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ABSTRACT 28 

Objective: Several conditions associated with reduced gastric acid secretion confer 29 

an altered risk of developing a gastric malignancy. Helicobacter pylori-induced 30 

atrophic gastritis predisposes to gastric adenocarcinoma, autoimmune atrophic 31 

gastritis is a precursor of type I gastric neuroendocrine tumours, whereas proton 32 

pump inhibitor (PPI) use does not affect stomach cancer risk. We hypothesised that 33 

each of these conditions was associated with specific alterations in the gastric 34 

microbiota and that this influenced subsequent tumour risk. 35 

Design: 95 patients (in groups representing normal stomach, PPI treated, H. pylori 36 

gastritis, H. pylori-induced atrophic gastritis and autoimmune atrophic gastritis) were 37 

selected from a cohort of 1400. RNA extracted from gastric corpus biopsies was 38 

analysed using 16S rRNA sequencing (MiSeq).  39 

Results: Samples from normal stomachs and patients treated with PPIs 40 

demonstrated similarly high microbial diversity. Patients with autoimmune atrophic 41 

gastritis also exhibited relatively high microbial diversity, but with samples dominated 42 

by Streptococcus. H. pylori colonisation was associated with decreased microbial 43 

diversity and reduced complexity of co-occurrence networks. H. pylori-induced 44 

atrophic gastritis resulted in lower bacterial abundances and diversity, whereas 45 

autoimmune atrophic gastritis resulted in greater bacterial abundance and equally 46 

high diversity compared to normal stomachs. Pathway analysis suggested that 47 

glucose-6-phospahte1-dehydrogenase and D-lactate dehydrogenase were over 48 

represented in H. pylori-induced atrophic gastritis versus autoimmune atrophic 49 

gastritis, and that both these groups showed increases in fumarate reductase.  50 
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Conclusion: Autoimmune and H. pylori-induced atrophic gastritis were associated 51 

with different gastric microbial profiles. PPI treated patients showed relatively few 52 

alterations in the gastric microbiota compared to healthy subjects. 53 

  54 
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SIGNIFICANCE OF THIS STUDY 55 

1. What is already known about this subject? 56 

• Some conditions which result in reduced gastric acid secretion and 57 

hypochlorhydria are associated with an increased risk of gastric tumourigenesis. 58 

• This risk is different in patients with H. pylori-induced atrophic gastritis, 59 

autoimmune atrophic gastritis and chronic proton pump inhibitor use. 60 

• Hypochlorhydria and H. pylori infection cause alterations in the composition of 61 

the gastric microbiota. 62 

2. What are the new findings? 63 

• We used 16S rRNA sequencing to characterise the microbiota in gastric corpus 64 

biopsies from a well characterised cohort of patients. 65 

• The gastric microbiota was different in patients who were hypochlorhydric as a 66 

result of H. pylori-induced atrophic gastritis, autoimmune atrophic gastritis and 67 

proton pump inhibitor use. 68 

• Biochemical pathways associated with gastric carcinogenesis such as the 69 

fumarate reductase pathway were predicted to be altered in patients with 70 

atrophic gastritis. 71 

3. How might it impact on clinical practice in the foreseeable future? 72 

• Understanding how the microbiota that colonise the hypochlorhydric stomach 73 

influence gastric carcinogenesis may ultimately permit stratification of patients’ 74 

subsequent tumour risk. 75 

• Interventions that alter the composition of the gastric microbiome in 76 

hypochlorhydric patients with atrophic gastritis should be tested to investigate 77 

whether they alter the subsequent risk of developing gastric malignancy. 78 
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INTRODUCTION 79 

Gastric adenocarcinoma is the third most common cause of cancer related mortality 80 

worldwide[1] and most cases are associated with chronic Helicobacter pylori 81 

infection. Gastric cancer usually develops via the premalignant condition of gastric 82 

atrophy, which is associated with the loss of acid-secreting parietal cells[2]. The 83 

resulting hypochlorhydria potentially leads to alterations in the composition of the 84 

gastric microbiota by providing a more favourable environment for colonisation. It is 85 

currently unclear to what extent the non-H. pylori gastric microbiota contributes 86 

towards gastric carcinogenesis. Although the hypochlorhydria associated with 87 

autoimmune atrophic gastritis also increases the risk of developing gastric 88 

adenocarcinoma[3], it is more frequently associated with the development of another 89 

tumour, the type I gastric neuroendocrine tumour (NET)[4]. However, 90 

hypochlorhydria does not always increase the risk of gastric tumour development, as 91 

observed following chronic proton pump inhibitor (PPI) use[5]. Therefore, factors in 92 

addition to hypochlorhydria affect gastric cancer risk and one of these could be the 93 

gastric microbiota. 94 

Although originally thought to be sterile, several bacterial communities have been 95 

shown to survive in the normal human stomach[6]. Differences have also been 96 

observed depending upon H. pylori status[6].There is now overwhelming evidence 97 

that certain bacteria influence cancer development. Potential mechanisms include 98 

altering the host immune system, exacerbating inflammation, or converting dietary 99 

nitrates to produce carcinogens such as N-nitrosamines and nitric oxide[7, 8, 9, 10, 100 

11, 12, 13].  101 

We therefore hypothesised that three stimuli which result in hypochlorhydria, namely 102 

