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Molecular dynamics (MD) simulations employ a potential
energy function, referred to as a force field, in order to

sample the free energy landscapes of biomolecular systems.
Due to the intractable complexity of biological systems, the
force field is commonly of an approximate classical form, and is
fit using quantum mechanical and experimental data (1, 2). As
a result, the accuracy of these force fields has tracked with ad-
vances in computational hardware and methodology, as well as
the increased availability of high resolution experimental data
(3). The current state-of-the-art protein force fields demon-
strate high accuracy in their ability to describe the protein
native state and its equilibrium behavior: these models are all
able to describe ensemble averaged properties of proteins with
highly populated native states within experimental error (4).
Of greater discrepancy is their description of the denatured
state ensemble. As such, one of the major frontiers in protein
force field development is the accurate description of proteins
away from equilibrium.

Protein folding is a strong validation test of a protein force
field (5, 6). This is because as the protein folds and unfolds, it
samples beyond the native state. Performing protein folding
simulations using multiple force fields allows for the compar-
ison of their denatured state ensembles. Furthermore, we
can make force field-agnostic conclusions from an aggregated
dataset. A popular system for such a task is the ultrafast fold-
ing miniprotein, CLN025. This protein folds within timescales
accessible to computation into a highly stable beta-hairpin.
At room temperature, the native state is almost exclusively
populated (7). As temperature increases, the denatured state
population increases. Experiments probing relaxation kinetics
over a range of temperatures have shown that there is a critical
break in the folding mechanism of this protein at 308 K (8).
Above this temperature, folding can no longer be described
using a two-state model. Because the experimental description
of this system is both detailed and nontrivial at high tempera-
ture, we have benchmarked a set of popular protein force fields
in their ability to describe the conformational dynamics of
CLN025 at its experimental melting temperature of 340 K (7).

The folding of CLN025 is of additional interest due to
its beta-hairpin structure. Neither experimentalists nor the-
orists have reached a consensus on the mechanism or rate-
determining step of beta hairpin folding (9–11). In this work,
we use our aggregated MD dataset to facilitate the under-
standing of beta-hairpin formation. We first enumerate the
force fields studied and discuss the Markov state model (MSM)
framework used to analyze our MD datasets. Next, we exam-
ine the thermodynamics and kinetics of folding for the three
force fields investigated and note that only the AMBER-FB15
model (4) exhibits melting behavior at the simulation tempera-
ture. Lastly, we analyze the three MD datasets simultaneously
to interrogate the mechanism and rate-determining process
of CLN025 folding. Through this analysis we find that the

CLN025 folding mechanism comprises a downhill hydrophobic
collapse followed by the slower formation of the hairpin turn
over a barrier. The order of these conformational changes is
consistent with a recent experimental study of CLN025 (8).

Models

The force field combinations used in this study are:

(a) CHARMM22* (12)/mTIP3P (13)

(b) AMBER ff99SB-ILDN (14)/TIP3P (15)

(c) AMBER-FB15 (4)/TIP3P-FB (16)

The CHARMM22* and AMBER ff99SB-ILDN parameter
sets were developed by (12) and (14), respectively, as augmen-
tations to previous generations of CHARMM and AMBER
parameter sets. The AMBER-FB15 parameter set, devel-
oped by (4), was built via a complete refitting of the bonded
parameters of the AMBER ff99SB force field (17) with train-
ing data taken from RI-MP2 calculations using augmented
triple-zeta and larger basis sets (18). Notably, the training set
contained complete backbone and side chain dihedral scans
for all (capped) amino acids. During force field validation,
it was found that parameter optimization yielded improved
melting curves for both CLN025 and Ac-(AAQQAA)3-NH2.
We suspect that the improved thermal dependence could be at-
tributed to improved description of the dihedral barrier heights
(19–21). Note that each protein force field was simulated using
its corresponding water force field. The dataset for model (a)
was obtained from D.E. Shaw research, and was generated
as described in their seminal fast folding protein study (22).
The datasets for models (b) and (c) were generated via the
distributed computing platform Folding@home (23). This
architecture allows us to sample many instances of folding
from the extended state, and hence gather robust statistics
regarding the folding process. For details regarding the prepa-
ration and execution of these simulations, see the supporting
information (SI).

