github.com/pditommaso/awesome-pipeline) that can be easily extended and re-run on
previously annotated data is helpful to keep pace with the rapidly changing and growing collection of
annotation resources. Newer aggregation resources such as myvariant.info offer a wholistic solution
(annotation, catalog, and clinical actionability), but with some risk of “lossiness” with respect to
the primary resources contained within.

Finally, given the rapid pace of new development in this space, we have established a crowd-
sourced list of cancer variant resources for precision medicine available at https://github.com/

seandavi/awesome-cancer-variant-databases.

5.3 Conclusion

Robust sequencing technologies and increasingly reliable bioinformatics pipelines, combined with
parallel development of therapeutics and diagnostics has bolstered the field of precision genomic
oncology. However, the sheer number of resources available that can inform the interpretation of
small variants is staggering, except for the very few variants with well-established clinical relevance
or an associated targeted therapy. This review has highlighted a number of important data resources
individually. For other variants, data integration remains a significant hurdle to the rapid turnaround
required to apply HTS in a clinical context. Expert panel review (the molecular tumor board) has
been effective for some groups (Knepper et al. 2017; Beltran et al. 2015; Sohal et al. 2015) while
other groups have adopted a protocol-based approach (Ghazani et al. 2017). Even when molecularly
targetable lesions are identified, barriers to delivering therapy have been observed, limiting the
impact of precision genomic oncology in some settings (Bryce et al. 2017). Not covered in this
review is the increasing utility of HTS in the burgeoning field of immunotherapy, where early efforts
to predict response based on HTS results have been promising (R.-F. Wang and H. Y. Wang 2017;
Yarchoan et al. 2017; Bethune and Joglekar 2017).

Some interesting trends are evident in the databases and resources presented in this review that
highlight the overarching trends in delivering precision medicine. First is the sheer volume and
rapid growth of numbers of observations to learn about the spectrum of variation cancer and normal
genomes. Projects like GnomAD, COSMIC, and other data sharing efforts enhance precision by
cataloging rare variants as well as precise estimates of the frequencies of common variants. Second is
the use of crowd-sourcing to produce rich clinical annotation (eg., CiVIC) in response to the need for
intensive human interaction to interpret the clinical impact of a variant or its relationship to potential
medical intervention. On the other hand, with volumes of data ever-increasing, machine learning
techniques drive many of the most commonly-used approaches for assigning scores for impact of
observed variants. As well-annotated datasets and variant catalogs grow, application of machine
learning will become both more common and more powerful.

While significant progress has been made in applying technology to precision oncology, can-
cer arises in an individual after a typically complex and incompletely understood set of oncogenic
events that are increasingly observable at the molecular level. Progress in cancer prevention, early
detection, diagnosis, prognosis, and treatment is increasingly driven by insight gained through the
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analysis and interpretation of large genomic, proteomic, and pharmacological knowledge bases. Re-
ductionist approaches to cancer biology can achieve only limited success in understanding cancer
biology and improving therapy. Cancer is a disease associated with disruption of normal cellular
circuitry and processes that leads to abnormal or uncontrolled proliferative growth, characterized
by a complex spectrum of biochemical alterations that affects biological processes at multiple scales
from the molecular activity and cellular homeostasis to intercellular and inter-tissue signaling. The
cancer research community has made great strides in measuring the oncogenic events that lead to
the development of cancer and therapy resistance. Because of the complexity inherent in protein
networks, intercellular signaling, cellular heterogeneity, and the dynamic nature of cancer, future
progress will require a more wholistic approach to precision oncology including multiscale systems
and modeling approaches that address the interrelatedness of the biological processes underlying
cancer.
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Resource Variant Type URL Citation

dbSNP1 Germline and somatic https://www.ncbi.nlm.nih.

gov/projects/SNP/

(Sherry et al. 2001)

COSMIC1 Somatic http://cancer.sanger.ac.

uk/cosmic

(Reva, Antipin, and
Sander 2011)

ClinVar1 Germline predisposition
and somatic

https://www.ncbi.nlm.nih.

gov/clinvar/intro/

(Landrum et al. 2016)

gnomAD2 Germline http://gnomad.

broadinstitute.org/

(Lek et al. 2016)

69 genomes from CGI3 Germline http://www.

completegenomics.com/

public-data/69-genomes/

(Drmanac et al. 2010)

Personalized Genome
Project

Germline http://www.

personalgenomes.org/

(Church 2005)