H. pylori-induced atrophic gastritis, autoimmune atrophic gastritis and proton pump 103 
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inhibitor use cause specific changes to the composition of the gastric microbiota. In 104 

addition, the gastric microbiota that is present in these conditions contributes 105 

towards the specific gastric tumour risk that is associated with each of these 106 

hypochlorhydric states. We have used 16S rRNA sequencing to determine the 107 

gastric mucosal microbiota profiles in patients with these causes of hypochlorhydria 108 

and have compared these with samples obtained from healthy subjects and from 109 

patients with H. pylori-induced gastritis, but no evidence of gastric atrophy.   110 
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METHODS 111 

Ethics 112 

Acquisition of the biopsies used in this study was approved by Liverpool 113 

(08/H1005/37) and Cambridge East (10/H0304/51) Research Ethics Committees as 114 

previously described[14, 15]. All patients gave written informed consent.  115 

Patients 116 

One hundred gastric biopsy samples in 5 different groups were selected from a 117 

cohort of 1400 prospectively recruited patients who underwent diagnostic upper 118 

gastrointestinal endoscopy at Royal Liverpool University Hospital[14] and from 8 119 

patients with type I gastric NETs who had been recruited to a clinical trial[15, 16] 120 

(Table 1).  121 

Table 1. Summary of patient group characteristics  122 

 123 

ND= Not done 124 

IQR= Interquartile range, 25% and 75% 125 

 126 

 127 

 

 Group 

Total 

no. of 

samples 

Number 

of 

females 

Age (years) 

 BMI H. pylori 

serology 

+ve 

H. pylori 

histology 

/urease 

+ve 

PPI 

use 

Atrophic 

gastritis 

Serum gastrin 

(pM) Anti 

GPC/IF 

antibody Median IQR Median IQR Median IQR 

1 Normal 20 13 46 

30.5-

58.7 24.5 

21.2-

26.8 0 0 - - 22.5 

17.5-

28.5 - or ND 

2 PPI treated 19 13 60 

46-

67 28.5 

26.1-

33.2 0 0 + - 140 

94-

200 - or ND 

3 

H. pylori 

gastritis 

 

22 11 57.5 

 

47.7-

64 27.4 

 

23.3-

27.1 

 

22 

 

22 - 

 

- 

 

21.5 

 

17.4-

28 

 

- or ND 

4 

H. pylori 

atrophy 

 

23 15 65 

 

55-

72 25.9 

 

24.6-

31.9 

 

23 

 

6 - 

 

+ 

 

100 

 

64-

260 

 

- or ND 

5 

Autoimmune 

atrophy 

 

11 6 67 

 

60-

76 28.6 

 

23.7-

35 

 

2 

 

0 - 

 

+ 

 

800 

 

470-

1050 

 

+ 
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Patients in the normal stomach group had a normal endoscopy, no evidence of H. 128 

pylori infection by histology, rapid urease test or serology, were not taking a PPI and 129 

were normogastrinaemic. Patients belonging to the H. pylori gastritis group were 130 

positive for H. pylori by rapid urease test, histology and serology, had no histological 131 

evidence of atrophic gastritis, were not taking a PPI and were normogastrinaemic. 132 

Patients in the H. pylori-induced atrophic gastritis group showed histological 133 

evidence of corpus atrophic gastritis and/or intestinal metaplasia, had no dysplasia 134 

or cancer, were positive for H. pylori by serology, were not taking a PPI and were 135 

hypergastrinaemic. Six out of the 23 patients in this group were also H. pylori 136 

positive by urease test and/or histology. Patients in the autoimmune atrophic gastritis 137 

group had histological evidence of atrophic gastritis, no evidence of H. pylori 138 

infection by rapid urease test or histology, positive anti-gastric parietal cell and/or 139 

intrinsic factor antibodies, were markedly hypergastrinaemic and 8 out of 11 also had 140 

grade 1 type I gastric NETs. Patients in the PPI-treated group were currently taking 141 

PPIs, had no evidence of H. pylori infection by serology, rapid urease test or 142 

histology, had no histological evidence of atrophic gastritis and were 143 

hypergastrinaemic (suggesting significant hypochlorhydria).  144 

Samples 145 

At least two biopsies per site were obtained from the gastric antrum and corpus for 146 

histopathology. Eight additional corpus biopsies were stored in RNA later 147 

immediately after removal and were extracted using a modified Tri- reagent 148 

protocol[17]. Briefly, samples were thawed and separated from RNA later, before 149 

being homogenised in Tri-Reagent® (Sigma-Aldrich, Gillingham, UK). Chloroform 150 

was added and the resulting clear aqueous layer was combined with isopropanol 151 

before centrifugation to produce a precipitated RNA pellet. This was washed with 152 
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75% and 100% ice cold ethanol before being allowed to dry and then resuspended in 153 

diethylpyrocarbonate (DEPC)-treated water (Sigma-Aldrich, Gillingham, UK). RNA 154 

was stored in ethanol at -80°C. Ethanol was removed and pellets were resuspended 155 

in DEPC-water prior to reverse transcription.  156 

Gastrin assays 157 

Serum gastrin concentrations were measured by radioimmunoassay (RIA) as 158 

previously described[18, 19]. Fasting serum gastrin concentrations were all <40pM in 159 

normogastrinaemic subjects and >40pM (with the majority >100pM) in 160 

hypergastrinaemic subjects.  161 

Reverse Transcription  162 

Samples and random primers were denatured together for 5 minutes at 65°C before 163 

