

Methodology Article

KmerFinderJS: A client-server method for fast
species typing of bacteria over slow Internet
connections.
Jose Luis Bellod Cineros1,*, Ole Lund1
1Department of Bio and Health Informatics, Technical University of Denmark, Kemitorvet Building 208, 2800
Kgs. Lyngby, Denmark

*To whom correspondence should be addressed.

Abstract
Motivation: KmerFinder is a program based on K-mer statistics for identifying bacterial species in
whole genome data, that as a web server that have been used more than 10.000 times. Kmer-
FinderJS is a development of the KmerFinder that benefits from the downsampling of data using a
prefix filtering used by KmerFinder, to minimize amount of data that needs to be transferred between
the client and the server.
Results: KmerFinderJS replaces the python based hash structure for holding the databases with a
true Key-value database. These improvements are shown to lead to a many-fold speed up of species
identification with the internet transfer speeds that are realistic to expect today. It is also shown that
the method can find the true content of an artificial metagenomic cocktail with no false positives.
Availability: The method is freely available at https://cge.cbs.dtu.dk/services/KmerFinderJS/ and as a
source code at https://bitbucket.org/genomicepidemiology/kmerfinderjs

Contact: cisneros@cbs.dtu.dk
Supplementary information: Supplementary data are available at biorxiv online.

1 Introduction
KmerFinder (Larsen, Mette V., et al. (2014)) is a method developed

for prediction of bacterial species. The method is based on the sharing of
a high number of sequence fragments between an input query file with
an unidentified species and a reference database. The fragments result
from the split of the sequence into substrings of fixed length (K-mer of
length 16). The sequence with the highest numbers of K-mers shared
with the sequence query will be the predicted species. To reduce data-
base size and search time only K-mers that start with a given prefix are

used in the comparisons. The standard prefix used for bacterial identifi-
cation is the 5mer “ATGAC”. A so called winner-takes-all option
(Hasman, H, et al. (2013)), is implemented that iteratively finds the hits
by in each round only keeping the top hit and removing all K-mers found
in that hit from the dataset before the next search.

A major bottleneck for the speed of KmerFinder is that the input data
is typically 200mb, and the databases in the order of 1Gb. Transfer of the
smaller of the databases over a typical internet connection will take ~12
minutes (with a speed of 1Gb/h connection) which then becomes a lower

bound for the runtime of the program. This is an example of the I/O
bottleneck, which is one of the biggest problems in the Big Data ecosys-
tem where huge databases need to get closer to the computing resources.
Several new methods like, faster network connections, data-compressing
algorithms, parallel computing, new data representations and data
streaming have been considered for solving this problem (Stephens, Z. et

al. (2015)) In the work of (Gautier, L. and Lund, O. (2013)) only K-mers
from a random selection of reads were sent to the server which had a
very large database containing gen-bank and all available completed
genomes. Another approach was pursued by (Saputra, D. et al. (2015))
which constructed a small database (~5mb) of informative 50mers form

16s sequences, which could be send to the client where it was matched
against the input data. Here we present a new implementation of
KmerFinder. Several key features have been developed: a complete new
JavaScript implementation, client-server architecture and centralized
database. We take advantage of that the 5mer prefix downsamples the
data 45=1024 times, and if this downsampling is done on the client side it
drastically reduces the amount of data that needs to be send to the server,
and thereby the transfer time to seconds.

2 Methods
KmerFinder (Larsen, M. et al. (2014)) is a species prediction algorithm
based on the number of shared K-mers (16-mers) between a sequence
file and a reference database. It was first implemented as a Python pro-
gram and later expanded with a scoring-scheme called winner-takes-all
(Hasman, H, et al. (2013)). In this new implementation, the scoring

algorithm is split into two parts, client and server and executed in a web
environment accessible via a web browser.
The algorithm consists on the following steps: first the extraction of the
overlapping 16-K-mers from the sequence file, second the comparison of
the query set of K-mers with the reference database of sequences and

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 2, 2017. ; https://doi.org/10.1101/145284doi: bioRxiv preprint

https://doi.org/10.1101/145284
http://creativecommons.org/licenses/by/4.0/

K.Takahashi et al.

third, the process of finding matches (i.e. candidate templates for the
input file) from the reduced database sent to the client. KmerFinderJS
starts the execution on the client; the user accesses the file-browsing
interface of his operative system either by drag and drop on the web-
interface or by clicking on it. Once the sequence file are added, the pro-

gram will immediately start extracting overlapping 16-mers and storing
them in a JavaScript object with the key being the 16-mer and the value
the number of times the K-mer was seen in the file.
After parsing the file, the object is sent to the server using a GET HTTP
request. The server receives the object and extracts all keys, querying
the database for each K-mer and finds all templates that belong to that
query. This will create a reduced version of the database that contains
only the K-mers present in the query and its associated templates.
The reduced database is sent back to the browser where it is sorted in

decreasing order based on the number of K-mers that each template has.
The first template according to this sorting scheme will be the candidate
that the algorithm chooses as the possible species for the input file. Next
the K-mers associated to this template will be removed from the input
object to speed up the search (this template will not appear in further
iterations since the input object doesn’t share any K-mers with it). The
reduced database containing the templates from the first round is saved
for later comparison. This continues in an iterative fashion where all K-
mers from the input query will be compared with the K-mers in the ini-

tial reduced database creating a new template database which is sorted in
decreasing order based on the number of shared K-mers. The first tem-
plate is then considered the second candidate for a match. This process
will be repeated until 100 templates have been found or the next template
found has a p-value above 0.05. The above algorithm for finding the next
best hits is called the “Winner-takes-all” approach. (See Supp. materials
Figures 1 and 2)

