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Abstract     21 

             Spike-timing patterns - crucial for synaptic plasticity and neural computation - are 22 

often modeled as Poisson-like random processes, log-normal distribution or gamma-23 

distribution patterns, each with different underlying assumptions that may or may not be 24 

biologically true.  However, it is not entirely clear whether (and how well) these different 25 

models would or would not capture spike-timing statistical patterns across different 26 

neurons, regions, animal species and cognitive states.  Here, we examine statistical patterns 27 

of spike-timing irregularity in 13 different cortical and subcortical regions from mouse, 28 

hamster, cat and monkey brains.  In contrast to the widely-assumed Poisson or log-normal 29 

distribution patterns, we show that spike-timing patterns of various projection neurons - 30 

including cortical excitatory principal cells, hippocampal pyramidal cells, inhibitory 31 

striatal medium spiny neurons and dopaminergic neurons, as well as fast-spiking 32 

interneurons – all invariantly conform to the gamma-distribution model.  While higher 33 

regularity in spike-timing patterns are observed in a few cases, such as mouse DA neurons 34 

and monkey motor cortical neurons, there is no clear tendency in increased firing regularity 35 

from the sensory and subcortical neurons to prefrontal or motor cortices, as previously 36 

entertained.  Moreover, gamma shapes of spike-timing patterns remain robust over various 37 

natural cognitive states, such as sleep, awake periods, or during fearful episodic 38 

experiences.  Interestingly, ketamine-induced general anesthesia or unconsciousness is 39 

associated with the breakdown of forebrain spike patterns from a singular gamma 40 

distribution into two distinct subtypes of gamma distributions, suggesting the importance 41 

of this spike-timing pattern in supporting natural cognitive states. These results suggest 42 

that gamma-distribution patterns of spike timing reflect not only a fundamental property 43 

conserved across different neurons, regions and animal species, but also an operation 44 

crucial for supporting natural cognitive states.  Such gamma-distribution-based spike-45 

timing patterns can also have important implications for real-time neural coding and 46 

realistic neuromorphic computing. 47 

 48 

Keywords: spike-timing patterns, gamma distribution, monkey, cat, mouse, spike regularity, 49 
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Introduction 51 

Spike-timing patterns play important roles in synaptic plasticity and neural 52 

computation (Gerstner et al., 1996;Markram et al., 1997;deCharms and Zador, 2000;Song 53 

et al., 2000;Sjostrom et al., 2001;Lisman and Spruston, 2005).  During cognitions and 54 

behaviors, neurons discharge their spikes in vivo with tremendous variability in both the 55 

“control” resting states and across trials within the same experiments in response to 56 

identical stimuli (Shadlen and Newsome, 1994;Brown et al., 2004;Faisal et al., 2008).  The 57 

irregularity of inter-spike intervals has long been suggested to be a fundamental process of 58 

cortical communication (Shadlen and Newsome, 1998;deCharms and Zador, 59 

2000;Mazurek and Shadlen, 2002;Ma et al., 2006;Caporale and Dan, 2008;Gilson et al., 60 

2011), and it was often modeled as a Poisson-like random process (Amarasingham et al., 61 

2006;Beck et al., 2008), log-normal distribution (Hromadka et al., 2008;Mizuseki and 62 

Buzsaki, 2013a) or gamma distribution (Kuffler et al., 1957;Averbeck, 2009;Maimon and 63 

Assad, 2009;Mochizuki et al., 2016), each with a set of assumptions that may or may not 64 

be biologically true.  A growing number of observations has shown that the neuronal spike 65 

pattern in many cortical areas seems to be inconsistent with the Poisson process, indicating 66 

that the Poisson process can either underestimate or overestimate the variabilities of 67 

neuronal spike patterns (Kara et al., 2000;DeWeese et al., 2003;Lindner, 2006;Heil et al., 68 

2007;Kang et al., 2010;Berkes et al., 2011;Li et al., 2015;Moezzi et al., 2016).   69 