Proto reaction mix and Proto enzyme from a ProtoScript® II First Strand cDNA 164 

Synthesis kit (NEB, E6560L) were added. Samples were then incubated at 25°C for 165 

5 minutes, 42°C for 20 minutes, and 80°C for 5 minutes. Newly synthesised cDNA 166 

was then measured using a Qubit high sensitivity assay (ThermoFisher Ltd, Paisley, 167 

UK). 168 

16S rRNA Sequencing 169 

The 16S rRNA gene was targeted using V1-V2 (27F and 388R) primers[20] with 170 

slight modifications: forward primer 5'ACACTCTTTCCCTACACGACGC 171 

TCTTCCGATCTNNNNNAGAGTTTGATCMTGGCTCAG’3, reverse primer 172 

5’GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGCTGCCTCCCGTAGGAGT’173 

3. Primers were validated using a mock community described in supplementary 174 

methods. The following cycling conditions were used: initial denaturation 94°C for 5 175 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 1, 2017. ; https://doi.org/10.1101/144907doi: bioRxiv preprint 

https://doi.org/10.1101/144907


 

11 

 

minutes, followed by 10 cycles of denaturation at 98°C for 20 seconds, annealing at 176 

60°C for 15 seconds, and elongation at 72°C for 15 seconds, followed by a final 177 

elongation step of 72°C for 1 minute. PCR amplicons were purified to remove excess 178 

primers, nucleotides, salts, and enzymes using the Agencourt® AMPure® XP 179 

system (Beckman Coulter Ltd, High Wycombe, UK). Purified amplicons were used in 180 

a second PCR reaction with the same conditions except with 20 cycles. This second 181 

step was used to add dual index barcodes. The PCR amplicons were purified as 182 

above. All PCR reactions used Kapa HiFi HotStartStart 2× master mix (Anachem 183 

Ltd, Bedfordshire, UK) and all primers were used at 10µM. Amplicon sizes were 184 

checked using a fragment analyser (Advanced Analytical, Ankeny, USA) and size 185 

selection was performed using a Pippin prep (Sage Science, Beverly, USA). The 186 

quantity and quality of the samples in the final libraries were checked using a SYBR 187 

Green qPCR assay and the Illumina Library Quantification kit (Kapa) on a Roche 188 

Light Cycler LC480II, according to the manufacturer's instructions. 189 

Prior to loading samples onto the MiSeq, PhiX was added (10-15%) to increase 190 

diversity, and samples were then denatured with NaOH according to the Illumina 191 

MiSeq protocol. ssDNA library fragments were diluted to a final concentration of 192 

8pM. 600μl of ssDNA library was loaded into a MiSeq Reagent Cartridge and a 500–193 

cycle PE kit v2 was used. Paired-end sequencing was performed according to the 194 

manufacturer’s instructions (Illumina, SanDiego, CA, USA). Sequence analysis 195 

methodology is described in the supplementary methods. Reads were submitted to 196 

EBI short-read archive accession-PRJEB21104. 197 

Statistical analysis  198 

Details are described in the supplementary methods.  199 
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RESULTS 200 

Patient characteristics 201 

Patients were selected from the larger cohort according to criteria defined above. 202 

Characteristics of the selected patients are shown in table 1 and figure 1A. One 203 

sample from the normal stomach group and four from the PPI-treated group were 204 

subsequently excluded because sequencing showed the presence of >15% H. pylori 205 

despite this organism being undetected by conventional clinical tests (most likely due 206 

to the higher sensitivity of 16S rRNA sequencing compared to routine clinical tests). 207 

Ninety-five samples were therefore analysed. Negative extracts from the RNA 208 

extraction procedures, a water sample in the first PCR and a mock bacterial 209 

community were also sequenced.  210 

 211 

Detection of Operational Taxonomic Units (OTUs) 212 

In total 10,386 OTUs were identified. Extraction controls contained fewer OTUs than 213 

the patient samples, whilst the mock communities (and a random selection of 10 214 

gastric samples – data not shown) showed consistency between MiSeq runs (Figs 1-215 

3). Despite the negative extracts being theoretically sterile, as expected they 216 

generated 16S signals due to known background reagent contamination[21]. 217 

Samples from the autoimmune atrophic gastritis group contained the largest number 218 

of OTUs, whilst all other patient groups were comparable (Fig 1B). Mock 219 

communities demonstrated the expected bacterial ratios (Fig 3B). 220 

 221 

 222 
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Bacterial diversity and abundance in the different hypochlorhydric states 223 

Twenty-three known phyla were identified, mainly Proteobacteria, Firmicutes, 224 

Bacteroidetes, Actinobacteria, Fusobacteria and Cyanobacteria. Bacteroidetes, 225 

followed by Proteobacteria and Firmicutes were most common in normal stomachs, 226 

whereas samples from PPI-treated patients contained slightly more Firmicutes and 227 

fewer Bacteroidetes. The H. pylori gastritis and H. pylori atrophic gastritis samples 228 

were dominated by Proteobacteria (as Helicobacter itself is a member of this 229 

phylum), whilst biopsies from patients with autoimmune atrophic gastritis contained 230 

the largest proportion of Firmicutes compared to all other patient groups.  231 

Alpha diversity  232 

Diversity indices demonstrated that the microbiota in normal stomachs was 233 

significantly more diverse than in the stomachs of all other patient groups except for 234 

the patients who had autoimmune atrophic gastritis (Fig 2). Evaluation of evenness 235 