3 System Design
The new implementation is entirely made in JavaScript using the
EcmaScript 6 standard (ES6) in a NodeJS environment. The code was
tested first in the server without relying on any web browser. Only recent
versions of major Browsers support ES6 (http://www.ecma-
international.org/ecma-262/6.0/) so a two-step transpiling process was
used, first to produce ES5 code from ES6 using a tool called Babel

(https://babeljs.io) and then converting the code developed on the server
to a compatible browser-version using Browserify (http://browserify.org)
The python implementation of KmerFinder uses a python dictionary
stored in a pickle file to load the reference database each time the pro-
gram is executed, increasing the running time and has the potential prob-
lem of overloading the main memory of the server. KmerFinderJS uses
Redis (https://redis.io), a centralised in-memory database, to store the
reference database. Redis stores data in key-value pairs. Keys are identi-
fied as string, and values can be Lists, Sets or Hashes of Strings, among

others. For our database of sequencing files we store the unique K-mers
as keys and the value for each of K-mer is a list of strings that encode
individual templates.

4 Results
To benchmark KmerFinderJS with the implementation in python, a

dataset of 207 reads from the NCBI archive was used to time the total
time of execution, the time to extract the overlapping K-mers and the
time to query the database. This is the same dataset used in (Thomsen,
M. et al. (2016)) to benchmark the MLST method. KmerFinderJS was
ran as command-line program to compare with the running time of the

KmerFinder in python script, both running on a MacBook Pro 2.2 GHz
Intel Core i7, and the time of sending data over the network was added to
the total time based on different speed connections. The average time for
all files was calculated to compare the two methods. The main bottleneck
of the method is the extraction of the K-mers due to the fact that we need

to parse the whole file sequentially. Both KmerFinderJS and KmerFinder
showed similar running times, with KmerFinderJS being faster overall
except on the winner-takes-all step. It should also be noted that Redis ran
in a Docker container so a native installation could perform better. The
impact of avoiding sending the whole file to the server clearly lowers the
running time of the method. KmerFinder needs to send the whole file
over the network, which for the fastest Internet connection is around
20% slower than KmerFinderJS, taking around 1 minute. (See Supp.
materials S1 figures 3 to 6). A real test running KmerFinderJS on the

browser was performed in Moshi, Tanzania, at the Kilimanjaro Christian
Medical College using a 3G mobile phone connection. For this test a
metagenomic sample was used (Peabody, M. (2015)). The first step of
extracting the overlapping K-mers took 26.4 seconds. Sending the K-
mers and receiving the reduced database took 1.6 minutes and finding
matches on the reduced database took 16.9 seconds KmerFinderJS clear-
ly benefits from only sending the overlapping K-mers and the reduced
database and the total time remains almost constant for all speed connec-
tions. (See Supp. materials figures 7 and 8).

Conflict of Interest: none declared.

References
Gautier, L. and Lund, O. (2013), "Low-bandwidth and non-compute intensive

remote identification of microbes from raw sequencing reads." PloS one vol. 8,
no 12, p. e83784.

Hasman, H, et al. (2013), "Rapid whole genome sequencing for the detection and
characterization of microorganisms directly from clinical samples." Journal of
clinical microbiology, p. JCM. 02452-13.

Larsen, M. et al. (2014), "Benchmarking of methods for genomic taxonomy."
Journal of clinical microbiology, vol. 52, no 5, p. 1529-1539.

Peabody, M. (2015) et al. Evaluation of shotgun metagenomics sequence classifica-
tion methods using in silico and in vitro simulated communities. BMC bioin-
formatics, vol. 16, no 1, p. 1.

Saputra, D. et al. (2015), "Reads2Type: a web application for rapid microbial
taxonomy identification." BMC bioinformatics vol. 16, no 1, p. 1.

Stephens, Z. et al. (2015): "Big data: astronomical or genomical?." PLoS Biol, vol.
13, no 7, p. e1002195.

Thomsen, M. et al. (2016): "A Bacterial Analysis Platform: An Integrated System
for Analysing Bacterial Whole Genome Sequencing Data for Clinical Diagnos-
tics and Surveillance." PloS one, vol. 11, no 6, p. e0157718.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 2, 2017. ; https://doi.org/10.1101/145284doi: bioRxiv preprint

https://doi.org/10.1101/145284
http://creativecommons.org/licenses/by/4.0/

