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Summary

Mitochondrial DNA (mtDNA) copy numbers fluctuate
over time due to stochastic cellular dynamics. Under-
standing mtDNA dynamics and the accumulation of mu-
tations is vital for understanding mitochondrial-related
diseases. Here, we use stochastic modelling to derive gen-
eral results for the impact of cellular control on mtDNA
populations, the cost to the cell of different mtDNA
states, and the optimisation of therapeutic control of
mtDNA populations. We provide theoretical evidence
that an increasing mtDNA variance can increase the en-
ergetic cost of maintaining a tissue, that intermediate
levels of heteroplasmy can be more detrimental than ho-
moplasmy even for a dysfunctional mutant, that het-
eroplasmy distribution (not mean alone) is crucial for
the success of gene therapies, and that long-term rather
than short intense gene therapies are more likely to ben-
eficially impact mtDNA populations. New experiments
validate our predictions on heteroplasmy dependence of
therapeutic outcomes.

1 Introduction

Most human cells contain 100-10,000 copies of mitochon-
drial DNA (mtDNA) which are situated inside the mi-
tochondria. The proteins encoded by mtDNA are cru-
cial for mitochondrial functionality, and mutations in
mtDNA can cause devastating diseases [1, 2, 3, 4, 5,
6]. Heteroplasmy, the proportion of mutant mtDNA
molecules in a cell, has to pass a certain threshold (typi-
cally 60-95%) before any biochemical defects can be ob-
served [7, 8, 9, 10, 11, 12, 13]. Evidence that mild mu-
tations, that are not obviously pathological, can have
physiological effects is also appearing [14]. The existence
of thresholds at which mutant loads begin to have an
effect has profound implications for our understanding
of disease onset, drawing attention to the variance dy-
namics of the mutant fraction in cellular populations. As
this variance increases more cells can be above threshold,

and thus show pathology, even if average mutant load is
unchanged.

How cellular population fractions of mutant mtDNA
change over time is not well understood. The cell ex-
erts control on mitochondrial populations in response
to changes in mtDNA copy numbers [15, 16]. Mito-
chondrial biogenesis and maintenance require cellular re-
sources, and mitochondria are key sources of ATP and
play other important metabolic roles: a tradeoff of bioen-
ergetic costs and benefits is thus involved in the interac-
tion between the cell and its mitochondria. The partic-
ular ‘effective cost’ that cellular control acts to minimise
remains poorly understood: for example, both decreases
[17] and increases [17, 18] in wildtype copy numbers have
been observed for different mutations as the mutant load
increases. Some studies suggest that mtDNA density is
controlled [19, 20, 21], others that total mtDNA mass
[22, 23], or mtDNA transcription rate [24] is controlled.
Understanding the dynamics of mtDNA populations in-
side cells, and how these populations react to clinical in-
terventions, is crucial in understanding genetic diseases
[25, 26]. However, experimental tracking of mtDNA pop-
ulations over time is challenging, necessitating predictive
mathematical modelling to provide a quantitative under-
standing of these systems.

In parallel with efforts to elucidate cell physiological
control, protein engineering methods to control mtDNA
heteroplasmy are making fast progress. Two recently
developed methods for cleaving DNA at specific sites
involve zinc finger nucleases (ZFNs) and Transcription
Activator-like Effector Nucleases (TALENs) [27, 28, 29,
30, 31, 32, 33], which have been re-engineered to specif-
ically cleave mutant mtDNA [34, 35, 36, 37, 38]. Mito-
TALENs have been successfully used to reduce mutant
loads in cells containing disease-related mutations, but
elimination of the target mutant mtDNA was not com-
plete [39, 34]. Similarly, treating cells multiple times
with mtZFNs led to near-complete elimination of mutant
mtDNAs [37, 38]. Quantitative theory for these promis-
ing therapeutic technologies has not yet been developed,
leaving open questions about how these tools can be op-
timally deployed.

In this paper, we develop theory from bottom-up
bioenergetic principles which allows us to study the ef-
fects of distinct cellular mtDNA control strategies (Sec-
tion 2.1), to analyse the bioenergetic cost of different
mtDNA states (Section 2.2), and to combine mtDNA
control and energy-based cost (Section 2.3.1) to identify
optimal control strategies for the cell. Finally, we con-
struct a model for artificial mtDNA control using recent
experimental data [38] to propose optimised treatment
strategies while highlighting challenges linked to hetero-
plasmy variance (Section 2.3.2).
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Key results presented in this paper.

I If only one mtDNA species is controlled the variance of the controlled species reaches a constant value. When both
species are controlled with equal strength their variances increase at identical rates, and, in general, the more tightly
controlled species has a more slowly increasing variance (Figure 1, Section 2.1).

II The mean energetic cost of maintaining a tissue can increase over time due to the nonlinear influence of mtDNA
variance, even if the energetic demand on the tissue stays the same and mean levels of mtDNA are constant (Section
3, Eq. 3).

III A control lacking any mutant contribution shows an exponentially increasing cost, and the effects of particular
cellular control strategies are more pronounced in low copy number cells (Section 2.3.1, Figure 3A, B).

IV Control strategies based on the energy status of the cell will often outperform control based on mtDNA copy number
or sensing mtDNA mass (which would work well for deficient deletion mutants, but would be suboptimal for deficient
point mutations) (Section 2.3.1, Figure 3C).

V Even for pathological mutants, reduction of mutant mtDNA alone is not always the optimal control strategy for a
cell to adopt (Section 2.3.1, Figure 4).

VI Tissues with high mean heteroplasmy levels will generally be harder to treat with mitochondrially targeted endonu-
cleases if the heteroplasmy variance is high, especially if this high mean level is caused by a small percentage of cells
(Section 2.3.2, Figure 5D).

VII Weak long-term rather than short intense endonuclease treatments are more likely to beneficially impact mtDNA
populations (Section 2.3.2, Figure 5G, H).

Table 1: Here we present key results of the paper, which hold under the assumptions used in our models. We model mtDNA dynamics
using stochastic birth-death simulations and assume: cells are heteroplasmic (containing both wildtype and mutant mtDNA molecules);
birth and death rates are identical for wildtype and mutant species; the mtDNA dynamics are subject to cellular feedback control. We
introduce a mitochondrial energy-based cost function; results referring to optimal controls and costs depend on the structure of this
cost function which is discussed in Section 3 and Section S4.

2 Results

2.1 Control: general insights on the role
of feedback control

We employ the ‘relaxed replication’ model for heteroplas-
mic mtDNA populations (populations in which wildtype
(w) and mutant (m) mtDNA molecules co-exist). Each
mtDNA molecule replicates and degrades according to
Poisson processes with rates λ and µ respectively [40, 41].
Because control of biogenesis or autophagy yield similar
behaviours [42], we assume that the degradation rate µ
is constant and that feedback control is manifest through
replication rate (λ = λ(w,m)). To connect with experi-
ments, we use µ ≈ 0.07 day−1 corresponding to a half-life
of about 10 days [43]. We consider the case where no se-
lective difference exists between mtDNA types, although
our theory is readily generalised to include such differ-
ences.

A wide range of control strategies induces sim-
ilar mtDNA behaviour and admits quantitative
analysis.

Whatever the quantity being controlled, in healthy
cells the intuitive aim of homeostatic mtDNA control
is to guarantee cell functionality by keeping the wild-
type number around a particular value and within cer-
tain bounds. Many possible control strategies can be
parameterised to give rise to a specific wildtype distri-
bution; also when mutants are present the means and
variances of wildtype, mutant and heteroplasmy can be
nearly identical for these differing strategies up to long
times (∼ 80 years) (Figure 1A,B,C, Figure S1B,C,D). It
is not the manner in which the controlled quantity is be-
ing controlled, but which quantity is controlled that is

the most important (Figure 1D).
We stress the difference between two types of

average heteroplasmy (as was also mentioned in
[41]): the individual cellular mean heteroplasmy

1
ncells

∑
cells i

mi

mi+wi
and the tissue homogenate hetero-

plasmy (
∑

cells i

mi)/(
∑

cells i

(mi + wi)). The difference be-

tween individual and homogenate means is clearly seen
in Figure 1C. A tissue can thus appear, when studying
the homogenate heteroplasmy, to show selection for one
type of mtDNA over another, whereas in fact mean cellu-
lar heteroplasmy is unaltered and both mutant and wild
types have the same proliferation rates.

From here on we focus on a linear feedback con-
trol of the form λ(w,m) = c0 − c1(w + δm), with
c0 > 0, c1 > 0 and δ, corresponding to the strength of
sensing of mutant mtDNA, constants. The determinis-
tic steady states of this system, (wss,mss) are given by
(wss + δmss) = c0−µ

c1
, with µ the constant degradation

rate. This line of constant (wss + δmss) forms a straight
line in (w,m) space and stochastic dynamics will fluctu-
ate around these steady state lines, with corresponding
changes in heteroplasmy (Figure S1A). The parameter c1
determines the control strength and δ allows for distinct
control strengths for wildtypes and mutants.

Variance behaviour over time in mtDNA pop-
ulations. Van Kampen’s system size expansion can
be used to predict mtDNA variance (Table 1E), showing
good agreement with stochastic simulations up to hun-
dreds of days [42]. Applying this approximation to a
general form of mtDNA control, we here find that i) if
only one species is controlled, the variance of the con-
trolled species reaches a constant value (see also [42]),
ii) when both species are controlled with equal strength
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Figure 1: A) - C) A wide range of cellular control strategies can yield similar dynamics. Stochastic simulations were
used to compare three structurally distinct cellular controls (see legend), each reflecting a different function of the underlying sensed
quantity w + δm with δ = 0.5. All controls are set to have the same wildtype mean and variance in the absence of mutants (Section
S2). No marked difference in mean and variance behaviours of wildtype, mutant, and heteroplasmy were seen in simulations up to ∼ 80
years (see also Section S2). Figure (C) illustrates the difference between cellular mean heteroplasmy ∼

∑
i hi, which remains constant,

and tissue homogenate heteroplasmy 〈m〉/(〈m〉 + 〈w〉), which increases over time (if δ > 1 it would decrease over time). D) Control
tradeoffs are required when multiple species are present. The more strongly one species is controlled, the more control is lost
over the other. Changes in variances as described by the Linear Noise Approximation (see Section S1) are shown (intermediate times).
For long times, extinction of one of the species is likely and the variance of the surviving species saturates. For the control λ(w,m) we
have depicted the case in which mutants contribute less to the control than wildtypes. E) Analytical expressions for the means
and variances according to the Linear Noise Approximation. Solutions are shown for wildtype, mutant, and heteroplasmy
variances for various types of control. Dots indicate constant or exponentially decaying terms; full solutions are given in Section S1.
Note that the initial rate of increase of heteroplasmy variance does not depend on the control specifics, but only on mtDNA copy number
and turnover (see also [42]).
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their variances increase at identical rates, iii) in general
the more tightly controlled species has a more slowly in-
creasing variance, and iv) the rate of increase of hetero-
plasmy variance depends, to first order, only on mtDNA
copy number and turnover (as found in [42]). (Figure 1,
Table 1(I)).

If a given mtDNA state (w,m) accrues a cost C(w,m)
to the cell (this could be an energetic cost or some other
metric of tissue burden), increasing variances in w and
m can lead to the mean cost 〈C(w,m)〉 changing even
when mean cellular copy numbers 〈w〉, 〈m〉 remain con-
stant (Methods), as the mean of a nonlinear function of
random variables is not generally equal to the function of
the mean of those variables (as seen above with cellular
vs homogenate heteroplasmy). The mean cost of main-
taining a tissue may thus increase over time, even if the
tissue demands stay the same and mean levels of mtDNA
are constant (Table 1(II)). However, these increases may
be small and whether they are significant depends on the
details of the cost function: hence the need to consider
the explicit forms in the next section.

2.2 Cost: an effective mitochondrial
energy-based cost function

Here, we attempt to build a cost function that assigns a
cost to a given mtDNA state (w,m) and allows a general
quantitative investigation of the tradeoffs in maintaining
cellular mtDNA populations. The ‘true’ energy budget
of a cell with a given mitochondrial population is highly
complex, involving many different metabolic processes in
which mitochondria are involved [44, 45, 46]. We provide
a simpler description, focussing on ATP production as
a central mitochondrial function, and removing kinetic
details in favour of a coarse-grained representation, to
provide qualitative rather than quantitative results and
provide descriptions of its connection to biological ob-
servables (Methods and Section S4).