(by Pielou’s evenness and Simpson) suggested that the samples from normal 236 

stomachs and from the stomachs of patients taking PPIs contained bacterial 237 

communities that were more equal in abundance than those in the other patient 238 

groups, which were more skewed (Fig 2). Calculations based on richness indicated 239 

that the samples from normal stomachs also contained the greatest number of 240 

different bacterial species compared to all other groups, whilst the two H. pylori 241 

infected groups (H. pylori-induced gastritis and atrophy) contained significantly fewer 242 

species. 243 

 244 

 245 
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Beta diversity 246 

When beta diversity was explored using nonmetric distance scaling (NMDS), patient 247 

groups clustered predominantly by bacterial abundance (Fig 4). When H. pylori was 248 

removed from the analysis however, H. pylori gastritis patients no longer clustered 249 

separately by abundance from subjects with normal stomachs (Fig 4). Despite this, 250 

following removal of H. pylori, there was a significant difference in abundance for H. 251 

pylori-induced atrophic gastritis patients compared to normal stomachs, suggesting 252 

strongly that there are differences in the proportions of non-H. pylori bacteria in these 253 

subjects compared with others (Fig 4). Samples from patients who had autoimmune 254 

atrophic gastritis displayed the only significant differences in terms of the presence 255 

or absence of specific bacteria compared to other groups (Fig 4). This suggests that 256 

changes in the gastric bacterial community during hypochlorhydria usually involve 257 

changes in the relative proportions of bacteria that are already present, and only 258 

rarely involve the loss or gain of specific bacterial genera. 259 

 260 

Comparisons between the microbiota profiles in the different patient groups 261 

and healthy controls 262 

Normal stomach versus PPI treated patients 263 

Patients receiving PPIs showed similar bacterial profiles to those found in the 264 

stomachs of normal subjects, despite having significantly higher serum gastrin 265 

concentrations (suggesting the presence of hypochlorhydria) (Figs 1A, 3 & S1). 266 

Nonetheless there were differences in the ranks of most abundant bacterial families. 267 

In normal (control) patients Prevotellaceae were the most abundant bacterial family 268 
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(23%), followed by Streptococcaceae (10%), Paraprevotellaceae (7%) and 269 

Fusobacteriaceae (5%); amongst PPI-treated individuals Streptococcaceae (17%) 270 

outranked Prevotellaceae (11%), Campylobacteraceae (5%) and Leptotrichiaceae 271 

(4%; Fig 3A). The only significant differences at genus level between these groups 272 

were decreases in Actinobacillus and Tannerella in the PPI-treated stomachs (Table 273 

S1). 274 

Very few differences were identified in co-occurrence network analyses when the 275 

microbiota in normal stomachs was compared to PPI-treated stomachs. The only 276 

observed difference was a negative correlation between Helicobacter and 277 

Acinetobacter in the PPI-treated samples, whereas this relationship was positively 278 

correlated in normal stomach biopsies (Figs 5A, S2A & Table S2A). Predicted 279 

pathway analysis showed no significantly different biochemical pathways between 280 

these two groups (Table S3).  281 

 282 

Normal stomach versus H. pylori-induced gastritis 283 

Unsurprisingly, the microbiota in the stomachs of patients who had H. pylori-induced 284 

gastritis consisted almost entirely of Helicobacteraceae (97%) (Fig 3). When 285 

compared to normal patients, H. pylori-induced gastritis patients showed a greater 286 

number of differences at the genus level than all other patient groups (Table S1). 287 

The majority of these differences resulted from reductions in the proportions of 288 

several bacterial genera within the H. pylori gastritis group. To ensure that the 289 

dominance of H. pylori did not skew the proportions of the other bacteria in a 290 

misrepresentational way, H. pylori OTUs were removed from the abundance table 291 

followed by differential expression analysis on the remaining raw abundances. This 292 
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analysis resulted in almost identical results to when H. pylori remained (Table S1). 293 

Due to the dominance of H. pylori in these patients, very few co-occurrence networks 294 

were identified, but positive correlations were observed between Kocuria and 295 

Skermanella in both groups (Figs 5A & B). Predicted pathway analysis suggested a 296 

reduction in several dehydrogenases in the stomachs of patients who had H. pylori 297 

gastritis (Table S3).  298 

 299 

Normal stomach versus H. pylori-induced atrophic gastritis 300 

The stomachs of patients who had H. pylori-induced atrophic gastritis were also 301 

dominated by Helicobacteraceae (62%), followed by Streptococcaceae (5%), 302 

Fusobacteriaceae (2%) and Prevotellaceae (2%) (Fig 3). At the genus level, several 303 

differences were observed between normal stomachs and the stomachs of patients 304 

with H. pylori-induced atrophic gastritis. These included decreases in the proportions 305 

of Tannerella (E. coli/Shigella/Salmonella), Treponema, and Prevotella in the H. 306 

pylori-induced atrophic gastritis group. The vast majority of these differences 307 

remained when H. pylori was removed from the analysis (Table S1). Prevotellaceae 308 

were generally lower in all patient groups compared to normal stomachs (Figs S1 309 

and 3). As with the H. pylori gastritis group, the majority of these changes reflected 310 

decreases in the proportions of various bacterial genera within the H. pylori-induced 311 

atrophic gastritis group, with the only increase being in Helicobacter itself.  312 