NCI Genomic Data
Commons

Germline and somatic https://portal.gdc.

cancer.gov/

(Grossman et al. 2016)

cBioPortal Somatic http://www.cbioportal.org (Cerami et al. 2012;
Gao et al. 2013)

Intogen (Partial TCGA
dataset)

Somatic https://www.intogen.org/

search

(Rubio-Perez et al.
2015; Gonzalez-Perez
et al. 2013)

Pediatric Cancer
Genome Project

Somatic http://explorepcgp.org (Downing et al. 2012)

Table 1: Catalogs of germline and somatic variants. The most commonly used catalogs include
dbSNP, COSMIC, ClinVar, and gnomAD. 1Primary resources useful for all studies. 2Particularly
useful for exome sequencing projects. 3Useful if the Complete Genomics platform was used.
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Resource URL Citation Notes

Integrated predictive methods and aggregated databases

dbNSFP1,2,3,4 https://sites.google.com/

site/jpopgen/dbNSFP

(Liu et al. 2016) Aggregated database of
variant information

myvariant.info1 http://myvariant.info/ (Xin et al. 2016) Aggregated database of
variant information

Functional effect prediction software and algorithms

PolyPhen-22 http://genetics.bwh.

harvard.edu/pph2

(Adzhubei, Jordan, and
Sunyaev 2013)

Bayesian classification

SIFT2 http://sift.jcvi.org (Ng and Henikoff 2003) Alignment scores
MutationAssessor http://mutationassessor.org (Reva, Antipin, and

Sander 2011)
conservation, naive Bayes
classifier

MutationTaster http://www.mutationtaster.

org

(Schwarz et al. 2014)

PROVEAN http://provean.jcvi.org/

index.php

(Choi et al. 2012)

CADD2,3 http://cadd.gs.washington.

edu

(Kircher et al. 2014)

GERP++3 http://mendel.stanford.edu/

SidowLab/downloads/gerp/

index.html

(Davydov et al. 2010)

PhyloP and Phast-
Cons

http://compgen.cshl.edu/

phast/index.php

(Siepel et al. 2005; Pollard
et al. 2010)

nsSNPAnalyzer http://snpanalyzer.uthsc.

edu/

(Bao, Zhou, and Cui 2005) Random Forest

SNPs&GO http://snps-and-go.

biocomp.unibo.it/

snps-and-go/

(Calabrese et al. 2009) SVM

SNAP2 https://rostlab.org/

services/snap2web/

(Hecht, Bromberg, and
Rost 2015)

Neural Networks

SNPs3D http://www.snps3d.org/ (Yue, Melamud, and Moult
2006)

Structure and sequence
analysis

MutPred2 http://mutpred.mutdb.org/ (Pejaver et al. 2017) Random Forest
AUTO-MUTE http://binf2.gmu.edu/

automute/

(Masso and Vaisman 2010) Topology and statistical
contact potential

Panther http://www.pantherdb.org/

tools/csnpScoreForm.jsp

(Thomas et al. 2003) Hidden Markov Model

stSNP http://ilyinlab.org/StSNP/ (Uzun et al. 2007) comparative modelling of
protein structure

Condel2 http://bg.upf.edu/fannsdb/ (Gonzlez-Prez and Lpez-
Bigas 2011)

a weighted average of mul-
tiple methods

CoVEC https://sourceforge.net/

projects/covec/files

CAROL2 http://www.sanger.ac.uk/

science/tools/carol

(Lopes et al. 2012) combines PolyPhen-2 and
SIFT

Cancer-specific prediction tools

CHASM http://wiki.chasmsoftware.

org/index.php/Main_Page

(Carter et al. 2009) Random Forest

CanDrA http://bioinformatics.

mdanderson.org/main/CanDrA#

CanDrA

(Mao et al. 2013) 96 structural, evolutionary
and gene features

Table 2: Tools, software, and databases for functional prediction and annotation of variant impact.
1Aggregated databases combine outputs of other databases and algorithms are, therefore, efficient
resources to use in annotation pipelines. Adding these resources to observed variants is supported
software in table 4 including Ensembl VEP software (noted2 in this table), Annovar (noted3), and
snpEff (noted4).
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Resource URL Citation Crowd-
sourcing
used

Buik Ac-
cess

myvariant.info* http://myvariant.info/ (Xin et al. 2016) Yes API

CIViC* https://civic.genome.