General cost function structure. Three important
terms involved in the energy status of a cell are: i) the
energy demand D, ii) the net energy supply S, and iii)
the efficiency with which the energy is supplied. Here we
define efficiency as the amount of energy that is produced
per unit of resource consumed. For this study, we focus
on mitochondria as the central bioenergetic actors in the
cell, with wildtype and mutant mitochondria consuming
resource and producing energy currency.

We express our effective cost function as:

C(w,m) = |D − S(w,m)|+ α(wrw +mrm) (1)

where α is a constant, and ri gives the rate of resource
consumption of a mitochondrion of type i (w or m). The
second term assigns a cost to the usage of resource. The
terms in this cost function are expressed as rates: S and
D then correspond to energy production (supply) and
demand per unit time. This cost function assigns the
lowest cost to a state that satisfies demand in the most

efficient way, and both an excess or deficit of supply are
penalized.

Energy production, S(w,m), is modelled as

S(w,m) = w
(
sw(rw)− ρ1

)
+m

(
ε2sw(ε1rw)− ρ1

)
− (w +m)

( ρ2λ

24 · 3600
+

ρ3µ

24 · 3600

)
(2)

where ρ1,2,3 are mitochondrial maintenance, building,
and degradation costs, sw(rw) denotes the energy pro-
duction rate (per second) for a single wildtype mitochon-
drion given a resource consumption rate rw (Methods,
Section S4), and λ and µ denote the birth and death
rates in units day−1. Mutant mtDNA molecules are dis-
tinguished by the parameters ε1, ε2 ∈ [0, 1] describing the
mutant resource uptake rate (ε1) and efficiency (ε2) rel-
ative to that of the wildtypes. The lower the value of ε1,
the lower the mutant energy output as a consequence of
less resource consumption.

Despite the coarse-grained effective nature of our cost
function, plausible parameterisations can be estimated
(Table S1); further details on the choice of parameter
values, and their biochemical interpretations are given
in Section S4. We consider two different types of cost
function (Methods, Section S4): the relationship between
the mitochondrial resource consumption rate and energy
production rate is assumed to be i) linear, or ii) satu-
rating. The different systems will be referred to as ‘the
linear output model’ or ‘the saturating output model’.
The saturating output model assumes that mitochondria
eventually become less efficient as the flow through their
respiratory chain increases. For both these models we
use two different cost function parameterisations: one
for high and one for low copy number cells.

One particular parameter we will use throughout this
paper is wopt, the optimal (i.e. cheapest) number of wild-
type mtDNA molecules in the absence of mutants. Each
of our four different systems (saturating and linear, for
low or high copy numbers) has its own value for wopt
(Table S1).

Intermediate heteroplasmies may be inefficient
and resource availability can dictate the cost of
mtDNA states. Figure 2 shows the value of the cost
function in (w,m) space, for different mutant patholo-
gies (different values of ε1). Interestingly, it is possible
to satisfy demand with only wildtype or only mutant
mtDNAs, but not at certain intermediate heteroplasmies.
This counter-intuitive result aligns with arguments that
mixed mtDNA populations are disfavoured [14] and can
be energetically explained as below (referring to Figure
2B).

Increasing heteroplasmy while keeping total copy num-
ber constant can be interpreted as replacing a wildtype
mitochondrion with a mutant, leading to a tradeoff. The
changed mitochondrion (from wildtype to mutant) pro-
duces less energy than before; all other mitochondria
need to consume more resource to maintain a constant
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total output, and so become less efficient due to output
saturation. However, the changed mitochondrion itself
has become more efficient because of its lower resource
consumption rate. The tradeoff between these two fac-
tors depends on h itself; a more detailed discussion is
given in Section S5. The result is that intermediate het-
eroplasmies are the least efficient and the most expensive
(Figure 2 and S3). We note that this is only the case if
i) at high respiration rates, energy production becomes
less efficient, and ii) mutants consume less resource than
wildtypes (perhaps through ETC deficiency), effectively
making them more efficient than wildtypes (due to out-
put saturation). A model in which mitochondrial output
always increases linearly with resource consumption does
not show this behaviour (Figure 2C).

2.3 Combining cost and control: com-
parison and optimisation of both cel-
lular control and treatment strate-
gies

2.3.1 Timescales and energy sensing in optimal
control of mtDNA populations.

Here we compare the mean cost over time of four dif-
ferent plausible cellular control strategies. The first two
consist of the linear feedback control discussed earlier
(λ(w,m) = c0 − c1(w + δm)) with i) δ = 0 (only wild-
types are sensed) and ii) δ = 1 (total mtDNA copy num-
ber is controlled without differentiating between mutant
and wildtype). We also consider control strategies for the
cell that are optimised under our imposed cost function.
We identify the optimal parameterisations that minimise
steady-state cost for (iii) a linear feedback control and
(iv) the relaxed replication model [40, 41].

To optimise a control, both an optimization time-scale
T and a set of initial conditions are required. Here we use
T = ∞, corresponding to the steady state limit, and a
set of initial conditions with heteroplasmies in the range
h0 ∈ [0, 0.2]; we later consider finite values of T . We as-
sume that in the absence of mutant mtDNA, each strat-
egy is optimised and all have equal wildtype means and
variances (Section S6); we compare the changes in dy-
namics induced by the presence of mutants.

Figure 3 shows the mean cost up to ∼ 80 years result-
ing from stochastic simulations; cost variance, as well
as mutant and wildtype dynamics were also computed
(Figure S4). The relaxed replication rate control and
the linear control λ(w,m) = c0 − c1(w + δm) behave
very similarly when δ and γ take their optimal values.
A control with δ = 0 shows an exponential increase in
cost, though it still takes ∼ 12 years and ∼ 65 years for
this control to become 10% more expensive than the oth-
ers in our low and high copy number cells, respectively.
We conclude that: i) a control lacking any mutant con-
tribution only becomes notably costly on the order of 10
years, and ii) effects of particular control strategies are

more pronounced in low copy number cells (Table 1(III)).
We now investigate how the optimal value of mu-

tant sensing δ, δopt, for the linear control λ(w,m) =
c0 − c1(w + δm) depends on timescale T , initial hetero-
plasmy h0 and the ‘mutant pathology level’ described by
parameter ε1. Biologically, this question reflects how the
cell should optimise its processing of mtDNA state as the
mutant load and severity changes. Intuitively, values of
ε1 ' 1 have δopt ≈ 1: when wildtypes and mutants are
equivalent, having a steady state with w + m = wopt is
desirable.

Values for δopt were found for the linear and saturat-
ing model, with low and high initial heteroplasmy values,
for T = 100 days (Figure 3C). Having δ ≈ 1 means wild-
types and mutants are fed back similarly, whereas δ � 1
means mutants are fed back much less. For very defi-
cient mutants (low ε1), a low δopt ensures that wildtype
copy number remains close to its optimal value to com-
pensate for the mutants. Generally, as ε1 decreases, δopt
decreases. In the linear model δopt becomes negative for
low ε1 values; as mutant copy number increases, a neg-
ative δ leads to an increase in wildtype to compensate
for the deficient mutants. Similar results are found for
longer timescales T (Section S6).

When mitochondrial energy outputs are sensed, a defi-
cient mutant will contribute less, so a low (or high) value
for ε1 is automatically associated with a low (or high)
value of δ. We can see that control strategies based on
the energy status of the cell will often outperform con-
trol based on mtDNA copy number (which always has
δ = 1) or sensing mtDNA mass (which would work well
for deficient deletion mutants, but would be suboptimal
for deficient point mutations) (Table 1(IV)).

Locally optimal control strategies map the con-
trol space of mtDNA populations. With the use of
our cost function it is possible to identify locally optimal
controls: controls that, for each state (w,m), move the
system in the direction of the largest decrease in cost
(Figure 4).

When heteroplasmy is high the main priority is not
always to decrease mutant copy number, but to increase
wildtype copy number even if this means an increase
in mutant load (region 2 in Figure 4A). It is only af-
ter wildtype copy number has sufficiently increased that
the focus should be on decreasing m. At high copy num-
bers the optimal dynamics are to decrease all mtDNA in
an evenhanded manner (region 1) rather than decreasing
m at a faster rate than w. For the saturating model,
we also observe a divergence point in the space of local
optimal strategies, reflecting the two local cost minima
(high wildtype and high mutant) observed earlier (Fig-
ure 2). Hence, there are several regions of state space
where even for pathological mutants, reduction of mutant
mtDNA alone is not always the optimal control strategy
(Table 1(V)). Finally, the less pathological the mutants
become (e.g. Figure 4B), the more the locally optimal
control starts to resemble a linear control. In the linear
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A) B) C)

Figure 2: Intermediate heteroplasmies can be less efficient than either wildtype or mutant homoplasmy. A visualization
of the cost function in (w,m) space is shown for the saturating and linear mitochondrial output model. Only the cost inside the
demand-satisfying region is shown, for various mutant pathologies; hence, white regions correspond to states where cellular demand is
not satisfied though cells may survive by, for example, increasing glycolysis, effectively reducing mitochondrial demand. All the plots
in this figure are at high copy numbers, results are qualitatively similar for low copy numbers. A) The magenta (solid) and black
(dashed) lines show the contour of the demand-satisfying region when demand is increased by 10%, or demand is increased by 50%
and cellular resource availability is increased by 35%, respectively. Fluctuations increasing demand by 10% can significantly reduce the
demand-satisfying region; larger fluctuations can only be handled when total cellular resource uptake rates increase. B) The orange
line corresponds to constant total copy number; moving up along this line increases heteroplasmy. Cells in region 1 or region 3 are more
efficient, and show a lower cost, than cells in region 2. C) The linear mitochondrial output model does not show a decreased efficiency
at intermediate heteroplasmy values.

A) B) C)

Figure 3: A control that senses no mutations shows an exponentially increasing cost, which is most noticeable in
low copy number cells. Here we show the mean cost for the following four controls: A) the optimised ‘relaxed replication control’
λ(w,m) = µ

w+m
(c0(c1 − w − γoptm) + w + γoptm) [40], and linear feedback controls λ(w,m) = c0 − c1(w + δm) with B) δ = 0, C)

δ = 1, and D) δ = δopt. The controls were initialized in steady state at h0 = 0.15 and simulated for ∼ 82 years (30000 repeats).
Both figures used the saturating output model; the left and right figures correspond to low and high copy number cells respectively.
The free parameters left in control A and D were optimised over initial conditions in the range h ∈ [0, 0.2]. Here ε1 = 0.3 was used,
in the section below we investigate more values of ε1. Other control parameters used are given in the SI. C) A control based on
sensing mitochondrial energy output may be generally a good strategy. This plot shows the optimal value of δ in the control
λ(w,m) = c0 − c1(w + δm) as a function of ε1, for the linear and saturating model and for both low (h0 = 0.1, solid line) and high
(h0 = 0.8, dashed line) initial heteroplasmies. Here we used T = 100 and high copy number values for both models. The optimal
mutant control contribution is broadly lower when mutants are more deficient. Similar plots for T = 104 are shown in the SI.
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Figure 4: Locally optimal controls show non-linear behaviours close to the demand-satisfying regions, but linear
optimal dynamics far away from these regions. Here we have used streamplots to visualize the locally optimal control in (w,m)
space, for various parameters of ε1. At each point in the (w,m) plane, arrows show the direction of the optimal change to make to
decrease cost C(w,m). Regions are coloured according to the magnitude of the decrease in cost when moving in the optimal direction.
Black arrows illustrate general trends in these regions. A) Region (1) shows that at high copy numbers, both mutant and wildtype
mtDNAs should be decreased in an evenhanded manner; region (2) shows the possibility that the optimal control involves an increase
in mutant copy number. Here the saturating output model is used. B) Like figure (A), the saturating output model is used; a higher
value for the parameter ε1 is used, meaning mutants are less pathological. C) Here the linear output model is used; the locally optimal
control more closely resembles a linear control. In both (A) and (B) we see a divergence point (red asterisk) illustrating the fact that
both high mutant and high wildtype states constitute local attractors of low cost (as in Figure 2).

output model, the optimal control is always quite linear
(Figure 4C).