Co-occurrence networks were more complicated in H. pylori-induced atrophic 313 

gastritis patients compared to those subjects who had H. pylori-induced gastritis 314 

(Figs 5B &D). Clear negative relationships were observed between Helicobacter and 315 

genera such as Streptococcus, whilst Campylobacter, Prevotella, Haemophilus and 316 
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Veillonella were amongst the most well-connected and influential bacteria observed 317 

in the stomachs of H. pylori atrophic gastritis patients (Fig 5 and Table S2B). 318 

Predicted pathway analysis showed that several pathways were under-represented 319 

in the H. pylori-induced atrophic gastritis group, including succinate dehydrogenase 320 

(Table S3). Over-represented pathways included fumarate reductase (Table S3).  321 

 322 

Normal stomach versus autoimmune atrophic gastritis 323 

Streptococcaceae (38%) were the most dominant group identified in the stomachs of 324 

patients who had autoimmune atrophic gastritis, followed by Prevotellaceae (9%), 325 

Flavobacteriaceae (7%), Campylobacteraceae (7%), Enterobacteriaceae (5%) and 326 

Pasteurellaceae (5%). The stomachs of autoimmune atrophic gastritis patients 327 

contained a higher proportion of Streptococcaceae than all other patient groups (Fig 328 

3) and were the only samples that showed complete loss or gain of bacteria rather 329 

than simply changes in bacterial proportions (Fig 4D). For example, the stomachs of 330 

autoimmune atrophic gastritis patients were colonised by Gemella and Bosea unlike 331 

any other patient group. Alterations in the relative proportions of other bacteria were 332 

also found in the stomachs of patients with autoimmune atrophic gastritis. These 333 

included increases in the proportions of Streptococcus, Campylobacter and 334 

Haemophilus (Table S1).    335 

Few co-occurrence networks were identified, presumably due to the dominance of 336 

Streptococcaceae, although Stenotrophomonas and Delftia; and Selenomonas and 337 

Pseudomonas showed strong positive correlations (Fig 5D and Table S2B). 338 

Predicted pathway analysis suggested that several pathways were over- or under-339 
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represented in the stomachs of patients who had autoimmune atrophic gastritis 340 

(table S3).  341 

 342 

H. pylori gastritis versus H. pylori-induced atrophic gastritis 343 

We investigated whether the microbiota in the stomachs of patients who had H. 344 

pylori-induced atrophic gastritis (which were likely to be hypochlorhydric as indicated 345 

by hypergastrinaemia) differed from that in patients who had H. pylori gastritis, 346 

normal gastric acid secretion and normogastrinaemia. No significant differences 347 

were identified at the genus level. However, several OTUs belonging to H. pylori 348 

were found more frequently in the H. pylori-induced atrophic gastritis group, possibly 349 

suggesting the presence of particular strains within this group (Table S4A). 350 

Interestingly, only two other OTUs differed in abundance between these groups, 351 

Streptococcus mitis and Neisseria mucosa. However, these did not remain 352 

significant once H. pylori was removed from the analysis. This suggests that the 353 

presence of atrophy does not result in extensive changes to bacterial communities in 354 

the stomach relative to the simple presence of H. pylori, but may result in specific 355 

differences in individual bacterial strains.  356 

 357 

Comparisons between the gastric microbiota of individuals with 358 

hypochlorhydria of different aetiologies 359 

Patients with H. pylori-induced atrophic gastritis and those receiving PPIs had similar 360 

fasting serum gastrin concentrations (median 100pM and 140pM respectively), 361 

possibly suggesting similar degrees of hypochlorhydria (although H. pylori infection 362 
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may have directly contributed to the hypergastrinaemia in the former group). In 363 

contrast patients with autoimmune atrophic gastritis were associated with higher 364 

fasting serum gastrin concentrations (median 800pM; Table 1). No direct association 365 

between fasting serum gastrin concentration and bacterial taxa was observed 366 

between the different groups (PERMANOVA Unifrac P=0.512, weighted Unifrac 367 

P=0.721 and Bray-Curtis P=0.556).  This is reflected in the evidence that patients 368 

with H. pylori-induced atrophic gastritis and those receiving PPIs exhibited marked 369 

differences in 16S rRNA microbiota profiles, co-occurrence networks and predicted 370 

pathways, despite similar gastrin levels. And that patients with autoimmune atrophic 371 

gastritis showed similarities to individuals with H. pylori-induced atrophic gastritis by 372 

predicted pathway analysis, despite markedly different serum gastrin concentrations 373 

(Table S3).  374 

Samples from patients with autoimmune atrophic gastritis contained significantly 375 

more Streptococci than all other groups (Fig 3 & Table S1). Streptococcus did not 376 

appear to be similarly increased in H. pylori-induced atrophic gastritis; this may have 377 

been due to the negative relationship observed between Helicobacter and 378 

Streptococcus identified in co-occurrence networks (Fig 5C).  379 

Gastric biopsies from patients with autoimmune atrophic gastritis and those on PPIs 380 

both showed greater bacterial diversity than was observed in the stomachs of 381 

patients with H. pylori-induced atrophic gastritis (Fig 2). At the genus level, patients 382 

with autoimmune atrophic gastritis showed significant increases in Tannerella, 383 