More recently, log-normal distribution has been proposed to account for the 70 

variables of synaptic weights, the firing rates of individual neurons, the synchronous 71 

discharge of neural populations, the number of synaptic contacts between neurons and the 72 

size of dendritic boutons (Buzsaki and Mizuseki, 2014).  Given the fact that statistical-73 
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distribution patterns of spike activity play important roles in determining the functions of 74 

neural circuits, it is necessary to determine what actual statistical distributions spike-timing 75 

patterns exhibit across various cell types, circuits and brain states across the evolutionary 76 

spectrum. 77 

In the present study, we set out to investigate whether and how well log-normal 78 

distribution, gamma distribution, and/or Poisson model(s) would capture statistical features 79 

of spike-timing patterns.  To maximally ensure that any variation in spike timing was not 80 

due to technical differences in terms of recording methods and/or spike-sorting qualities, 81 

we employed a large-scale in vivo tetrode recording in freely-behaving mice and hamsters 82 

to collect neural spike datasets, under similar experimental protocols, from 11 brain regions 83 

(10 mouse brain regions and one hamster brain region), spanning from the prefrontal cortex, 84 

primary visual cortex, somatosensory cortex and auditory cortex to the motor cortex and 85 

limbic systems - such as the hippocampus and amygdala, as well as midbrain dopaminergic 86 

neurons in the ventral tegmental area (VTA).  To further expand the brain regions and 87 

animal species, we also analyzed the previously published datasets from the parietal cortex 88 

(parietal 5d) of the monkey brain and the primary visual cortex (V1) of the cat brain as a 89 

way to assess cross-species variability in spike-timing patterns.   90 

Given the existence of distinct cell types in the brain and their possible differences 91 

in spike-timing dynamics, we separated the recorded single units into distinct cell subtypes 92 

- including excitatory cortical cells, CA1 pyramidal cells, inhibitory medium spiny neurons 93 

in the striatum, VTA dopaminergic (DA) neurons and fast-spiking interneurons - before 94 

performing statistical analyses.  Finally, we investigated whether such dynamic spike-95 

timing patterns are varied over different natural cognitive states, including sleep, awake-96 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 9, 2018. ; https://doi.org/10.1101/145813doi: bioRxiv preprint 

https://doi.org/10.1101/145813


5 
 

resting state and during fearful stimulation, as well as pharmacologically-manipulated 97 

unnatural states, such as ketamine-induced general anesthesia – an unconscious state 98 

which differs from the natural unconscious state, namely, sleep.  99 

By systematically comparing three different models (namely, log-normal 100 

distribution, gamma distribution and Poisson) using the datasets collected from the 13 brain 101 

regions surveyed in four different animal species and under multiple different natural or 102 

unnatural brain states, we found that the spike-timing patterns of individual neurons all 103 

invariantly conformed to gamma distribution. This fundamental property is conserved 104 

across different neurons, brain regions and animal species despite large local heterogeneity.  105 

This finding will be valuable to the better examinations of real-time neural code and 106 

modeling of neuromorphic computing. 107 

Results 108 

Statistical properties of neural spike-timing patterns 109 

Spike-timing patterns, as measured by inter-spike-interval (ISI distribution 110 

probability plot), are known to be highly variable across all stages of cognitive states, 111 

including the quiet-awake resting state (for examples, see Figure 1A, Upper Subpanel).   It 112 

is well known that ISI patterns did not follow random Gaussian distribution, but exhibited 113 

a skewed distribution with heavy tails (Figure 1A, Lower Subpanel).  Given that Poisson 114 

model is known to underestimate or overestimate the variabilities of neuronal spike 115 

patterns and belongs to a special case of the gamma-distribution (when shape parameter k  116 

equals to 1), we preceded the assessment of log-normal distribution and gamma distribution 117 

in the term of their effectiveness in capturing the spike-timing dynamics across all spike 118 
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datasets.  Accordingly, we conducted a two-step analysis on individual neurons’ activity 119 

patterns by asking two basic questions: 120 

Step 1: Do the neural spike-timing patterns follow a positive-skewed or negative-121 

skewed distribution (Figure 1B)?  We characterized the distribution of inter-spike intervals 122 