2.3.2 A parameterised model of artificial
mtDNA control for disease treatment.

While the locally optimal controls identified above may
not be achievable by the cell (for example, the cell may
not be able to decouple biogenesis of wildtype and mu-
tant mtDNA), genetic technology gives us the ability
to artificially exploit these optimal strategies. Mito-
chondrially targeted Zinc Finger Nucleases (mtZFNs)
[47, 48, 49, 37, 38] and mitoTALENs [34, 36] are able
to produce shifts in heteroplasmy by specifically cut-
ting mutant mtDNA; these technologies thus offer the
prospect of gene therapeutic treatments for some mito-
chondrial diseases. Though results are promising, treat-
ments with endonucleases are not perfect and can have
substantial dose-dependent off-target effects [38]. To de-
velop predictive quantitative theory to understand and
tune the effects of these interventions, we model nucle-
ase transfection as inducing selective increases in mtDNA
degradation, on the background of the cellular feedback
control described above (Methods). A fit (see Methods)
of our model parameters describing strength (I0), du-
ration (b), and selectivity (ξ) of nuclease treatment is
shown in Figure 5A, B, illustrating the ability of this
simple model to capture the complex dynamics resulting
from nuclease activity. For every mutant that gets cut by
the endonucleases, ξ wildtypes get cut (i.e. when ξ = 1
there is no distinction between mutants and wildtypes,
when ξ = 0 there is no off-target cleavage). The best-
fit value for the selectivity parameter ξ ≈ 0.78 implies
a low nuclease selectivity; however, this may be due to
the high mtZFN concentration that was used during the
experiments (Discussion).

Nuclease treatment and a subsequent ‘recovery phase’

of cellular relaxation will have the net effect of mapping
an initial heteroplasmy value hi to a mean final hetero-
plasmy value, hf . We simulated this mapping of initial
to final heteroplasmy values in the presence of cellular
feedback control (Figure 5), and observed that the het-
eroplasmy shifts are similar in low and high mtDNA copy
number cells (the variance of the shift is slightly lower
for high copy number cells), and that the shift is largest
for intermediate heteroplasmies. Interestingly, for high
h values, it is possible to end up with a higher hetero-
plasmy value after treatment, especially if ξ ' 1 (Figure
S6).

Knowledge of the heteroplasmy distribution of
a tissue is important in determinining how eff-
ciently the tissue can be treated.

To explore the effect of the heteroplasmy distribution
on treatment efficacy, we consider three different initial h
distributions with different heteroplasmy variances, but
identical homogenate means. We treat these populations
multiple times using the parameters fitted in the previous
section, and observe the shift in heteroplasmy distribu-
tion as well as the change in heteroplasmy mean and the
probability of crossing a pathogenic heteroplasmy thresh-
old P (h > 0.6) (Figure 5D, E).

High heteroplasmy variances require many cells close
to the two extremes h = 0 and h = 1, which are challeng-
ing to shift. A striking reduction in treatment efficacy is
predicted as heteroplasmy variance increases while mean
heteroplasmy stays constant (Figure 5D, E). Threshold
crossing probability (for example, P (h > 0.6)) also be-
comes harder to shift at higher heteroplasmy variance.
These differences in treatment efficacy depend on the
value of δ (mutant sensing) in our model: lower δ will
decrease the difference in efficacies. We conclude that
tissues with a high mean heteroplasmy levels will gen-
erally be harder to treat if the heteroplasmy variance is
high, especially if this high mean level is caused by a small

7



A) B) C)

D)

E)

F) G) H)

Figure 5: A simple model of treating cells with mitochondrially targeted endonucleases captures experimental obser-
vations of cellular mtDNA statistics. A, B) Our treatment model was used to fit recent experimental data [38], good agreement
was found for both deterministic and stochastic simulations; details about the fitting produce are given in Methods. C) A given initial
mean heteroplasmy value maps to a final mean value after a round of treatment and recovery. Stochastic simulations were performed for
both low (blue, 1000) and high (green, 5000) copy number cells. The orange line denotes identity, and the purple trajectory shows the
heteroplasmy shifts for multiple treatments starting at h = 0.8. Further details of the fitting procedure are given in Methods and Section
S7. Knowledge of the heteroplasmy distribution is important in predicting how efficiently a tissue can be treated. D,
E) The effect of four consecutive treatments on three different initial heteroplasmy distributions is shown; all initial distributions have
identical means (〈h〉 = 0.8) but different variances (increasing from left to right). The higher the variance of the initial population, the
harder to shift mean heteroplasmy values; mean values after each treatment as well as P (h > 0.6) are shown more clearly in figure (E).
In these simulations we assumed that every cell gets transfected. Gentle but sustained treatments induce larger heteroplasmy
shifts than hard and brief treatments. F) Both the linear and saturating model show a sharp drop in the optimal treatment
strength I0,opt as the mutants become more functional (i.e. as ε1 increases). G) Means and variances of mutant and wildtype copy
numbers were simulated during a round of treatment and recovery, using: i) fitted parameters (blue), ii) a longer treatment duration
(smaller b, green) and iii) a higher selectivity (smaller ξ, magenta). The longer weaker treatment induces higher heteroplasmy shifts
than the shorter stronger treatment. Not surprisingly, a higher selectivity also leads to an improved heteroplasmy shift. Note that
the variance of the final values is lower for more selective treatments. Error bars show standard deviations (based on 104 stochastic
simulations), further detailed are given in Methods and Section S7. H) This figure again illustrates that gentle sustained treatments
lead to larger heteroplasmy shifts. Examples of treatment trajectories are shown; after a single treatment, an initial heteroplasmy of
0.8 is mapped to 0.53 (short strong treatment) or 0.39 (long weak treatment).
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percentage of cells, with the strength of this effect de-
pendent on mutant sensing (Table 1(VI)). We tested our
finding that it is difficult to shift high heteroplasmy val-
ues by looking at new data from experiments focussing
on the treatment of high heteroplasmy cells and find that
the new results support our theory: mtZFNs were trans-
fected into 143B cells bearing 99% m.8993T>G mtDNA,
but no shift in heteroplasmy was measured 14 days post-
transfection, nor at 28 days when mtDNA copy number
had recovered to control level (Figure S7).

Optimal clinical interventions. We can use our pa-
rameterised theory to find optimal treatment strengths
I0,opt for a given system. Figure 5F shows I0,opt as a func-
tion of ε1. Intuitively, the strongest treatment should be
given to the least functional mutants, and when mutants
are almost as functional as wildtypes it is preferable not
to treat at all. The optimal treatment strength drops
rather sharply as ε1 increases, and does so sooner for the
saturating model. This last observation may be because
at some point reducing heteroplasmy becomes more ex-
pensive as can be seen in Figure 2B. Optimal treatment
strengths for longer treatments (higher b) show similar
qualitative behaviour.

Figure 5G shows, using the identified values for I0,opt,
the trajectories in (w,m) space throughout a single treat-
ment and recovery phase; we used ε1 = 0.3 and the corre-
sponding cost heatmap is also shown. The three trajecto-
ries shown correspond to: i) a short and strong treatment
(using the fitted parameter values), ii) a long and weak
treatment, and iii) a short but more selective treatment.
It can be seen that treating longer but weaker results in
a lower final heteroplasmy value than treating short and
strong. A weaker treatment also reduces the chance of
a cell losing all its mtDNA molecules. A more selective
treatment also leads to larger heteroplasmy shifts. The
difference in treatment results for long compared to short
treatments is also illustrated in Figure 5H. We note that
in finding I0,opt, we initialized all cells in the same steady
state. When a distributions of initial states is used, the
variance that is now present is likely to affect the optimal
treatment strength.
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3 Methods

Expected cost per unit time. Let the cost per
unit time of state (w,m) be denoted by Λ, and the cost
corresponding to the steady state (wss, mss) by Λ̄. Even
if steady state copy numbers are constant over time (i.e.
the mean values of w and m are always equal to wss and
mss) the mean cost per unit time is generally not equal
to Λ̄. By performing a Taylor expansion, the mean cost
per unit time can be written as follows:

E[Λ](t) ≈ Λ̄

+
1

2

(
var(w(t))

∂2Λ

∂w2
+ var(m(t))

∂2Λ

∂m2

+ 2cov(w(t),m(t))
∂2Λ

∂w∂m

)
(3)

where E[Λ](t) is the expected cost per unit time given
that the trajectory starts in state (wss,mss), and all par-
tial derivatives are evaluated at steady state.

Cost function structure. We assume that the
net energy supply per unit time in a state (w,m), called
S(w,m), involves the following four terms: (i) the energy
output per unit time (si) produced by the mitochondria;
(ii) a maintenance cost per unit time (ρ1) to maintain the
mitochondria, as their presence imposes some energetic
cost (e.g. mRNA and protein synthesis); (iii) a building
cost (ρ2) for the biogenesis of new mitochondria; and
(iv) a degradation cost (ρ3) to degrade mitochondria. We
will assume that every mtDNA molecule is associated to
a particular amount of mitochondrial volume which we
refer to as a ‘mitochondrion’ (Section S4).

At any time, mitochondria experience a certain energy
demand and to meet this demand they need to have a
certain resource consumption rate ri (where i = w,m
refers to wildtype or mutant). Here we use the term
‘resource’ as an amalgamation of the substrates used for
the oxidation system. We need to specify the relationship
between the power supply (si) and the rate of resources
consumed (ri) by mitochondria. We use two different
models si(ri) which are justified in the SI:

sw(rw) = φ(rw − β)

sw(rw) = 2
smax

1 + e−krw
− 1.1smax (4)

where φ, β, k and smax are constants respectively de-
scribing the mitochondrial efficiency, a basal proton leak-
like term, the saturation rate of the efficiency, and the
maximum energy production rate (Section S4).

We assume that pathological mutants can have a de-
ficient electron transport chain (which may support a
smaller flux leading to a lower resource consumption rate
for mutants and therefore a lower ATP production rate)
and a lower energy production efficiency:

sm(rm) = ε2sw(ε1rw) (5)

Here, ε1, ε2 ∈ [0, 1] describe the mutant resource uptake
rate and the mutant energy production efficiency relative

to that of a wildtype, respectively. In the main text we
set ε2 = 1; other values of ε2 are discussed in Section
S4.7.

The mitochondrial maintenance cost is denoted by ρ1
and corresponds to the energetic cost required to main-
tain the mitochondrion that contains the mtDNA. This
energetic costs involves factors like the synthesis and
degradation of mitochondrial proteins and enzymes. We
assume the maintenance cost is the same for wildtype and
mutant mitochondria (though for some mutations this is
quite possibly not the case). The net energy supply per
unit time, S(w,m), then follows as Equation 2.

To determine the value of rw for a given state (w,m),
we first check whether the demand D (which we assume
is a constant) can be satisfied in this state. If it can,
we set equation (2) equal to D and solve for rw, i.e. we
assume that if possible, the mitochondria will exactly sat-
isfy demand. It may, however, not be possible to satisfy
demand, which can be because of two reasons: i) there
are not enough mitochondria present to produce enough
energy, or ii) there is not enough resource available to
meet demand. In the former case, we set rw = rmax;
the mitochondria work as hard as possible to keep their
energy output closest to demand. In the latter case, we
assume that the total available amount of resource, R
(which we consider to be constant), is shared equally be-
tween the mitochondria: rw = R

w+ε1m
. Cellular energy

demand will naturally fluctuate over time, and because
of excess capacity of mitochondria [50], there is no need
to immediately increase mitochondrial biogenesis. In our
model, a given state (w,m) may be able to satisfy a range
of demands by changing its resource uptake rate. Further
details of the cost function are given in the SI.

The parameters used in our cost function are summa-
rized in Table S1, a discussion of the parameter values is
also provided in the SI. Despite our model being simple,
most parameters are biologically interpretable.

Modelling control through mitochondrially tar-
geted endonucleases. Experimentally, cells are trans-
fected with two mtZFN monomers: one which binds se-
lectively to mutant mtDNAs, and one that binds mu-
tants and wildtypes with equal strength [49]. We sim-
plify this picture by assuming an ‘effective’ mtZFN pool
and use [ZFN ] to denote its concentration. The increase
in mtDNA degradation rate is then assumed to be pro-
portional to [ZFN ].