Whereas specialized hardware is typically used to gen-
erate one or several ultralong MD simulations, simulations
performed on distributed computing platforms such as Fold-
ing@home produce datasets consisting of many short trajecto-
ries. The use of MSMs was a crucial advance in the analysis of
such datasets (24–26). To construct a MSM, each frame of each
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trajectory is assigned to a discrete state. The model comprises
the populations of and conditional pairwise transition prob-
abilities between states, which provide thermodynamic and
kinetic information, respectively. Since separate trajectories
will feature common states, the trajectories can be threaded
together through this framework and pathways between states
can be determined even if the pathway is not contained in a
single trajectory.

The choice of which collective variables to use when describ-
ing MD datasets is an area of active research (27). Describing
the trajectories using time-structure based independent com-
ponent analysis (tICA) allows us to analyze the MD dataset
in terms of its slow dynamical processes (28, 29). Each compo-
nent of the tICA transformation, or “tIC”, serves as a reaction
coordinate for the system (30). For a protein folding dataset,
the first tIC is expected to correspond to the folding process
and can thus be used as a reaction coordinate for folding. The
MSM is then created from trajectories that are represented
by their progress along the tICs by creating microstates that
group kinetically similar conformations. The thermodynamics
and kinetics of different systems can be directly compared when
the same representation (i.e. tICA model) and microstates are
used to build a MSM for each dataset.

Results

First, we describe folding from a global perspective and com-
pare the thermodynamics and kinetics for each force field.
Then, we inspect the mechanism of beta-hairpin formation for
each dataset in the context of a set of influential theoretical and
experimental studies. Last, we examine the rate-determining
step of the folding process.

Thermodynamics and kinetics of folding. In order to analyze
folding of CLN025, we first constructed an optimized MSM
for the CHARMM22* dataset (see the SI for optimization
protocol and model validation). The same features, tICA
model, and states were then used to derive a unique MSM
transition matrix for the AMBER ff99SB-ILDN and AMBER-
FB15 datasets. By using a consistent model basis, we are able
to directly compare folding of CLN025 as a function of force
field. This approach allows us to summarize folding along a
kinetically motivated 1-dimensional reaction coordinate (see
Models for more detail). We note that our conclusions are
independent of the basis chosen, and results from AMBER
ff99SB-ILDN and AMBER-FB15 bases are shown in the SI.

This data is illustrated in Fig. 1 (top), where folding from
the denatured state is represented by the movement from
the right free-energy basins, labeled “denatured extended”
and “denatured collapsed”, to the left basin, labeled “folded”.
Additionally, in order to quantify the kinetics of folding, we
computed the mean first passage time (MFPT) both to and
from the folded and denatured states for each model. This is
depicted in Fig. 1 (bottom) and the method is described in
the SI.

We found that all models share several notable charac-
teristics. First, all models show that the folding process is
rate limited by a small global barrier (Fig. 1, top). This
demonstrates that the potential energy surfaces for CLN025
described by each of these force fields are qualitatively similar.
Second, all were able to fold the extended, denatured protein
into a native conformation similar to the experimental crystal
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Fig. 1. Thermodynamics and kinetics of CLN025 folding reveal differences across
force fields. Top: The free energy landscape shows overstabilization of the native
state for the CHARMM22* and AMBER ff99SB-ILDN force fields at the experimental
melting temperature. The black dashed line indicates the location of the crystal
structure (PDB ID: 5AWL) on the folding reaction coordinate (see Models). All models
populate a folded state and a denatured extended state, but only the AMBER models
populate a denatured collapsed state at this temperature. Shading represents the
range of free energies based on 100 bootstrapped samples between the 5th and 95th

percentiles. Bottom: The mean first passage time for folding is approximately similar
for all force fields; however, the mean first passage time for unfolding is slower than
folding for the CHARMM22* and AMBER ff99SB-ILDN models at the experimental
melting temperature. Only the AMBER-FB15 model shows approximately equal
folding and unfolding MFPTs, which is consistent with melting behavior.

structure (dashed line, Fig. 1, top). The minimum of the
folded basin is found at a similar location on the reaction
coordinate for all models. This implies that the most stable
folded conformations are also very similar. Third, the mean
first passage time (MFPT) for folding was found to be on the
order of 10 ns. This is evidenced by the short and comparable
folding MFPTs for all models (Fig. 1, bottom).