(ISIs) for neural spike patterns by using two well-defined statistics - namely, 123 

nonparametric-skew ( S ) and skewness (γ ) (see Materials and Methods).  In statistics, 124 

these two parameters are measurements of the skewness (or long-tailedness) of a random 125 

variable’s distribution – that is, the distribution’s tendency to lean to one side or the other 126 

of the mean (Figure 1B).  A positive-skewed distribution (red curve in Figure 1B) has 127 

  0S >  and 0γ > , a negative-skewed distribution (blue curve in Figure 1B) has 0S <  and128 

0γ < , while a symmetric distribution (gray dotted curves in Figure 1B) has 0S =  and129 

0γ = . 130 

Step 2: Which statistical distribution model is the best to fit the (positive) skewed 131 

distribution?  As two widely-used distributions for modeling and analyzing non-negative 132 

skewed data - namely, the gamma-distribution model and the log-normal distribution 133 

model – these models were considered as alternatives for comparison (see Materials and 134 

Methods).  The gamma distribution and log-normal distribution have been previously 135 

applied for modeling firing patterns of neuron population (Mizuseki and Buzsaki, 2013b) 136 

and spike patterns of single neurons (Maimon and Assad, 2009;Pipa et al., 2013). 137 

  In Figure 1C, the ISI distribution shown in Figure 1A was analyzed here as an 138 

illustrative example.  It is evident that the gamma-distribution model provided more 139 

accurate-fitting results than the log-normal distribution model.  It should be noted that, the 140 
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parameters of both gamma and log-normal distributions in all datasets were directly 141 

estimated from the raw ISIs of neuronal spike activities by using the maximum likelihood 142 

estimates (MLE) method, which guaranteed that the analyses of ISI distributions were 143 

independent of the bin sizes used for the illustrations of ISI histograms. 144 

We then conducted goodness-of-fit analyses to quantitatively discriminate between 145 

the gamma-distribution model and log-normal distribution model.  The ratio of maximized 146 

likelihoods (RML), which is a statistical test used for comparing the goodness-of-fit of two 147 

models (Cox, 1961;1962;2013), was employed for discriminating the gamma-distribution 148 

model and the log-normal distribution model.  The natural logarithm of RML, denoted as 149 

D , was calculated as the measurement of the goodness-of-fit (see Materials and Methods).  150 

That is, the gamma-distribution model precedes the log-normal distribution model if 0D > ; 151 

otherwise, choose the log-normal distribution as the preferred model.  The larger the 152 

absolute value of D , the more accurate fitting the result of the chosen model over the other 153 

model.  154 

 In the following sections, we conducted this two-step analyses on in vivo datasets 155 

of neuronal spike activity recorded from a wide range of cortical and subcortical areas 156 

under one or multiple brain states or experimental conditions in mice, hamsters, cats and 157 

monkeys. 158 

Principal cells exhibited gamma-distribution patterns during the quiet-awake state 159 

We used 128-channel tetrode arrays (Xie et al., 2016) to record neurons from 10 160 

cortical and subcortical regions - namely, anterior cingulate cortex (ACC), retrosplenial 161 

cortex (RSC), somatosensory cortex, ventral tegmental area (VTA), primary visual cortex 162 
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(V1), secondary auditory cortex (2nd AuV), dorsal striatum (STR), hippocampal CA1, and 163 

the basolateral amygdala (BLA) - in freely-behaving mice as well as the prelimbic cortex 164 

(PrL), a subdivision of the prefrontal cortex, of freely behaving hamsters.  The qualities of 165 

recorded neurons were quantitatively measured by “Isolation Distance” (Schmitzer-166 

Torbert et al., 2005); neurons whose “Isolation Distance” >15 were selected for the present 167 

analysis.  To facilitate direct comparison, we separated putative principal cells from 168 

putative fast-spiking interneurons (see Materials and Methods).  In addition, to examine 169 

the state-dependent influence on neuronal variability, we used the spike datasets collected 170 

from the quiet-awake state as animals rested in their home-cage environments.  In several 171 

cases, we also collected the datasets in a set of mice when they were subjected to fearful 172 

experiences, such as earthquakes, foot shocks, and free-fall drops. 173 

We first calculated nonparametric-skew (  S ) and skewness ( γ ) on putative 174 

principal excitatory cells, illustrated by showing datasets from the following four brain 175 

regions - namely, the ACC (neuron number n=197), the RSC (n=321), the hippocampal 176 