Nucleases are imported into the cell and then degrade
over time, meaning that their concentration in the cell
(and in the mitochondria) may be approximated by an
Immigration-Death model. In the recent experiments
[38], nucleases are expressed for short times which means
that the immigration rate should be time-dependent and
decreasing. This leads us to the following equation:

d[ZFN ](t)

dt
= I(t)− µz[ZFN ](t) (6)

where I(t) and µZ are the immigration and death rates
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of the effective mtZFN pool, respectively. The immigra-
tion rate will increase sharply at the start of the treat-
ment after which it decreases over time, and we have
chosen to model I(t) as an exponentially decaying func-
tion, I(t) = I0e

−bt, where I0 is the initial rate right after
the treatment is applied and b is a constant describing
the duration of the treatment. The mtZFN concentra-
tion now becomes

[ZFN ](t) =
I0

µz − b
(
e−bt − e−µzt

)
(7)

which is shown for various parameter values in Figure
S6A. The mtDNA death rates at a time t after a treat-
ment are then given by

µm = µ+
I0

µz − b
(
e−bt − e−µzt

)
µw = µ+ ξ

I0
µz − b

(
e−bt − e−µzt

)
(8)

where µ denotes the normal baseline mtDNA degrada-
tion rate, 0 < ξ < 1 indicates how selective the treat-
ment is (if ξ = 1 no distinction is made between w and
m, if ξ = 0 no extra wildtype cleavage occurs during
treatment).

To fit our model to recently obtained experimental
data [38] we need to include the cellular feedback con-
trol which makes sure that copy number returns to
its original value after the treatment. We will use
λ(w,m) = c0 − c1(w + δm) to model the feedback,
and we assume δ = 1 because no significant changes
in total mtDNA copy numbers were seen after treat-
ments. We fitted the parameters I0, b, ξ and c1. Be-
cause mtDNA copy number in the cells used in the ex-
periment is not known, we use both low (1000) and high
(5000) initial copy numbers and fit our parameters for
both cases (the value of c0 is set such that steady state
copy numbers are 1000 or 5000). The obtained param-
eter fits are: (I0, b, ξ, c1) ≈ (38, 12, 0.76, 3 × 10−4) and
(I0, b, ξ, c1) ≈ (40, 12, 0.76, 5 × 10−5) for cells with ini-
tial copy numbers 1000 and 5000, respectively. For the
mtZFN degradation rate we used a half-life of 1 day, to
roughly match the experimental observation that almost
no mtZFN was present 4 days post-transfection (with a
half-life of 1 day, the size of an exponentially decaying
population will be about 6% of the initial size).

Shifting heteroplasmy in 143B cells bearing
99% m.899T>G mtDNA All methods used are as de-
scribed in [37], more details are provided in Section S7.
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4 Discussion

In this work, we have built a quantitative theory bridging
stochastic optimal control, costs of mtDNA populations,
and gene therapies. Our results contribute to a grow-
ing body of evidence [51, 52, 53, 54] that the variance
of mtDNA populations has important physiological and
therapeutic implications independently of mean hetero-
plasmy, and underline that stochastic theory is required
to understand this biologically and medically important
quantity. We compared different cellular strategies of
regulating the number of mtDNA molecules, by study-
ing the means and variance of the mutant and wildtype
populations. We found that there exists a trade-off be-
tween controlling one species, or controlling the other.
Heterogeneity in sensing may thus account for the large
variety of mutant dynamics seen between different mu-
tations and across different tissues. We introduced a
mitochondrial energy-based cost function enabling us to
compare distinct control mechanisms and found that a
control based on the energetic status of the cell forms a
good strategy in many situations. Recent experimental
data [38] was used to fit a therapeutic treatment model
in which cells are transfected with mitochondrially tar-
geted endonucleases, with new experiments validating
this theory. We showed that long gentle treatments in-
duce higher heteroplasmy shifts than brief strong treat-
ments, and that tissues with high heteroplasmy variances
can be particularly hard to treat.

If the parameter δ is low, i.e. mutants are sensed
less, mutant copy numbers at high heteroplasmies will
be higher than wildtype copy numbers at low heteroplas-
mies. Experimentally it has been observed that hetero-
plasmic cells can have total mtDNA copy number values
that are 5-17-fold higher than cells homoplasmic in wild-
type [55, 56, 57, 58]. The cell has somehow allowed these
mutants to expand, which may mean that they are less
tightly controlled; Controls based on total energy output
or mtDNA mass (which can result in δ < 1) may lead
to such behaviours. A control on mtDNA mass could
explain why deletion mutants are often seen to expand
[59, 60] and would also predict normal copy number levels
in cells harbouring mtDNA point mutations. Recently,
it was found that samples with mtDNA indels had very
high mtDNA copy number levels, but single nucleotide
variants did not [61]. The cellular control mechanism
could also be a mixture of copy number control, mtDNA
mass control and energy sensing, meaning that muta-
tions with different functionalities and masses all have
different values for δ and expand to different extents.

We showed that heteroplasmy distributions in cell pop-
ulations can provide important information about the
possibility of successfully treating these cells. A tissue
may be harder to treat if its high mean heteroplasmy
level is caused by a small percentage of dysfunctional
cells; these cells may also be hard to target using gene
therapy if the transduction efficiency is low. Experimen-

tal values of mean homogenate heteroplasmy in heart tis-
sue of patients with the 3243A>G mutation are roughly
around 0.8, though ranges can be large [62, 63, 64, 65].
Muscle tissue often shows mosaic structures, with defi-
cient patches of cells adjacent to healthy cells. These ex-
amples show that it may be that, at least in some cases,
high mean levels are indeed caused by a relatively low
percentage of cells, meaning that there are still a lot of
challenges ahead for efficiently treating these tissues.

One of the features of our cost function is that re-
source limitations play an important role in shaping the
cost landscape. There are indications that cellular NAD
levels are limiting, and that a sufficient supply of NAD
to mitochondria becomes critical [66, 67, 68, 69]. An
increase of intracellular NAD can lead to an increase in
oxygen consumption and ATP production [69] indicating
that resource limitation may, at least in some cases, be
a genuine constraint. Adding various kinds of resources
can significantly change mitochondrial basal respiration
rate [70, 71, 72].

We found that, under our model, it is more optimal
to sense mutants to a lesser extent if the mutants have a
lower energy output. In this way, their presence has little
influence on wildtype copy number dynamics which then
allows the wildtype mtDNA molecules to remain close to
their ‘natural’ (and assumed to be close to optimal) lev-
els. This makes a control directly based on the energetic
status of the cell a good strategy.

If two different mtDNA types coexist in a cell and one
type is more leaky (i.e. less efficient), then this leaky
type will tend to produce less energy which could lead to
a lower value for δ. Cells homoplasmic in the leaky type
will then have higher mtDNA copy numbers than cells
homoplasmic in the other mtDNA type (see also [73]).
Reactive Oxygen Species (ROS) can damage the mito-
chondrial membrane and increase the amount of leak,
making the mitochondria less efficient. It has indeed
been suggested that increased ROS production by mu-
tant mtDNA molecules is the reason why cells harbouring
these mutations have increased mtDNA copy numbers
[74]. It could also be that the increase in mtDNA copy
number is due to higher numbers of wildtype mtDNA
to compensate for the dysfunctional mutants. Further
measurements of mutant as well as wildtype copy num-
ber values for different types of mutants, together with
their energetic functionality and ROS production rates,
are helpful for improving our understanding of the cell’s
control mechanisms.

In modelling gene therapies, our fit to endonuclease
data yielded a high off-target cutting estimate, ξ = 0.76,
which may be a result of the high nuclease concentra-
tion in experiments: a lower mtZFN concentration could
result in a lower ξ and lead to better results, as was ob-
served experimentally [38]. If the parameter ξ is a func-
tion of the treatment strength I0, the values for I0,opt we
found in Figure 5F will be different. Further work on the
relationship between I0 and ξ will elucidate more clearly
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the trade-off between treating with a high strength and
cleaving more mutants in the process, and having a high
selectivity and therefore low off-target cleavage.

Like any other model, our models have a defined range
of applicability. A key baseline assumption was using
identical replication and degradation rates for mutants
and wildtypes. Various possibilities of distinct rates have
been offered in the literature, including faster mutant
replication rates [75, 76, 77, 78, 56, 24] and lower mu-
tant degradation rates [79], mainly to explain mutant ex-
pansion seen in several tissues. A recent computational
model [24] suggested that introducing feedback control
on ATP levels, with mutant mtDNAs having a deficient
feedback loop, might account for experimental data re-
garding mutant accumulations. There are also reasons
to believe that mutants might be degraded faster, espe-
cially if they are dysfunctional, through the mechanisms
of quality control [80, 81]. Including such differences, and
other features including de novo mutations, degradation
control, and cell divisions [82, 52, 42, 83], constitute nat-
ural extensions to our theory.

Including these difference in turnover rates, and study-
ing their effects on optimal clinical treatment strategies,
provides an interesting future direction of studies. We
did not include any cell divisions in our models, mean-
ing that our results are mainly applicable to post-mitotic
cells, though cellular division can readily be included (as
in, for example, [82] which includes cell divisions dur-
ing development). Other potential ways in which to
develop our models further are including de novo mu-
tations, considering the effect of an extra mutant cost
(caused by e.g. ROS production), and including control
in the degradation rate. However, the wide set of general
insights and biological and therapeutic predictions that
emerge even from our simple model suggest that ‘cost-
and-control’ modelling of mitochondrial populations is a
valuable theoretical approach to reason about these com-
plex and vital systems that remain experimentally hard
to address.
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Gallardo, M. E., and Enŕıquez, J. A. Differences in re-
active oxygen species production explain the phenotypes
associated with common mouse mitochondrial DNA vari-
ants. Nature Genetics 38(11), 1261–1268 (2006).

[75] Michikawa, Y., Mazzucchelli, F., Bresolin, N., Scarlato,
G., and Attardi, G. Aging-dependent large accumulation
of point mutations in the human mtDNA control region
for replication. Science 286(5440), 774–779 (1999).

[76] Wallace, D. C. Mitochondrial genetics: a paradigm for
aging and degenerative diseases? Science 256(5057),
628 (1992).

[77] Kowald, A. and Klipp, E. Mathematical models of mi-
tochondrial aging and dynamics. Prog Mol Biol Transl
Sci 127, 63–92 (2014).

[78] Yoneda, M., Chomyn, A., Martinuzzi, A., Hurko, O.,
and Attardi, G. Marked replicative advantage of hu-
man mtDNA carrying a point mutation that causes the
melas encephalomyopathy. Proceedings of the National
Academy of Sciences 89(23), 11164–11168 (1992).

[79] Kowald, A. and Kirkwood, T. B. Accumulation of defec-
tive mitochondria through delayed degradation of dam-
aged organelles and its possible role in the ageing of post-
mitotic and dividing cells. Journal of theoretical biology
202(2), 145–160 (2000).

[80] Twig, G., Elorza, A., Molina, A. J., Mohamed, H., Wik-
strom, J. D., Walzer, G., Stiles, L., Haigh, S. E., Katz,
S., Las, G., et al. Fission and selective fusion govern mi-
tochondrial segregation and elimination by autophagy.
The EMBO journal 27(2), 433–446 (2008).

[81] Busch, K. B., Kowald, A., and Spelbrink, J. N. Qual-
ity matters: how does mitochondrial network dynamics
and quality control impact on mtDNA integrity? Philo-
sophical Transactions of the Royal Society B: Biological
Sciences 369(1646), 20130442 (2014).

[82] Poovathingal, S. K., Gruber, J., Halliwell, B., and Gu-
nawan, R. Stochastic drift in mitochondrial DNA point
mutations: a novel perspective ex silico. PLoS computa-
tional biology 5(11), e1000572 (2009).

[83] Johnston, I. G. and Jones, N. S. Closed-form stochastic
solutions for non-equilibrium dynamics and inheritance
of cellular components over many cell divisions. In Proc.
R. Soc. A, volume 471, 20150050. The Royal Society,
(2015).