The examined models also differ in several ways. First, their
description of dynamics at the experimental melting tempera-
ture differ. During melting, the native and denatured states
should be equally populated, and the folding and unfolding
rates should be the same. We found that the AMBER-FB15
model displays equally deep folded and unfolded basins, well
as approximately equal folding and unfolding MFPTs. This
is aligned with experiment at the same temperature. In con-
trast, the CHARMM22* and AMBER ff99SB-ILDN models
exhibit disproportionately high unfolding barriers, and un-
folding MFPTs much slower than their corresponding folding
MFPT. This represents overstabilization of the native state at
the experimental melting temperature. Such a phenomenon is
a common limitation of protein force fields (31, 32).

We expect that melting behavior would be achieved for the
CHARMM22* and AMBER ff99SB-ILDN models at temper-
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atures higher than the experimental melting temperature.∗
Our comparison of the dynamics at the experimental melt-
ing temperature shows the discrepancies of the CHARMM22*
and AMBER ff99SB-ILDN dynamics with experiment at the
same temperature. Since the CHARMM22* and AMBER
ff99SB-ILDN models do not show melting, these models differ
considerably in the structure of the denatured state ensem-
ble. At 340 K, the AMBER ff99SB-ILDN and AMBER-FB15
models populate both an extended denatured state as well as
a compact denatured state. This compact denatured state de-
scribes a hydrophobically collapsed structure. In contrast, the
CHARMM22* model populates only the denatured extended
state. Detailed analysis of these states can be found in the
following sections.

Mechanism of beta-hairpin formation. The theory of beta-
hairpin formation has converged on two leading mechanisms
that were developed to explain the folding of the C-terminal
fragment of Protein G (residues GLY-41 to GLU-56). The
first, suggested by (9, 33) to explain relaxation kinetics ob-
served from T-jump experiments, proposes that the hairpin
turn forms first from the extended state. The beta-sheet then
“zips” from the turn to the terminus via the formation of a
series of cross-strand hydrogen bonds; in so doing, the struc-
ture becomes collapsed. The second mechanism, formulated
by (10) and by (11), proposes that hydrophobic collapse occurs
first and the turn is formed from the collapsed structure. The
mechanism of (10) includes the same “zipping” of hydrogen
bonds from the turn to the terminus, whereas the mechanism
of (11) proposes formation of hydrogen bonds starting near the
middle of the beta sheets and propagating outward in both
directions. Many subsequent studies of this fragment also
produced irreconcilable results (see, e.g., works cited in (34)
and (35)).

Fig. 2. Subprocess-specific features are used to monitor the CLN025 folding mecha-
nism. Hydrogen bonds of the native state turn, for which distances were calculated,
are shown in purple. Hydrophobic residues, for which the radii of gyration were mea-
sured, are highlighted in dark gray. Distances of the native state beta sheet hydrogen
bonds are also highlighted in dark gray.

Upon the design of CLN025 and its predecessor chigno-
lin (36), these 10-residue systems were used to study beta-
hairpin formation and continued to produce contradictory re-
sults (35, 37). In 2012, (8) used T-jump experiments combined

∗The folding temperature for CLN025 with CHARMM22* is reported to be 370 K (22). The analysis
of CLN025 for the AMBER ff99SB-ILDN with the TIP3P water model in (4) shows that about 85% of
CLN025 is folded at 370 K; thus the folding temperature for this force field is expected to be higher.

with infrared and fluorescence spectroscopy to empirically mea-
sure the relaxation kinetics of the turn and terminal regions
of CLN025. It was found that above 308 K, folding cannot be
described using a two-state model. Above this temperature,
(8) showed that the turn, beta sheet, and hydrophobic collapse
processes occur on significantly different timescales, with a
faster rate observed for beta sheet and hydrophobic cluster
formation. Additionally, as temperature increases toward the
melting temperature, the timescale separation increases. These
results suggest a mechanism in which interactions of the ter-
minal hydrophobic residues first cause the extended structure
to collapse into a native-like topology, after which small local
rearrangements occur, forming the turn and the remaining
native state contacts. While this experimental characteriza-
tion describes the ordering of major conformational changes,
it does not resolve the relative order of specific hydrogen bond
formation in the beta sheet.

We analyzed the sequence of events in our simulation
datasets by using the models created above. To assess whether
the turn had formed, we tracked the existence of three hydro-
gen bonds characterizing the turn (purple distances, Fig. 2).
To determine whether the structure had collapsed, we used
a binary metric based on the radii of gyration of the two
hydrophobic terminal residues (TYR-1 and TYR-10; dark
gray residues, Fig. 2).† Finally, to monitor the completion
of beta sheet formation, the three terminal hydrogen bonds
were monitored (dark gray distances, Fig. 2). We elaborate
on these feature sets in the SI.