Dorea, Streptococcus, Fusobacterium and Campylobacter compared to the patients 384 

with H. pylori-induced atrophic gastritis (Table S4B). The stomachs of PPI-treated 385 

patients also contained significantly higher proportions of Fusobacterium and 386 

Campylobacter than the stomachs of H. pylori-induced atrophic gastritis patients. 387 
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Furthermore, patients receiving PPI treatment showed significantly higher 388 

proportions of Flavisolibacter and Dermacoccus in their stomachs than autoimmune 389 

atrophic gastritis patients, but significantly less Paludibacter, Granulicatella, 390 

Streptococcus, and Neisseria. 391 

Patients who had atrophic gastritis due to H. pylori or an autoimmune aetiology both 392 

showed over-representation of several mutual pathways compared to controls (Table 393 

S3). However, differences between the two groups were also observed. For 394 

example, glucose-6-phosphate 1−dehydrogenase and D−lactate dehydrogenase 395 

pathways were over-represented in the stomachs of patients who had H. pylori-396 

induced atrophic gastritis compared to those who had autoimmune atrophic gastritis 397 

(Table S3).  398 

 399 

 400 

  401 
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DISCUSSION 402 

Gastric samples obtained from subjects who had a normal stomach, no evidence of 403 

H. pylori infection and normogastrinaemia had the highest levels of microbial 404 

diversity. This is consistent with other reports of healthy populations showing more 405 

microbial diversity[22, 23, 24]. These samples also contained the greatest proportion 406 

of Prevotellaceae (23%) which corroborates previous research that reported normal 407 

stomachs contained 37% Prevotella, reducing to 28% in dyspeptic patients[25]. In 408 

general, the microbiota, co-occurrence networks and predicted pathways in samples 409 

from PPI-treated patients were similar to those in normal stomachs. This agrees with 410 

other reports that PPIs do not significantly influence the gastric microbiota[26, 27]. At 411 

the OTU level however, samples from PPI-treated patients contained significantly 412 

more Streptococcus. This has also been observed in gastric[27] and faecal samples 413 

from twins discordant for PPI use[28]. 414 

H. pylori gastritis, and to some extent H. pylori-induced atrophic gastritis samples 415 

were dominated by H. pylori. This observation may have been exacerbated by our 416 

use of RNA as opposed to DNA for sequencing, unlike many other publications. 417 

When these two techniques were directly compared, H. pylori abundance was found 418 

to be 19.9 times higher in RNA compared to DNA from gastric fluid samples, and 419 

was also more dominant in biopsies than gastric fluid[26, 29]. The use of RNA 420 

ensured that only viable bacteria were included in the analysis, giving a better 421 

indication of the taxa that are likely to be influencing the gastric environment. H. 422 

pylori colonisation was associated with a decrease in gastric bacterial diversity, and 423 

dominance of this organism, which is highly adapted to the gastric environment, has 424 

also been reported previously[6, 30, 31].  425 
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The majority of changes observed in H. pylori gastritis and H. pylori-induced atrophic 426 

gastritis samples were due to reductions in non-H. pylori bacteria. H. pylori-induced 427 

atrophic gastritis samples showed complex co-occurrence networks, unlike H. pylori 428 

gastritis which showed few connections, presumably related to the dominance of H. 429 

pylori itself in those samples. Campylobacter, Prevotella, Haemophilus and 430 

Veillonella were amongst the most influential genera in H. pylori-induced atrophic 431 

gastritis samples. These bacteria have been previously identified in oral and gastric 432 

samples[29].The only differences found between the two H. pylori patient groups at 433 

the OTU level were increased abundances of specific H. pylori OTUs (possibly 434 

suggesting specific bacterial strains) and increased proportions of Streptococcus 435 

mitis and Neisseria mucosa in the atrophic group. The former species and latter 436 

genus have been identified from oral microbiota as potential biomarkers for 437 

pancreatic cancer[32]. Neisseria has been shown to produce large amounts of 438 

alcohol dehydrogenase, which produces the carcinogen acetaldehyde, and along 439 

with H. pylori’s high production of this enzyme, may also contribute to gastric 440 

carcinogenesis[33]. Some strains of Streptococcaceae have previously been shown 441 

to affect the outcomes of H. pylori infection. For example, S. mitis induces a coccoid 442 

state in H. pylori[34] and this may lead to unsuccessful antibiotic treatment and false 443 

negative diagnostic test results. Moreover, this coccoid form has been suggested to 444 

be more associated with gastric adenocarcinoma development than the spiral 445 

form[35, 36].  446 

The stomachs of patients with autoimmune atrophic gastritis (who probably had the 447 

most profound reductions in acid secretion, as suggested by higher fasting serum 448 

gastrin concentrations), showed high bacterial diversity. Samples from this group 449 

also showed significantly higher proportions of Streptococcus than any of the other 450 
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groups. They also contained Ruminococcus and Gemella unlike any other patient 451 

group except H. pylori-induced atrophic gastritis, although they did not contain 452 

genera such as Arthrobacter, Cupriavidus and Sneathia. Therefore, bacterial 453 

communities were both lost and gained in this condition. Co-occurrence networks 454 

appeared to be disrupted by the overabundance of Streptococcaceae resulting in 455 