16



Supplementary Information

S1 Solutions to the system size expansion

We can describe the mtDNA dynamics analytically using a Master Equation:

∂Pw,m
∂t

= λ(w − 1,m)(w − 1)Pw−1,m + µ(w + 1)Pw+1,m

+ λ(w,m− 1)(m− 1)Pw,m−1 + µ(m+ 1)Pw,m+1

− [w(λ(w,m) + µ) +m(λ(w,m) + µ)]Pw,m (S1)

where Pw,m(t) gives the probability of being in state (w,m). In general, this equation will not be
analytically solvable and suitable approximation methods are required. We use Van Kampen’s system
size expansion to extract a Fokker-Planck equation describing the system, yielding expressions for the
means, variances and covariance of w and m (table in Figure 1 of the main text).

A general master equation can be written in the form

ṗn(t) = Ω

R∑
j=1

(
N∏
i=1

E−Sij − 1

)
fj(n,Ω)pn(t) (S2)

where Ω is the system volume, R is the number of reactions involved, N is the number of species, (S)ij is
the stoichiometry matrix, n = (n1, n2, · · · , nN ) gives the number of particles of each species, E is a raising
and lowering operator1, and pn(t) is the probability distribution of n at time t. It is often not possible to
solve a master equation explicitly, this is only possible in rare cases (the equation can be solved analytically
for constant or linear rate equations). It is therefore necessary to have approximation methods. The
system size expansion, developed by Nico van Kampen, provides a systematic approximation method in
the form of an expansion in powers of a small parameter [1]. This parameter, Ω, describes the inverse
system size.

To start the construction of the expansion, the state of the system needs to be expressed in terms of a
deterministic and stochastic component. Suppose the master equation describes the dynamics of a single
species, whose concentration and copy number are denoted by φ(t) and n. One expects the distribution
of n to be centered around Ωφ(t) (with Ω the volume (i.e. size) of the system) and have a width of order√
n ∝
√

Ω. This motivates the starting point of the expansion, which is to write

n = Ωφ(t) + Ω1/2ξ (S3)

where ξ describes the fluctuations around the deterministic solution φ(t).
All the terms in the master equation can now be expressed in the fluctuation variable ξ, according to

the following transformations2

pn(t) = Π(ξ, t)

E→ 1 + Ω−1/2 ∂

∂ξ
+

1

2
Ω−1 ∂

2

∂ξ2
+ · · ·

ṗn =
∂Π

∂t
− Ω1/2

N∑
i=1

∂φi
∂t

∂Π

∂ξi
(chain rule)

f(
ni
Ω

) = f(φi + Ω−1/2ξi) (S4)

which leads to the new equation

∂Π

∂t
− Ω1/2 dφ

dt

∂Π

∂ξ
= Ω

R∑
j=1

[
− Ω−1/2

N∑
i=1

Sij
∂

∂ξ
+

1

2
Ω−1

∑
i

∑
k

SijSkj
∂2

∂ξi∂ξk
+O(Ω−3/2)

]

×

[
fj(φ) + Ω−1/2

∑
i

∂fj(φ)

∂φi
ξi +O(Ω−1)

]
Π(ξ, t) (S5)

1Its effect on an arbitrary function f(~n) is given by e.g. Eif(~n) = f(~n+ei) and E−1
i f(~n) = f(~n−ei) (where ei is a column

vector with all zeros and a 1 at entry i). Using a Taylor expansion, the operator can be written as Ei = 1+ ∂
∂ni

+ 1
2!

∂2

∂n2
i

+· · · .
2Ei changes ni into ni + 1, which is equivalent to changing ξi into ξi + Ω−1/2.
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The way to solve this equation is by collecting powers of Ω. The large terms, proportional to Ω1/2,
form the macroscopic rate equations. The terms of order Ω0 form a Fokker-Planck equation, the solution
of which is called the Linear Noise Approximation (LNA):

∂Π(~ξ, t)

∂t
= −

2∑
i,j=1

Aij
∂(ξjΠ)

∂ξi
+

1

2

2∑
i,j=1

Bij
∂2Π

∂ξi∂ξj
(S6)

The coefficients Aij and Bij can be found by expanding equation (S5) and are given by

Aij =

R∑
k=1

Sik
∂fk
φj

Bij =

R∑
k=1

SikSjkfk (S7)

For the system we consider, we have

S =

(
1 0 −1 0
0 1 0 −1

)
(S8)

and

f1 = wλ(w,m)

f2 = mλ(w,m)

f3 = wµ

f4 = mµ (S9)

The Fokker-Planck equation can be transformed into a set of coupled ODEs given by

dt〈ξ2
w〉 = 2A11〈ξ2

w〉+ 2A12〈ξwξm〉+B11

dt〈ξ2
m〉 = 2A22〈ξ2

m〉+ 2A21〈ξwξm〉+B22

dt〈ξwξm〉 = (A11 +A22)〈ξwξm〉+A12〈ξ2
m〉+A21〈ξ2

w〉+B12 (S10)

which can be solved to give

var(w) =
µw2

ss

(∂mλmss + ∂wλwss)3

(
2mss(1 +

mss

wss
)(∂mλ)2(∂mλmss + ∂wλwss)t

− 4(∂mλ)(∂wλ)mss − (∂wλ)2wss + 3(∂mλ)2mss

+ 4e(∂mλmss+∂wλwss)t
{
∂mλ∂wλmss − (∂mλ)2mss

}
+ e2(∂mλmss+∂wλwss)t

{
(∂wλ)2wss + (∂mλ)2mss

})
(S11)

var(m) =
µm2

ss

(∂mλmss + ∂wλwss)3

(
2wss(1 +

wss
mss

)(∂wλ)2(∂mλmss + ∂wλwss)t

− 4(∂mλ)(∂wλ)wss − (∂mλ)2mss + 3(∂wλ)2wss

+ 4e(∂mλmss+∂wλwss)t
{
∂mλ∂wλwss − (∂wλ)2wss

}
+ e2(∂mλmss+∂wλwss)t

{
(∂wλ)2wss + (∂mλ)2mss

})
(S12)

covar(w,m) =
µwssmss

(∂mλmss + ∂wλwss)3

(
− 2(wss +mss)(∂mλ)(∂wλ)(∂mλmss + ∂wλwss)t

+ (∂wλ)2wss + (∂mλ)2mss − 2(∂wλ)(∂mλ)(wss +mss)

+ 2e(∂mλmss+∂wλwss)t
{

(∂mλ)(∂wλ)(wss +mss)− (∂wλ)2wss − (∂mλ)2mss

}
+ e2(∂mλmss+∂wλwss)t

{
(∂wλ)2wss + (∂mλ)2mss

})
(S13)

These solutions give the means, variances, and covariance of w and m over time according to the Linear
Noise Approximation for a general control λ(w,m), assuming a trajectory starting in state (wss,mss). All
the partial derivatives are evaluated at the deterministic steady state (wss,mss). The intermediate-time
forms of these expressions (when the exponentially decaying terms have died out) are given in Figure
1 in the main text. For very long times (around 1500 days depending on the size the derivative ∂wλ
and ∂mλ), higher order solutions to the System Size Expansion are required to provide a more accurate
description of the dynamics.

The heteroplasmy variance can be derived using a Taylor expansion. If only first order are kept, we
obtain: var(h) ≈ ( ∂h∂w )2σ2

w+( ∂h∂m )2σ2
m+2( ∂h∂w )( ∂h∂m )cov(w,m) = 1

(w+m)4 (m2σ2
w+w2σ2

m−2wm cov(w,m)).
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S2 Feedback control of a heteroplasmic mtDNA population

Steady states of a linear feedback control When mutant and wildtype mtDNA molecules have
identical replication (λm = λw) and degradation (µm = µw) rates, infinitely many steady states exist
(i.e. states in which λ = µ). These steady states form lines in (w,m) space which can be straight (linear
feedback control), form segments of ellipses (quadratic feedback control) or take more complicated forms
(Figure S1A). Deterministic trajectories will asymptotically approach the steady state line at a specific
point; stochastic trajectories can fluctuate along the line thereby changing heteroplasmy.

A linear feedback control λ(w,m) = c0 − c1(w+ δm) gives rise to a straight line of steady states, the
slope of which is determined by δ. A small δ means that the steady state line intersects the mutant axis
at higher copy number than the wildtype axis, meaning that total copy numbers are higher at h = 1
than at h = 0. In the extreme case of δ = 0, mutant copy numbers can fluctuate off to infinity, though
in practice their numbers will be bounded by space restrictions and resource competition. When δ > 1
copy numbers will decrease as h increases; mutants are now sensed more than wildtypes, which could be
caused by e.g. excessive ROS production by mutants (which is then sensed by the cell and incorporated
in its feedback function).
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Figure S1: Comparison of different feedback control mechanisms. Related to Figure 1A-C; A) Steady state lines
of different kinds of controls are shown in (w,m) space. Line ‘3’, a control only dependent on wildtype species, can give rise
to ‘runaway dynamics’; mutant copy number can fluctuate off to infinity while wildtype copy number remains stable. B),
C), D) Here we show three different controls of the form λ(w + δm) which all have nearly identical wildtype, mutant and
heteroplasmy variances. The parameters c1, d1, s1 are set such that the coefficient of variation of the wildtype distribution
in the absence of mutants is given by 0.1. Parameters c0, d0, s0 are set such that the wildtype steady state in the absence
of mutants is 1000. Initial conditions w0 = 919 and m0 = 162 are used (to give an initial heteroplasmy of h0 = 0.15).

Different forms of control can yield similar mtDNA dynamics. We compared three different
forms of feedback control, all of the form λ(w,m) = λ(w+ δm): i) c0− c1(w+ δm), ii) d0 + d1/(w+ δm)
and iii) s0 − s1(w + δm)2 with c0, c1, d0, d1, s0, s1 > 0. Figure 1 in the main text shows that wildtype,
mutant and heteroplasmy mean are very similar for each of these controls. Here we illustrate that the
wildtype, mutant and heteroplasmy variances are also similar (Figure S1B, C, D).

We merely show that these different controls can give rise to similar dynamics by parameterising them
such that they do. First, we set the variances of each control to be equal in the absence of mutants. From
Table 1E it can be seen that the wildtype variance is now completely specified by the mtDNA degradation
rate µ, the steady state copy number wss and the control derivative ∂wλ(w) evaluated at steady state.
The control derivatives at steady state for our three different control mechanisms (as defined above) are
given by i) −c1, ii) −d1/w

2
ss and iii) −2s1wss; these expressions were all set to be −7.21 × 10−6. This

constant value is arbitrary, we chose its value such that at steady state the standard variation of the
wildtype distribution is a tenth of its mean value; other choices of this constant will give similar results.
We further used wss = 1000, which then fixes the values for c1, d1 and s1. To ensure that wss forms the

3



steady state, we further set λ(wss) = µ which determines the values of c0, d0 and s0. Note that it is not
surprising that these different controls yield similar dynamics after we have parameterised them to do so;
we only want to illustrate these similarities to stress that which quantity is being controlled can be more
important than how it is controlled.
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S3 The relationship between resource consumption and energy
production

Mitochondrial respiration is a process by which energy from nutrients is converted into (amongst others)
ATP. Part of this process involves the pumping of protons across the inner mitochondrial membrane to
create an electrochemical potential across the membrane. Energy is released when protons flow back into
the matrix and this energy can be used to create ATP. However, the coupling between proton pumping
and ATP synthesis is not perfect and protons can leak through the membrane, reducing the efficiency
of respiration. An often measured quantity in experimental studies is the mechanistic P/O ratio [2, 3]
which refers to the theoretical maximum amount of ATP (P) produced per oxygen (O) reduced by the
respiratory chain. The effective P/O ratio is more physiologically relevant and takes into account leak
[4].

In our cost function we need to specify how si, the power supply measured in ATP (including leak)
of a mitochondrion of type i, depends on ri, a quantity resembling the resource consumption rate of the
mitochondrion. For robustness, we use two different equations for si(ri). The first model is based on
measurements in isolated mitochondria which found a linear relationship between ri and si (e.g. [5, 6, 4]).
We used the data from [5] to fit the parameters of this linear model (Table S1). This data comes from
experiments using isolated mitochondria, and it is not clear whether the observations made in isolated
mitochondria, without any interactions between the mitochondria and the nucleus or the endoplasmic
reticulum, still hold in vivo. This is one of the reasons also consider another type of model, as described
below.