Fig. 3 shows a representative trajectory for each of the
three MD datasets. First, it is interesting to note that in the
CHARMM22* dataset, folding occurs as a concerted mecha-
nism: the protein is either denatured extended or folded, and
the turn formation and collapse occur simultaneously and
quickly from the extended state. The model of CHARMM22*
at this temperature does not resolve the mechanism enough
to compare or contrast it with the existing theories of beta-
hairpin formation. In the AMBER datasets, however, the turn
and hydrophobic collapse occur gradually with instances of
collapse (formation of hydrophobically collapsed structures)
preceding the completed turn. Furthermore, in the AMBER
trajectories the hydrogen bonds at the terminus form after
the hydrogen bonds at the turn, providing evidence for the
hydrogen bond “zipping” process proposed by (9, 33) and
corroborated by (10). Visualization of additional pathways for
each force field are provided in the SI, and an example movie
for each force field is provided as a supplementary file.

Rate-determining process. The original beta-hairpin forma-
tion theories also disagree on the rate-limiting step of the fold-
ing process. (9, 33) hypothesized that the formation of the turn
from the extended state determined the rate of beta-hairpin
formation. (10) agreed that the first step of the mechanism
determined the rate, but in their mechanism the hydropho-
bic collapse preceded the turn and thus the collapse from
the extended state characterized the rate-limiting step. The
mechanism of (11) identifies the rate-limiting step as the inter-
conversion between collapsed conformations; i.e. the formation
of the turn and native hydrogen bonds from a compact state.

†The hydrophobic collapse metric follows from the first tICA solution (i.e. the slowest process found)
when only the radii of gyration of the two hydrophobic terminal residues are input into the tICA
model. This is the same feature set used for the analysis of the hydrophobic collapse process in
the context of the rate-determining step.
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Fig. 3. Representative folding trajectories reveal the mechanism of CLN025 folding. Each row represents a single trajectory that starts in an extended state and ends in the
folded state. The left column shows the folding reaction coordinate (see Fig. 1), where low y-axis values correspond to the folded state. In the center and right columns, the
formation of the three hydrogen bonds characterizing turn formation are shown in purple, where high values on the y-axis indicate the turn is formed. In the center panel, dark
gray shading is used to show when the structure is collapsed. In the right panel, the formation of the three terminal hydrogen bonds is shown in dark gray, where high y values
indicate that all three bonds are formed. In the CHARMM22* model, the collapse and formation of both turn and terminal hydrogen bonds occur nearly simultaneously. In the
AMBER models, the appearance of collapsed structure precede the turn, and the turn hydrogen bonds form before the terminal hydrogen bonds.

Expt. 100 200 300 400
Hydrophobic collapse timescale (ns)

AMBER-FB15 AMBER ff99SB-ILDN CHARMM22*

100 Expt. 200 300 400
Turn formation timescale (ns)

AMBER-FB15 AMBER ff99SB-ILDN CHARMM22*

Fig. 4. Isolating the processes involved in CLN025 folding reveals differences in
their timescales and kinetics. The timescale plots show that all models calculate the
turn formation to occur on a slower timescale than the hydrophobic collapse. The
experimental values from (8) are represented by the gray shading. The reaction
coordinate free energy plots above the timescale plots show that for all models
hydrophobic collapse occurs downhill while turn formation occurs over a barrier.
The rate-limiting step is the slower formation of the turn from the collapsed state.
The ruggedness of the hydrophobic collapse landscapes indicates the existence of
collapsed conformations in the denatured ensemble. Uncertainty in MSM timescale
and experimental values are indicated by the thickness of the line. Shading represents
the range of free energies based on 100 bootstrapped samples between the 5th and
95th percentiles.