wustl.edu/home

(M. Griffith, Spies, et al.
2016)

Yes API,
Download

DGIdb* http://dgidb.genome.

wustl.edu/

(Wagner et al. 2016; M.
Griffith, O. L. Griffith, et
al. 2013)

Yes API,
Download

Cancer Genome
Interpreter*

https://www.

cancergenomeinterpreter.

org/home

(Tamborero et al. 2017) Yes API

OncoKb* http://oncokb.org/ (Chakravarty et al. 2017) API
Cancer Driver Log https://candl.osu.edu/ (Damodaran et al. 2015) Yes Download
Clinical Knowledge
Base

https://www.jax.org/

clinical-genomics/

clinical-offerings/ckb

My Cancer Genome http://www.

mycancergenome.org

(Micheel, Lovly, and Levy
2014)

Yes (licensed)
API

Personalized Cancer
Therapy

https://pct.mdanderson.

org

Account re-
quired

PharmGKB https://www.pharmgkb.

org/

(Hewett et al. 2002) Yes Download

Precision Medicine
Knowledge Base
(Beta)

https://pmkb.weill.

cornell.edu/

(Huang et al. 2016) Yes

Table 3: In a clinical setting, these databases are the most relevant, as they are maintained to provide
clinically actionable and curated content. While evalutation of each database by both clinical and
informatics team members, databases marked with “*” are maintained, recently (or continuously)
updated, and curated. The myvariant.info database includes both CiVIC and Cancer Genome
Interpreter data. The last column in the table notes bulk access approaches as these are relevant
when including databases in an annotation pipeline or automated report.

Software URL Citation
vt http://genome.sph.umich.edu/wiki/Vt (Tan, Abecasis, and Kang 2015)
bcftools http://www.htslib.org/download/ (H. Li et al. 2009)
ANNOVAR http://annovar.openbioinformatics.org/

en/latest/

(K. Wang, M. Li, and Hakonarson 2010)

Ensembl Variant
Effect Predictor
(VEP)

http://www.ensembl.org/vep (McLaren et al. 2016)

SnpEff http://snpeff.sourceforge.net/ (Cingolani 2012)
Oncotator https://portals.broadinstitute.org/

oncotator/

(Ramos et al. 2015)

vcfanno https://github.com/brentp/vcfanno (Pedersen, Layer, and Quinlan 2016)

Table 4: Software tools for manipulating and adding annotations to variant datasets. Variant
calling produces a list of observed variants. The tools in this table are useful for adding biological
interpretation and for annotating the variants with information from resources in tables 1, 2, and 3.

17

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 18, 2017. ; https://doi.org/10.1101/144766doi: bioRxiv preprint 

http://myvariant.info/
https://civic.genome.wustl.edu/home
https://civic.genome.wustl.edu/home
http://dgidb.genome.wustl.edu/
http://dgidb.genome.wustl.edu/
https://www.cancergenomeinterpreter.org/home
https://www.cancergenomeinterpreter.org/home
https://www.cancergenomeinterpreter.org/home
http://oncokb.org/
https://candl.osu.edu/
https://www.jax.org/clinical-genomics/clinical-offerings/ckb
https://www.jax.org/clinical-genomics/clinical-offerings/ckb
https://www.jax.org/clinical-genomics/clinical-offerings/ckb
http://www.mycancergenome.org
http://www.mycancergenome.org
https://pct.mdanderson.org
https://pct.mdanderson.org
https://www.pharmgkb.org/
https://www.pharmgkb.org/
https://pmkb.weill.cornell.edu/
https://pmkb.weill.cornell.edu/
http://genome.sph.umich.edu/wiki/Vt
http://www.htslib.org/download/
http://annovar.openbioinformatics.org/en/latest/
http://annovar.openbioinformatics.org/en/latest/
http://www.ensembl.org/vep
http://snpeff.sourceforge.net/
https://portals.broadinstitute.org/oncotator/
https://portals.broadinstitute.org/oncotator/
https://github.com/brentp/vcfanno
https://doi.org/10.1101/144766
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Catalogs of observed germline and somatic variants
	Germline
	Somatic

	Functional Annotation Resources
	SIFT
	PolyPhen-2
	Mutation Assessor
	CONDEL
	CHASM
	dbNSFP

	Clinical Actionability
	Tools for manipulating variant datasets
	Discussion
	Pragmatic details
	Where to start?
	Conclusion

	Conflict of Interest
	Acknowledgments