Our cost function contains a term which penalizes the consumption of resources, meaning that the
cheapest state is the one that satisfied demand which the smallest possible resource consumption rate. A
linear function si(ri) then implies that for a given demand, the optimal number of mitochondria to have
is the minimum number required to satisfy this demand with the mitochondria respiring as fast as they
can. However, a minimal number of mitochondria will make the cell less robust to stochastic fluctuations
in both mitochondrial copy numbers and demand. Moreover, mitochondria are known to have large spare
capacities [7, 8] indicating that in resting state they do not operate near their limits. We therefore expect
that there is some extra cellular cost associated with this ‘maximally respiring’ state, causing it to be
non-optimal in resting conditions.

This is why we have chosen to use a second model which describes a saturating relationship between
ri and si, as shown in Figure S2. Note that we do not claim that mitochondria become less efficient
as they respire faster, we impose the saturating shape merely to effectively assign a higher cost to high
respiring states. By imposing this saturation, the variable on the y-axis of Figure S2 can be interpreted
an ‘effective energy production’. We will refer to the two models as ‘the linear output model’ and ‘the
saturating output model’.

A changing energy production efficiency is not entirely unreasonable, though, because in experiments
with isolated mitochondria one usually uses a particular substrate (or a particular combination of sub-
strates) whereas a larger mixture of substrates will be available in the cell, and the relative presence of
each substrate may fluctuate over time. The efficiency of respiration depends on the kind of substrate
that is used, so it may be possible that at high demand (and high respiration) the substrate of first choice
has become limited and another less efficient substrate is used instead. Also, it was suggested that spare
capacity can be caused by an increase in substrate entrance in the TCA cycle [9]. This would mean
that at high respiration, this high respiration rate is caused by an increase in electron transport chain
substrates (e.g. NADH and FADH2). A ‘push’ to the proton pumping complexes instead of a ‘pull’ at
the ATP synthase would lead to an increase in the electrochemical gradient across the membrane and
therefore an increase in leak. These arguments are speculative but show that the saturation model may
not be unreasonable.

The linear and saturating models are given by the equations:

sw(rw) = φ(rw − β) (S14)

sw(rw) = 2
smax

1 + e−krw
− 1.1smax (S15)

where φ can be mapped to the effective P/O ratio (here based on the substrates pyruvate and malate),
β indicates the respiration rate at zero energy production and therefore specifies the amount of leak, k
is the rate at which the saturating model saturates, and smax is an indication of the maximum energy
production rate. We have set the parameters k and smax such that the saturating function at first
approximately follows the linear function, but then bends away from it at higher respiration rates.
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S4 Parameter values for the cost function

Some of our results will be a consequence of the exact structure of our cost function, and might have been
different if another type of cost function was used. We would argue, however, that the main elements
in our cost function are quite general: terms involving supply, demand, and resource. We aimed at
making our cost function simple, and using biologically interpretable parameters. We do not aim to give
a detailed kinetic description of the energetic costs involved, but present a simpler description that allows
us to compare distinct strategies relative to each other rather than providing absolute costs. We use our
cost function as a tool to characterize cost landscapes and begin to explore optimal control strategies.

In the spirit of ‘back-of-the-envelope’ reasoning in biology [10] we seek plausible and interpretable
parameter estimates, using both order-of-magnitude estimations and values found in the literature. The
parameters with their default values are summarized in Table S1.

The final goal is to obtain a cost for a state with a certain number of mtDNA molecules; we therefore
need to express our cost as a cost ‘per mtDNA molecule’. Because the density of mtDNA molecules
within the mitochondrial network seems to be roughly constant [11], we assume every mtDNA molecule
is associated to a particular amount of mitochondrial volume which we here define as a ‘mitochondrial
unit’. All our parameters refer to these mitochondrial units.

S4.1 Mitochondrial energy production and leak: φ and β

In our linear model we assume a linear relationship between mitochondrial ATP production rate and
mitochondrial oxygen consumption rate, based on experimental data [5, 4, 6]. In [5, 6] measurements
show an almost perfect linear relationship between these two quantities. This relationship can also be
determined when the effective P/O ratio (the amount of ATP produced per oxygen consumed) is known as
a function of the oxygen consumption rate; this also leads to a linear relationship between ATP synthesis
rate and oxygen consumption rate [4].

The parameters φ and β correspond to the slope and intercept of the linear function, respectively.
In [5] this slope was measured to be 2.03 ± 0.13 for isolated pectoralis muscle cell mitochondria in the
presence of pyruvate and malate; we have decided to use φ = 2, mainly based on these experiments.

The value of β is an indication of the ‘leakiness’ of the mitochondrion: it represents the rate of oxygen
consumption that is required to balance the leakage of protons across the membrane in order to maintain
the mitochondrial membrane potential. To obtain a consistent value for β we also use the data presented
in [5]. Their measurements find that β is about a tenth of the maximum respiration rate. This maximum
respiration rate is obtained by adding high (unlimited) concentrations of ADP; the state of the cell in
these conditions is known as state 3ADP. Because state 3ADP does not necessarily correspond to in vivo
conditions, we define the respiration rate in this state as rmax,t: the maximum ‘theoretical’ respiration
rate. We will fix rmax,t = 1 and use this to scale our other parameters. This means that our parameter
value for β is β = 0.1.

We stress that though we have based our parameter values here on a specific study, changes in their
values will not affect the qualitative structure of our cost function but merely changes the slope and
intercept of the linear output function defined in equation (S14).

S4.2 Resource and supply and maintenance cost: rmax, rn and sn

A cell in vivo is unlikely to experience the high concentrations of ADP present in state 3ADP. We therefore
set our parameter rmax, the physiological maximum respiration rate, to be slightly below rmax,t:rmax =
0.95rmax,t = 0.95.

We introduce rn and sn as the normal respiration rate and ATP production rate which are present in
resting conditions, respectively. Their values will be used to derive other parameter values. Mitochondria
have spare capacity, i.e. in normal unstressed conditions they use only part of their maximal oxygen
consumption rate (OCR). The amount of spare capacity is usually measured as the fold-change in OCR
that occurs after adding FCCP to cells, a mitochondrial uncoupler. Several measurements of the fold-
change in OCR are: in the range (2-4)-fold [12], 1.4- to 2.5-fold [9], about 2-fold [7] and about 2.5-fold [8].
The maximum respiration rate when adding FCCP is known as State 3FCCP, and is higher than State
3ADP (see e.g. [13]). We interpret the spare capacity as the ratio State 3FCCP/rn, meaning that the ratio
rmax/rn is lower than this. We have decided to take rmax/rn = 1.5, meaning that rn = rmax/1.5 ≈ 0.63.
The value for sn is now simply sn = sw(rn) ≈ 1.1.

6



S4.3 Maintaining, building and degrading: ρ1, ρ2 and ρ3

The model organism with the most quantitative data on mitochondrial energy budgets is budding yeast,
Saccharomyces cerevisiae. Reasoning that the scales of biophysical costs of mitochondria are likely com-
parable across eukaryotes, we first draw from this literature to motivate order-of-magnitude estimates
for a range of essential mitochondrial processes. We will later construct parallel estimates using other
organisms.

We first focus on estimating the mitochondrial building cost (in ATP) ρ2. We provide three distinct
estimations and combine them to obtain our final estimate.

For the first estimation we use a list of mitochondrial proteins in yeast [14], and obtain information
on turnover rates, abundance (per yeast cell), and lengths (amino acid length) of these proteins by using
the Saccharomyces Genome Database [15]. We end up with a list of about 200 mitochondrial proteins in
yeast S. cerevisiae. We incorporate the observation that it takes about 5.2 ATP molecules to elongate
a growing peptide chain by adding an amino acid [16], which means that the total synthesis cost of the
mitochondrial proteins included in our list is given by 5.2

∑
i lengthiabundancei ≈ 2 × 1010 ATP per

yeast cell. The known number of mitochondrial proteins in S. cerevisiae is on the order of 1000 [17];
we will therefore assume that the protein synthesis cost obtained from our protein list corresponds to
roughly a fifth of the total mitochondrial protein synthesis cost. We might expect that the proteins best
known [14] are the more abundant ones, meaning that our final cost is likely to be an overestimate. We
also assume that all of the mitochondrially associated proteins are used exclusively for mitochondrial
function. In E. coli, the mitochondrial protein synthesis cost represents ∼50% of the total mitochondrial
synthesis cost (two other major contributors are phospholipid synthesis and RNA synthesis)[16]; we will
make the assumption that this observation in E. coli holds in mitochondria as well. This brings the total
mitochondrial building cost in a single yeast cell to be about 1.9× 1011 ATP. Assuming 50-100 mtDNA
molecules per yeast S. cerevisiae cell [18], the building cost associated to a single mtDNA molecule (and
therefore the building cost of a mitochondrial unit) is given by (2− 4)× 109 ATP.

For our second estimation we use the total protein weight of a single mitochondrion which was mea-
sured to be about 3× 10−10 mg in rat liver [19], as well as the typical weight of a single protein which is
about 5×10−17 mg [16]. This means that a mitochondrion contains about 6×106 proteins. Using that the
typical length of a protein is 300 amino acids [20, 21, 16] together with the 5.2 ATP cost of adding amino
acids and the estimation that protein costs represent 50% of the entire building cost, the mitochondrial
building cost is estimated to be 2 × 1010 ATP. Note that this cost does not necessarily represent our
mitochondrial unit because it is unknown how many mtDNAs a ‘mitochondrion’ corresponded to when
measuring its weight in [19].

The third estimation is based on the building cost of an E. coli, which is about 1010 ATP [16]. Keeping
in mind that we want the building cost of a fraction of mitochondrial volume corresponding to a single
mtDNA molecule, we need to convert the building cost of an E. coli (which has a volume of about 1
µm3) to represent our mitochondrial unit. It was estimated that the total mitochondrial network length
in yeast S. cerevisiae is about 25 µm with a total mtDNA copy number of 50-100 [18]. Assuming that the
mitochondria form tubules with a constant diameter of 300 nm [22] gives a total mitochondrial volume
of about 1.8 µm3; another total mitochondrial volume estimate in yeast S. cerevisiae is 1.5 µm3 [22].
Assuming uniform distributions for the mitochondrial volume (1.5-1.8 µm3) and mtDNA copy numbers
(50-100) leads to a volume of (2.3 ± 0.5) × 10−2µm3 per mitochondrial unit. This means that rescaling
the E. coli building cost gives us an estimate of (2.3 ± 0.5) × 10−2 · 1010 = (2.3 ± 0.5) × 108 ATP to
build a single mitochondrial unit. Note that this may represent an overestimation because E. coli is a
unicellular organism, whereas the mitochondrion is an organelle which cannot survive in isolation [23].

While there are differences in these estimates, arising both from uncertainty and different quantitative
lines of reasoning, they together give an overall scale for mitochondrial building cost of around 109 ATP.
Because in our model we only need a rough estimate of the mitochondrial building cost, we use ρ2 = 109

ATP.
We interpret the maintenance cost, denoted by ρ1, as the cost in molecules ATP/s corresponding to, for

example, maintaining the mitochondrial lipid membranes, importing/exporting proteins, and synthesizing
new proteins. To obtain an estimation of ρ1, we again use the Saccharomyces Genome Database [15]. We
can calculate the cost of continuously turning over the ∼ 200 proteins in our list (obtained from [14]),
leading to 5.2

∑
i lengthiabundancei(degradation rate)i ≈ 6× 105 ATP/s per yeast cell. In other words,

the maintenance cost per second of our set of mitochondrial proteins is about five orders of magnitude
less than their synthesis cost. We therefore assume ρ1 = 10−5ρ2.

ρ3 is the most challenging parameter to estimate, as the process of mitochondrial degradation re-
mains poorly characterised. Protein production and biosynthesis costs form the bulk of mitochondrial
production requirements, and from cell-wide studies on energy budgets are among the most considerable
demands in cell biology. We therefore assume that degradation has lower energy requirements than pro-
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duction, and set its upper limit at ρ3 = 0.1ρ2. Lowering ρ3 further has little impact on the outcomes of
our model.