In order to analyze the separate processes involved in beta-
hairpin formation in our datasets, we constructed MSMs over
two specific feature sets designed to characterize either hy-
drophobic collapse or turn formation. These sparse feature
sets isolate the process of interest so that structures in the
MD dataset are differentiated only by characteristics relevant
to the appropriate process. Because the MSM timescales de-
scribe the timescales of conformational change, the longest
timescale of each MSM corresponds to the relaxation time of
each process of interest (19, 38–40). These values can be di-
rectly compared with process-specific experimental relaxation
timescales (8). In order to estimate the rate of hydrophobic
collapse, the features selected were the radius of gyration of
the two terminal hydrophobic residues (TYR-1 and TYR-10).
To estimate the rate of turn formation, we calculated distances
between the hydrogen bonded contacts in the turn region of

the CLN025 crystal structure depicted in Fig. 2. The dihe-
dral angles associated with these hydrogen bonds were also
included, since it has been shown that only certain turn dihe-
drals can lead to the correct secondary structure (41). We then
constructed an optimized MSM for each feature set (see the
SI for feature descriptions, optimization protocol, and model
validation). The per-model reaction coordinate and slowest
relaxation timescale for these two processes are depicted in
Fig. 4.

First, we note that the relative ordering of timescales agrees
with the experiments of (8). For all force field datasets, we
observe a separation between the timescales corresponding to
slower turn formation and faster hydrophobic collapse. Next,
we note that the reaction coordinates corresponding to the
hydrophobic collapse describe downhill pathways. In contrast,
the reaction coordinates corresponding to turn formation fea-
ture a barrier between the turned and not turned conforma-
tions. From the relative ordering of timescales and the shape
of the collapse and turn pathways, we agree with the conclu-
sions of (8) and find that the rate-determining process for
beta-hairpin formation is the formation of the turn from a
pre-collapsed structure. This is also consistent with the rate-
limiting step for beta-hairpin folding proposed by (11) and
supported by the experiments of (8).

Discussion

In summary, our aggregated MD analysis suggests a beta-
hairpin folding mechanism in which the extended state col-
lapses into a hydrophobic cluster, followed by a slower process
in which the hairpin turn forms over a barrier within the
denatured collapsed state. The order of these conformational
changes agree with the experimental conclusions reported by
(8) for CLN025. Additionally, the resolution of MD simulations
has allowed us to also model the formation of specific native
state hydrogen bonds. We observe that the hydrogen bonds
are formed by a “zipping” mechanism from the turn toward
the terminus. Our findings demonstrate mixed agreement
with the early theories of beta-hairpin formation; namely, our
results support the “turn zipper” process of hydrogen bond
formation (9, 33), the collapse-then-turn mechanism (10), and
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the rate-determining process comprising rearrangement within
a collapsed state (11).

Performing this analysis simultaneously with datasets built
from three different protein/water force field combinations
demonstrates the force field dependence of CLN025 simu-
lations at the experimental melting temperature. We find
that simulations performed with CHARMM22* and AMBER
ff99SB-ILDN yield an overstabilized native state and unequal
folding and unfolding rates, which indicates that a higher
simulation temperature would be necessary to obtain melt-
ing behavior. In contrast, AMBER-FB15 simulations show
behavior consistent with melting. Furthermore, while the
folding mechanism can be determined using either AMBER
dataset, the CHARMM22* dataset does not contain a compact
denatured state at the simulated temperature, nor does it re-
solve the ordering of hydrogen bond formation via the “zipper”
mechanism. We recommend that modelers who wish to use
MD simulation to interrogate the denatured state ensemble
of a protein and/or its role in the protein folding process
choose a force field that accurately represents denatured state
properties at the temperature of interest, and highlight that
the AMBER-FB15 model yields behavior consistent with ex-
periment at the simulated temperature. We anticipate that
protein force fields that are accurate beyond the native state
and sensitive to temperature dependence will enable further
insight into more complex protein systems.

Materials and Methods

Complete descriptions of all methods used in this work are available
in the SI.

Simulations and MSMs. The SI describes preparation of AMBER
simulations for the ff99SB-ILDN and FB15 parameter sets and
provides the script used to generate initial states. All parameters of
the MSMs created are enumerated in the SI along with descriptions
of the analyses presented in the main text.

Data. MSM objects compatible with the MSMBuilder software have
been provided for all MSMs discussed in the main text. Details of
these files and instructions for loading them can be found in the SI.

Movies. Example movies for CLN025 folding in each force field are
provided as supplementary files.

Software. Free, open source software implementing the meth-
ods used in this work is available in the OpenMM (42),
MDTraj (43), MSMBuilder (44), and Osprey (45) pack-
ages available from http://openmm.org, http://mdtraj.org, and
http://msmbuilder.org.
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