few connections.  456 

The microbial profiles in the stomachs of patients with H. pylori-induced atrophic 457 

gastritis and autoimmune atrophic gastritis were quite different. In addition, pathways 458 

such as glucose-6-phosphate 1−dehydrogenase and D−lactate dehydrogenase were 459 

over-represented in the stomachs of patients with H. pylori-induced atrophic gastritis 460 

compared to autoimmune atrophic gastritis. Overexpression of these pathways has 461 

been associated with poorer prognoses in gastric cancer[37, 38]. Conversely, 462 

several other metabolic pathways such as fumarate reductase were increased in 463 

representation in patients with both autoimmune and H. pylori associated atrophic 464 

gastritis. Fumarate reductase is involved in the metabolism of some bacteria and is 465 

essential for colonisation by H. pylori in the mouse stomach[39, 40, 41]. Interestingly, 466 

succinate dehydrogenase (which has an opposite action to fumarate reductase) was 467 

found to be decreased in both atrophic gastritis groups compared to both the normal 468 

and PPI-treated samples. Lower levels of succinate dehydrogenase have previously 469 

been found in gastrointestinal tumours and parietal cells[42, 43]. PPI-treated patients 470 

showed more similarities in microbial diversity and abundance to the patients who 471 

had autoimmune atrophic gastritis, than to the patients who had H. pylori-induced 472 

atrophic gastritis. 473 

 474 
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Conclusion 475 

Our findings indicate that H. pylori colonisation and hypochlorhydria result in 476 

changes in gastric bacterial abundance and only rarely in loss/gain of bacteria. PPI 477 

treatment did not significantly alter the gastric microbiota from that of a normal 478 

stomach, despite serum gastrin concentrations being comparable to those found in 479 

patients with H. pylori-induced atrophic gastritis. Autoimmune atrophic gastritis 480 

resulted in a different, more diverse microbial pattern than that observed in the 481 

stomachs of patients who had H. pylori-induced atrophic gastritis. This may be due 482 

to differences in acid secretion between these conditions or other factors such as 483 

different immune profiles. Several biochemical pathways were represented in similar 484 

fashions in both atrophic gastritis groups. In particular, gastric-atrophy was 485 

associated with changes in the citric acid cycle (biochemical pathway that is known 486 

to be associated with gastric carcinogenesis) and our findings suggest that the 487 

microbiota may be an important contributor to this. 488 

 489 

  490 
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FIGURE LEGENDS 518 

Table 1. Summary of patient group characteristics. ND = Not done, IQR = 519 

Interquartile range, 25% and 75%. 520 

Figure 1. (A) Median fasting serum gastrin concentrations (pM) in patient groups. 521 

Kruskal-Wallis test with Dunn’s comparison, plotted using Tukey’s method *=P<0.05, 522 

and ****=P<0.0001 vs control. (B) Mean number of OTUs identified within each 523 

patient group, 1-way ANOVA and Tukey’s multiple comparison test *=P<0.05, 524 

**=P<0.01, Control vs Autoimmune atrophic gastritis P=0.059, Control vs Neg 525 

P=0.061 and Hp-induced atrophic gastritis vs Neg P=0.059.  526 

Figure 2. Five different diversity indices of human gastric microbiota (Fisher alpha: 527 

parametric index of diversity that models species as logseries distribution; Pielou’s 528 

evenness: how close in numbers each species is; Richness: number of species per 529 

sample; Shannon: a commonly used index to characterise species diversity; and 530 

Simpson: which takes into account the number of species present, as well as their 531 

relative abundance). Pair-wise ANOVA was performed between different groups and 532 

if significant (P<0.001), the p-values have been drawn on top. Atrophy=H. pylori 533 

associated atrophy, Auto=autoimmune atrophic gastritis, Control=normal stomach, 534 

HP Gast=H. pylori associated gastritis, PPI=proton pump inhibitor and Neg= 535 

extraction control. 536 

Figure 3. Relative abundances of taxa found within (A) groups and (B) individual 537 

human gastric biopsies. Hp=H. pylori, IM=intestinal metaplasia, IM+At=intestinal 538 

metaplasia and atrophy, PPI=proton pump inhibitor, EC=extraction controls (one of 539 

the EC samples was included in a run with more H. pylori dominant samples), 540 

H=H2O and M=mock community (which showed consistent findings on two runs as 541 
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shown). All H. pylori atrophic gastritis samples were positive for H. pylori by serology, 542 

+ indicates whether these samples were also positive by histology/rapid urease test. 543 

Autoimmune atrophic gastritis samples recorded as ‘s’ were also positive for H. pylori 544 

by serology. 545 

Figure 4. Nonmetric distance scaling (NMDS) demonstrating clustering of patient 546 

groups using (A) unweighted Unifrac distance (pair-wise distance between samples 547 

is calculated as a normalised difference in cumulative branch lengths of the 548 

observed OTUs for each sample on the phylogenetic tree without taking into account 549 

their abundances in samples), (B) Bray-Curtis distance (abundance of OTUs alone 550 

and not considering the phylogenetic distance) and (C) weighted Unifrac 551 

(unweighted unifrac distance weighted by abundances of OTUs). Serum gastrin 552 

concentration indicated by size of each point. Ellipses represent 95% CI of standard 553 

error for a given group. Dotted ellipses represent the 95% CI of standard error when 554 