S4.4 Demand and resource availability: D and R

We want to model two kinds of cells: low copy number cells (1000 wildtype mtDNAs in resting state)
and high copy number cells (5000 wildtype mtDNAs in resting state). Denoting this desired number of
‘normal’ mitochondria by wn, we obtain

D = wn(sn − ρ1 − µρ3 − λρ2) (S16)

where µ and λ are the degradation and replication rates (per second). This equation says that the overall
net output of wn mitochondria exactly satisfies the demand. Using wn = 1000 and wn = 5000 leads to
D ≈ 1055 and D ≈ 5275 ATP/s.

The parameter R denotes the maximum rate at which resource can be consumed by all of the mito-
chondria together and represents a cellular resource availability. In normal resting state the total resource
that is consumed is wnrn, and the resource consumed when these mitochondria respire as fast as they
can is wnrmax. We then assuming this maximal respiration rate is achieved by using all of the available
resources, i.e. R ≈ wnrmax. It may be, however, that a state of maximum respiration can only be main-
tained for a short time, and in our cost function we want to describe the ‘steady state cost’ for different
states. We therefore assume that R < wnrmax (R now denotes the maximal respiration rate that can
be maintained for longer periods of time). We have assumed R = 0.8wnrmax leading to R = 760 and
R = 3800 for wn = 1000 and wn = 5000, respectively.

We note that we base the values for the parameters sn = sw(rn) (and therefore the other parameters)
on the linear model, with the idea that these are ‘intrinsic’ mitochondrial parameters, because we have
data for this linear model. The saturating model keeps the same intrinsic parameters but is different
because of influences from the cell itself.

S4.5 Saturating model parameters: smax and k

We have chosen the parameters of the saturating model described in equation (S15) to approximately
match the linear model for low respiration and reach a lower final ATP production rate for higher
respiration. The values we used are smax = 1.54 and k = 3.0.

S4.6 The cost of resource consumption α

The value of α, i.e. the scaling parameter that appears in the cost function given by

C(w,m) = |D − S(w,m)|+ α(wrw +mrm) (S17)

is hard to determine. Its value describes the cost of a unit of resource consumption relative to the cost
of a unit of ‘energy deficiency’ (the cost of S(w,m) being one energy-unit below D). We estimated that
a penalty for resource consumption usage should be about an order-of-magnitude less than the penalty
for not-satisfying demand, and have therefore decided to assume α = 0.1. We note that the value of α
has no influence on the shape of the demand-satisfying region, it changes the relative costs within (and
outside of) the region.

S4.7 Mutant parameters: ε1, ε2

In the main text we vary the parameter ε1, describing the resource uptake rate of mutants relative to
wildtypes. Additionaly, mutants can be less efficient than wildtypes, producing less energy per resource
consumed; we denote this lower mutant efficiency by ε2 ∈ [0, 1]. Because the number of protons that are
pumped across the mitochondrial inner membrane by the electron transport chain complexes for every
unit of resource (NADH) that is consumed is fixed, a lower ε2 would have to mean that either i) the
mutation has increased proton leak (or other ways of depolarising the membrane), or ii) the mutation has
made the ATP synthase dysfunctional. The value of ε2 can be related to the P/O ratio of the mutants
relative to that of the wildtypes. Most mtDNA mutations, however, affect the electron transport chain
complexes themselves and are therefore likely to reduce the flow of resources through the chain (which
would mean a low value for ε1). This is why we assume ε2 = 1 in our main model and only vary the
parameter 0 < ε1 < 1. For completion, here in the SI we provide a heatmap showing the cost in (w,m)
space for various values of ε2 (Figure S3).
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S4.8 Parameter units

We can relate our parameter values to actual values, e.g. expressing our demand D in ATP/s. As
an example of an ATP demand we use the ATP production rate in unstressed human skin fibroblasts.
Assuming that these healthy cells satisfy their demand, their net ATP production rate should equal their
ATP demand. The rate of ATP production in skin fibroblasts was estimated to be about 109 ATP/s,
the large majority of which is supplied by mitochondria [24]. The number of mtDNAs in healthy human
skin fibroblasts was measured to be roughly in the range 2400-5200 [25] (the variation in copy number
was partly due to variation in ages of the individuals), and we will use the value 4000 as an estimation.
Using wn = 4000 we obtain

109 = 4000(sn − ρ1 − λρ2 − µρ3)

≈ 4000(sn − ρ2(10−5 + λ+ 0.1µ)

≈ 4000
(
sn − 109

[
10−5 + 0.07/(24 · 3600) + 0.1 · 0.07/(24 · 3600)

])
(S18)

Here we used an mtDNA half-life (T1/2) of 10 days, giving a degradation rate ln(2)/10 ≈ 0.07 day−1, and
assumed that the cells are in steady state with λ = µ. This leads to sn ≈ 2.6× 105 ATP/s meaning that,
considering we used sn ≈ 1.1, our parameters sn, D are expressed in units of about 2.6 × 105 ATP/s.
This means that, in our units, the parameter values we use for ρ1, ρ2 and ρ3 are ρ1 ≈ 0.04, ρ2 ≈ 3828,
and ρ3 ≈ 383.

Par. Description default value

D Mitochondrial energy demand in ATP/s. 5110.7 (high copy number)
1022.1 (low copy number)

R Maximum rate of resource supplied by the cell to be used by
the mitochondria. We use the term ‘resource’ as an amal-
gamation of different mitochondrial resources, e.g. NAD(H),
pyruvate, lactate, succinate, ADP, Pi, and oxygen.

3800 (high copy number)
760 (low copy number)

φ φ is related to the effective P/O ratio of a wildtype mtDNA
molecule, it represents the slope of the linear relationship be-
tween rw and sw given in equation (S14)

2.0

β The fraction of the maximum respiration rate that consists of
proton leak, in ‘resource’ per second

0.1

k Parameter describing the saturation of the saturating model. 3
smax An indication of the aximum energy supplied by a wildtype

mtDNA molecule in the linear model in ATP/s.
1.54

rmax Maximum rate of resource uptake by an mtDNA molecule
(i.e. by a mitochondrion containing the mtDNA molecule).
This can be interpreted as the maximum flow through the
respiratory chain.

0.95

ρ1 The mitochondrial maintenance cost 0.04 (104 ATP/s)
ρ2 The mitochondrial building cost 3828 (109 ATP)
ρ3 The mitochondrial degradation cost 383 (108 ATP)
ε1 The mutant energy production efficiency (the energy produced

per unit of resource consumed) relative to that of wildtype
mtDNA molecules. A low value of ε1 can be caused by a high
proton leak or a deficient ATP synthase.

free parameter, ε1 ∈ [0, 1]

ε2 The mutant resource uptake rate relative to that of wildtype
mtDNA molecules. We will mainly use ε1 = 1 and ε2 < 1
because mtDNA mutations usually affect the proton pumping
electron transport chain complexes. A defect in e.g. com-
plex I will reduce its activity and therefore also the rate of
consumption of NADH.

free parameter, ε2 ∈ [0, 1]

α Scaling parameter in the cost function in front of resource
consumption term.

0.1

wopt The cheapest value for w when m = 0, using all of the above
parameter values. We have four values for wopt, corresponding
to each of the four systems we study.

1524 (saturating low)
7616 (saturating high)
638 (linear low)
3129 (linear high)

Table S1: Parameters used in our cost function with their descriptions

S5 Cost function outputs

Figure S2A shows the behaviour of equations (S14) - (S15) for various parameter values. Note that none
of the lines in the figure crosses the origin, because even when no ATP is created, respiration is required
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to maintain the gradient which would otherwise be lost due to proton leak. Figure S2B-E shows how
resource consumption rate and cost change as the number of mtDNAs changes. Three regimes can be
distinguished: 1) there are too few mitochondria present to satisfy demand and they use their maximum
possible resource uptake to get their energy production rate as close to D as possible; 2) demand can be
satisfied and the cost now only depends on the amount of resource that is used; 3) resource has become
limiting and demand cannot be satisfied any more. The main difference between the two models is that
in the linear model, when demand is satisfied, the cheapest state is the one with the smallest mtDNA
copy number possible whereas the saturating model is cheapest at a higher copy number. This is because
mitochondria in the saturating model becomes more efficient as less resources are being consumed.

1
2

A) B) C)

D) E)

Figure S2: Relationship between resource consumption and energy output. A) Here we show the energy
production rate of a single wildtype mitochondrion as a function of its resource consumption rate, as given by equations
(S14) - (S15). For the linear model (corresponding to the linear lines in the figure) the parameters φ and β are changed
by 10%, for the saturating model (corresponding to the saturating curves in the figure) we vary smax and k. The magenta
line indicates the value of rmax. Our default parameters for the linear model are based on data given in [5] B) As w
increases, the demand is shared between more mitochondria and each individual mitochondrion can afford to consume
resources at a lower rate (the same figure legend applies for figures C, D and E). C) The total resource consumption does
increase as w increases because the mitochondria need to consume a non-zero amount of resources to produce a net energy
output and each mitochondrion comes with a maintenance cost. D) The total energy produced by wildtype mitochondria
increases when mutants are present because the mutants have a net energy deficit. E) When demand is satisfied, the cost
increases with w in the linear model, meaning that the minimum cost occurs when mitochondrial copy number attains the
minimum number required to satisfy demand (1). In contrast, for the saturating model the cost decreases at first because as
the individual resource consumption drops, the energy production efficiency increases. Eventually the cost increases again
for similar reasons as in the linear model; minimum cost now occurs when mitochondria are working most efficiently (2).
Parameters ε1 = 0.1 and ε2 = 1.0 were used.

In the main text we saw that, in the saturating model, intermediate heteroplasmy values seem to
be more expensive than high or low heteroplasmy values. Here we illustrate that in high heteroplasmy
regions it is more efficient to increase heteroplasmy even more, whereas in low h conditions it is more
efficient to decrease h; this automatically implies there exists some intermediate heteroplasmy value that
is least efficient. Figures S3A, B show the amount of resource consumed by the individual wildtype and
mutant mitochondria in four different states. All states have identical total copy numbers (w+m = 104)
but different heteroplasmy values (h = 0.1, 0.3, 0.7 and 0.9). All four cases have identical total outputs
(equal to the demand). When heteroplasmy increases, the individual resource consumption rates rw and
rm both increase to compensate for the higher mutant copy number; this is true both in a low-h region
(h increases from 0.1 to 0.3, Figure S3A) and a high-h region (h increases from 0.7 to 0.9, Figure S3B).
However, the total resource consumption rate does not necessarily increase because the increase in h
has caused a number of wildtype mitochondria to become mutants, thereby decreasing their resource
usage. Computing the values of the resource consumption rates for the states with h = 0.1 and 0.3, while
referring to Figure S3A, gives:

w1rw1
= 9000 rw1

≈ 3227

m1rm1
= 1000 rm1

≈ 125

w2rw2
= 7000 rw2

≈ 2981

m2rm2
= 3000 rm2

≈ 447, (S19)
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    = 0.1 

    = 7000  
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    = 0.3

D)

B)

= 1000  
= 9000
= 0.9 

= 3000  
= 7000
= 0.7 

C)

Figure S3: Intermediate h values require more resources to satisfy demand, but only if mutants consume
less resources. A) The resource consumption rates and energy production rates of wildtypes and mutants are shown for
two states: (w1,m1, h1) = (9000, 1000, 0.1) and (w2,m2, h2) = (7000, 3000, 0.3). In both cases, the total energy output
is equal to the demand. When heteroplasmy is higher (h = 0.3), the individual resource consumption rates are higher in
order to maintain a constant total energy output. Overall, the state with h = 0.1 uses the least resources (Equations S19).
ε1 = 0.35 was used. B) This figure is similar to Figure (D) but now the two states (w1,m1, h1) = (3000, 7000, 0.7) and
(w2,m2, h2) = (1000, 9000, 0.9) are compared. The state with h = 0.9 uses the least resources (Equations (S20)). C) + D))
Similar to Figure 2 in the main text, these figures show the cost values in (w,m) space, but now as a function of ε2 (mutant
efficiency) instead of ε1. This time we show the cost in the entire space. The white lines show the region in which demand
is satisfied for our default parameter values. Because mutants consume the same amount of resource as wildtypes (ε1 = 1),
resource becomes limiting at relatively low values of m compared to when ε1 < 1. Note that intermediate heteroplasmies
are not less efficient here.

while the states h = 0.7 and 0.9 (referring to Figure S3B) give

w1rw1
= 3000 rw1

≈ 1982

m1rm1
= 7000 rm1

≈ 1618

w2rw2
= 1000 rw2

≈ 846

m2rm2
= 9000 rm2

≈ 2665. (S20)

Comparing the states with h = 0.1 and h = 0.3, the total rates of resource usage are 3352 and 3428
respectively; the lower heteroplasmy state is more efficient. However, when heteroplasmies are higher,
the high heteroplasmy state (0.9 rather than 0.7) is most efficient. This effect is due to the non-linearity
of Equation S15.

Finally, Figures S3C, D show the cost function as a heatmap in (w,m) space. This figure is similar
to Figure 2 in the main text but now we have fixed ε1 = 1 and varied ε2. Mutants are now less tolerated
because they consume just as many resources as wildtypes, but still produce less output. It is now not the
case that intermediate heteroplasmies are less efficient; intermediate heteroplasmies are only less efficient
when ε1 < 1 (mutants consume less resource) and when a saturating output model (Figure S2) is used.
When ε1, ε2 < 1, it is possible for intermediate heteroplasmies to be less efficient but the smaller the
value of ε2, the smaller the range of values of ε1 for which this is true; therefore, the effect of intermediate
heteroplasmies being less efficient will be most easily observed when the mutant efficiency is close to that
of the wildtypes.
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S6 Comparison of the cost of different control mechanisms

High costs for not sensing mutants are caused by increases in mean mutant copy number.
In Section 2.3 of the main text we introduced four different feedback controls and compared their

cost. These controls are summarized in Table S2 and will be referred to by their labels as provided in
the table. In order to compare the controls we imposed two constraints: we demand that, in the absence
of mutants, the controls have i) the same deterministic steady state, which is set to be wopt; and ii) the
same steady state variance. It seems a reasonable assumption that any control would be optimal or near
optimal in a ‘healthy’ mutant-free state. The goal is to have the controls behaving similarly when m = 0
and observe how the dynamics change in the presence of mutants.

As mentioned before (Section S2), when m = 0, the wildtype variance is completely specified by
the mtDNA degradation rate µ, the steady state copy number wopt and the control derivative ∂wλ(w)
evaluated at steady state. We here determine the magnitude of ∂wλ(w) by fixing the parameter αR in
the ‘relaxed replication model’ [26, 27]; its value was suggested to lie between 5 and 17 and here we have
used αR = 10. All controls are set to have equal values of ∂wλ(w), and λ(wopt) = µ (with m = 0) is used
to provide identical steady states (Table S2). Any free parameters left (δ in Control D and γ in control
A) are optimized with respect to our cost function; both these optimized parameters specify the relative
mutant contribution to the control.

Figure S4 shows the means and variances of the wildtypes, mutants and cost up to ∼ 82 years resulting
from stochastic simulations. The four controls all started in steady state with h0 = 0.15. We see that
the increase in cost for control B is mainly caused by the increase in mean mutant copy number.

Figure S4: Wildtype, mutant and cost dynamics for four different control strategies. Dynamics are shown for
the four controls A, B, C and D given in TableTab: Section 3 tab SI. Again, we see that the effects of the control are more
noticeable in low copy number cells. Parameter are set as given in Table S2; the degradation rate used corresponds to a
half-life of 10 days (µ ≈= 0.07). Values for wopt are those for the saturating output model at low and high copy number.
The free parameters in control A and D (γ and δ) were optimized over initial conditions in the range h ∈ [0, 0.2]. For the
optimization the default cost function parameters were used as well as ε1 = 0.3

Optimal linear controls for various mutant pathologies. Figure S5 shows the optimal values
for δ in the linear feedback control λ(w,m) = c0− c1(w+ δm) as a function of ε1. Stochastic simulations
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Label Control optimal parameters satisfying our
two constraints

A λ(w,m) =
µ(αR(wopt−w−γm)+w+γm)

(w+m)
αR = 10.0
γ is optimized

B λ(w) = c0 − c1w c1 = αRµ/wopt
c0 = µ+ c1wopt

C λ(w +m) = c0 − c1(w +m) c1 = −αRµ/wopt
c0 = µ+ c1wopt

D λ(w + δm) = c0 − c1(w + δm) c1 = αRµ/wopt
c0 = µ+ c1wopt
δ is optimized

Table S2: Four controls considered with their parameter values. Two parameters of each control are set by the
two constraints we impose. The parameter αR was proposed to lie in the range 5-17 [26] and here we used αR = 10. The
values for δ and γ are found by optimizing our cost function over the steady states corresponding to our initial conditions.
We used 50 initial conditions equally spread over the range h0 ∈ [0, 0.2]. The two values used for wopt are 1524 and 7616
(Table S1).

starting in steady state at either h0 = 0.1 or h0 = 0.8 were performed for 104 days. The mean integrated
cost over these 104 days was evaluated for different values of δ, and the optimal δ values are shown. This
was done for both the linear and the saturating model. The general trend is, as was shown for T = 100
in the main text, that the lower ε1 the lower the optimal δ.

Figure S5: At long times and high heteroplasmies, energy sensing control becomes suboptimal. Related
to Figure 3C; The optimal value of δ in a linear feedback control is shown as a function of ε1. Here we used T = 10000
(optimization time) and low copy numbers for both the linear and saturating model. The solid and dashed lines correspond
to trajectories starting at h0 = 0.1 and h0 = 0.8, respectively. The less resources the mutants consume (and the less output
they therefore produce) the lower their optimal contribution to the control.
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S7 Zinc Finger nuclease treatment model

Visualisation of Zinc Finger concentrations during treatment. As explained in the ‘Methods’
section in the main text, we simulate the treatment of cells by mitochondrially targeted Zinc Finger
Nucleases (mtZFNs). The concentration of the mtZFNs is modelled by the following equation:

[ZFN ](t) =
I0

µz − b
(
e−bt − e−µzt

)
(S21)

where I0 is the treatment strength (e.g. the initially added mtZFN concentration), b indicates the
treatment duration and µz is the mtZFN degradation rate. Figure S6A shows this equation for different
treatment durations. As we found in the main text, the weaker and longer treatment option leads to
larger heteroplasmy shifts.

Pre-treatment 
heteroplasmy value

A) B)

C) D)

Figure S6: Zinc Finger Nuclease concentrations for short and long treatments. A) Here we show the concen-
tration of mitochondrially targeted Zinc Fingers as modelled by equation (S21). The parameter values for the short and
strong treatment (I0 = 36, b = 11) are similar to those found in fitting the model to the data. For the mtZFN degradation
rate we used µZ = log(2) (corresponding to a mtZFN half-life of 1 day). There exists a possibility of increasing
heteroplasmy levels through treatment. B) The probability of increasing heteroplasmy above its initial pre-treatment
value h0, after one round of treatment and recovery, is shown as a function of h0 and ξ. Cells are initialized with a total
copy number of 500. The cross indicates the parameters used in Figure (D). The parameter values for I0, b and c1 are set to
their fitted values: (I0, b, c1) ≈ (39, 20, 3× 10−4). Other parameters used are µZ = log(2) and δ = 1. C) Similar to figure
(B), but now cells are initialized with a total copy number of 5000; in these large copy number cells stochastic fluctuations
in copy number have less effect and the probabilities of exceeding initial heteroplasmy values are smaller compared to
Figure (B). D) An example of a distribution of post-treatment heteroplasmy values is shown using parameters h0 and ξ as
indicated by the cross in Figure (B). The orange line indicates the value of h0 (the heteroplasmy that was present before
the treatment started).

Heteroplasmy values can increase after nuclease treatments. As mentioned in the Main text
in Section 2.3.2, there is a possibility for cellular heteroplasmy to increase after a treatment has been
applied. This is true especially if the selectivity of the treatment is low (i.e. ξ is close to 1) and the
initial heteroplasmy of a cell is high; in this case treating a cell may even eliminate all wildtype mito-
chondria, increasing heteroplasmy to 1. To model the extent of this effect we initialize a cell with a given
heteroplasmy h0, and let it undergo one round of treatment and recovery after which the final hetero-
plasmy is recorded. This process is repeated to obtain the probability that, given an initial heteroplasmy
h0, the final heteroplasmy after treatment exceeds h0 (P (hfinal > h0|h0)). Figures S6B,C show these
probabilities as a function of h0 and selectivity parameter ξ, for initial mtDNA copy numbers 500 and
5000; the effect-size is larger for low copy number cells. Figure S6D shows an example of the distribution
of post-treatment heteroplasmies. The recovery time used in the simulations is 30 days which is long
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enough for the cells to recover their initial copy numbers and short enough for the change in h to be al-
most completely due to treatment, rather than due to naturally occurring random drifts in heteroplasmy
values. Chances of increasing heteroplasmy are highest when h0 is very high or very low (if h0 is low the
low mutant copy numbers increase the effect of stochastic fluctuations). In the examples shown, when
ξ <= 0.6 (i.e. for every mutant that is cleaved, 0.6 wildtypes are cleaved) increases in heteroplasmy are
very unlikely to occur.

Details of Figure 5 in the Main text. Our fits to the experimental data [28] were obtained
using deterministic (ODE) simulations and least square error. During the treatments a cellular linear
feedback control λ(w,m) = c0 + c1(w + δm) is present in order for copy numbers to recover. Figures
5A and B in the Main text show deterministic and stochastic treatment trajectories using parameter
values (I0, b, ξ, c1) ≈ (40, 12, 0.76, 5 × 10−5), which are the fitted parameters obtained when assuming
the cells control the quantity (w + δm) towards a value of 1000. Parameter c0 was set to be c0 =
µ − c1 (w0 + δm0) = µ − c1 1000 with µ = 0.07 corresponding to an mtDNA half-life of 10 days. Figure
5C assumes trajectories start in their deterministic steady state. The trajectories shown in Figure 5G
have their treatment strengths optimized with respect to our cost function using the saturating model
with low copy numbers.

MtZFNs were not able to shift high-heteroplasmy 143B cybrid cells. The possibility of
shifting heteroplasmy levels by transfection with mtZFNs was shown in [28, 29]. To further test the
capacity of mtZFN to shift heteroplasmy, mtZFN2G (second generation) were transfected into human os-
teosarcoma 143B cybrid cells bearing 99% m.8993T>G mtDNA, a mutation associated with neuropathy,
ataxia, and retinitis pigmentosa (NARP). All methods used are as described in [30]. All possible com-
binations of mtZFN monomer and control plasmid, including the non-mtDNA targeted PDE12 mtZFN,
were transfected. Cells were subjected to FACS 24 hours post-transfection and cells expressing both
constructs were sorted, total cellular DNA was extracted and mtDNA heteroplasmy and copy number
measured (Figure S7A, B). Cell lines transfected with control plasmids or single mtZFN monomers did
not demonstrate any shifts in heteroplasmy or changes in mtDNA copy number. Cells expressing the
PDE12 constructs exhibited a depletion of copy number, to around 50% of control, but no shift in het-
eroplasmy was detected. Cells expressing dual mtZFN targeting the m.8993T>G mutation demonstrated
a depletion of mtDNA copy number, to around 10% of control, with a modest shift in wild-type mtDNA
heteroplasmy from 1% to 10% when quantified, though the signal-to-noise ratio of these quantifications
is poor. However, this shift was not observed when cells were measured 14 days post-transfection, nor
at 28 days, though mtDNA copy number had recovered to the control level (Figure S7C, D). These data
indicate that mtZFN are not able to shift heteroplasmy in 143B cells bearing 99% m.8993T>G mtDNA.
This is consistent with our predictions that it is difficult to decrease mutant mtDNA heteroplasmy in
cells with very high initial mutant heteroplasmy. (Section 2.3.2).
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Figure S7: Effects of mtZFN2G expression in a 143B cybrid cell line bearing 99% m.8993T>G mtDNA.
A), C) Last cycle hot PCR RFLP analysis of total cellular DNA extracts from cells transfected with indicated constructs
and subjected to FACS sorting 24 hours (A), 14 days (C, left) or 28 days (C, right) post-transfection. PDE12 constructs
are non-mtDNA sequence specific mtZFN used as a further control. B) qPCR measurement of mtDNA copy number in the
same samples as (A). D) qPCR measurement of mtDNA copy number in the same samples as (C, left). For Figures (B)
and (D) the experiments were performed in quadruplicate; error bars indicate 1 standard deviation.
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