H. pylori were removed from the analysis. Atrophy=H. pylori associated atrophic 555 

gastritis, Auto=autoimmune atrophic gastritis, Control=normal, HP Gastr=H. pylori 556 

associated gastritis and PPI=proton pump inhibitor. PERMANOVA (distances against 557 

groups) suggests significant differences (P<0.001 for all three distances) in microbial 558 

community explaining the following variations (R2) between groups: 10% (8.6% 559 

without H. pylori when using Unweighted Unifrac; 58% (14.5% without H. pylori) 560 

when using Weighted Unifrac; and 15% when using Bray-Curtis distance. No 561 

significant explanation was observed (P>0.05) for age, BMI, or serum gastrin 562 

concentration in the PERMANOVA test. (D) Data from betadisper plots (a mean to 563 

compare the spread/variability of samples for different groups) representing 564 

difference in distances (Bray-Curtis, Unweighted and weighted Unifrac) of group 565 

members from the centre/mean of individual groups after obtaining a reduced-order 566 
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representation of abundance table using Principle Coordinate Analysis. The pair-567 

wise differences in distances from group centre/mean were then subjected to 568 

ANOVA and if significant (P<0.001), the p-values were drawn on top.  569 

Figure 5. Co-occurrence network analysis between different genera (OTUs collated 570 

together at genus level) when considering samples for (A) normal stomach, (B) H. 571 

pylori gastritis, (C) H. pylori-induced atrophic gastritis and (D) autoimmune atrophic 572 

gastritis. The genera were connected (Blue: positive correlation; Red: negative 573 

correlation) when the pair-wise correlation values were significant (P.adj<0.05) after 574 

adjusting the P values for multiple comparisons. Furthermore, subcommunity 575 

detection was performed by placing the genera in the same subcommunity 576 

(represented by colour of nodes) when many links were found at correlation values 577 

>0.75 between members of the subcommunity. The size of the nodes represent the 578 

degree of connections.  579 

 580 

Supplementary Figure and Table Legends 581 

Figure S1. Relative abundances of taxa found within human gastric biopsies after 582 

removal of Helicobacteraceae. Hp=H. pylori, IM=intestinal metaplasia, 583 

IM+At=intestinal metaplasia and atrophy, PPI=proton pump inhibitor. All H. pylori 584 

atrophy samples were positive for H. pylori by serology. 585 

Figure S2. Co-occurrence network analysis between different genera (OTUs 586 

collated together at genus level) when considering samples for (A) PPI. The genera 587 

were connected (Blue: positive correlation; Red: negative correlation) when the pair-588 

wise correlation values were significant (P.adj<0.05) after adjusting the P values for 589 
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multiple comparisons. Furthermore, subcommunity detection was performed by 590 

placing the genera in the same subcommunity (represented by colour of nodes) 591 

when many links were found at correlation values >0.75 between members of the 592 

subcommunity. The size of the nodes represent the degree of connections (B) 593 

network-wide statistics by degree, closeness, betweenness and eigenvalue centrality 594 

for H. pylori atrophic gastritis cases. The nodes (coloured with respect to 595 

subcommunity they are part of) were placed on concentric circles with values 596 

increasing from center to the periphery. A high betweenness for a node suggests 597 

many connections, whereas a high eigenvalue centrality suggests that those 598 

connections, in turn, are all well connected. On average a high betweenness and at 599 

the same time low eigenvalue centrality for a subcommunity suggests a 600 

keystone/important subcommunity. 601 

 602 

Table S1. Significantly different genera identified between normal stomach samples 603 

and PPI, autoimmune atrophic gastritis, H. pylori-induced atrophic gastritis and H. 604 

pylori gastritis. The most significant species are identified at the top. Differential 605 

expression analysis based on the Negative Binomial (Gamma-Poisson) distribution 606 

and were corrected for multiple comparisons. * indicates a genus no longer 607 

significant when H. pylori was removed from the analysis. 608 

Table S2A. Stable bacterial populations and correlations in PPI patients compared 609 

to other groups (if the correlation between two genera were consistently positive or 610 

negative in different groups). PPI versus H. pylori-induced atrophic gastritis in table 611 

S2B. No significant comparisons were found between PPI and autoimmune atrophic 612 

gastritis groups. 613 
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Table S2B. Stable bacterial populations and correlations in H. pylori-induced 614 

atrophic gastritis patients compared to other groups. 615 

Table S3. The top most significant predicted pathways found for each group 616 

comparison. 617 

Table S4A. Significant bacterial species identified between H. pylori atrophic gastritis 618 

and H. pylori gastritis. The most significant species are identified at the top. 619 

Differential expression analysis based on the Negative Binomial (Gamma-Poisson) 620 

distribution. Streptococcus identified by BLAST as S. mitis with 98% coverage, 99% 621 

identity and Neisseria mucosa had 98% coverage and 100% identity. None of these 622 

OTUs remained significant when H. pylori was removed from the analysis.  623 

Table S4B. Significant bacterial genera identified between autoimmune atrophic 624 

gastritis and H. pylori-induced atrophic gastritis. The most significant species are 625 

identified at the top. Differential expression analysis based on the Negative Binomial 626 

(Gamma-Poisson) distribution. NB when H. pylori was removed from the analysis 627 

these genera remained significant, with an additional genus Desulfobulbus also 628 

reaching significance. 629 

 630 

 631 

 632 

 633 

  634 
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