CA1 (n=511) and the BLA (n=451).  Our results showed that all the principal cells in these 177 

regions exhibited similar positive-skewed distributions (Figures 2A-D).  Skewness (γ ) had 178 

a range of 1-10 (ACC = 3.82±0.11, RSC = 2.98±0.07, CA1 = 3.92±0.08, and BLA = 179 

3.55±0.09, data were shown as mean ± SEM).  Nonparametric-skew (  S ) were all in a 180 

range of 0.2-0.5 (ACC = 0.346±0.003, RSC = 0.335±0.001, CA1 = 0.335±0.002 and BLA 181 

= 0.358±0.003, data were shown as mean ± SEM). These results nicely demonstrated that 182 

the neuronal spike patterns in these four brain regions of mice indeed followed positive-183 

skewed, long-tailed distributions. 184 
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We then fitted the spike patterns of each principal cell in these four brain regions 185 

during the quiet-awake state, and estimated their parameters for gamma and log-normal 186 

distributions.  To avoid the under sampled error due to few data points, units with <250 187 

ISIs were excluded in the present analysis.  The left subpanels of Figures 3A-D showed 188 

fitted gamma and log-normal distributions of example principal cells for these four regions.  189 

D  (the natural logarithm of RML) was calculated for the fitted gamma and log-normal 190 

distributions for each of the principal cells in the four brain regions.  As shown in the right 191 

subpanels of Figures 3A-D, 0D >  was observed for all these principal excitatory cells in 192 

the four regions, demonstrating that the gamma distribution consistently outperformed on 193 

fitting neuronal spike ISIs over the log-normal distribution.  We noted that the mean firing 194 

rates and D  were highly correlated in all four regions (the correlation coefficients were:  195 

0.80 of the ACC, 0.89 of the RSC, 0.83 of the CA1 and 0.70 of the BLA).     196 

Principal cells exhibited gamma-distribution spike-timing patterns during sleep 197 

Since firing patterns could vary significantly under different brain states, we asked 198 

whether the gamma-distribution model can still capture spike-timing patterns in a robust 199 

manner.  As such, we compared the gamma distribution and the log-normal distribution in 200 

modeling neuronal activities of principal cells recorded from the same four mice’s brain 201 

regions during the animals’ sleep.  As shown in Figure 4, the gamma-distribution model 202 

outperformed the log-normal distribution model for fitting the putative principal cells 203 

during the animals’ sleep ( 0D >  for all four brain regions).  Again, the firing rates of 204 

principal cells in these four regions were also linearly correlated with D  under the sleep 205 

state (the correlation coefficients between firing rates and D  were:  0.93 of the ACC, 0.71 206 

of the RSC, 0.86 of the CA1, and 0.62 of the BLA). 207 
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All of these analyses supported the notion that the positive-skewed distribution of 208 

neuronal spike patterns can be statistically described by the gamma-distribution model in 209 

different cortical and subcortical regions of mice under distinct brain states. 210 

Preserved gamma-distribution patterns across the quiet-awake and sleep states 211 

Since the positive-skewed distribution is the intrinsic characteristic of a neuronal 212 

spike pattern, we asked whether there existed any invariant feature about this positive-213 

skewed distribution across distinct brain states.  Two parameters of the gamma-distribution 214 

model, shape parameter k  and scale parameterθ , were measured under two distinct brain 215 

states (the quiet-awake vs. sleep).  In the gamma-distribution model, the shape parameter 216 

k  describes the overall envelope of an ISI distribution, while the scale parameter θ  is 217 

related to the mean firing rate within the uncertain state (the reciprocal of the scale 218 

parameter, 1/r θ= , is known as the rate parameter).  The shape parameter k  provides 219 

useful measurements for spike dynamics under different cognitive states, with a higher k  220 

indicating more regular spiking discharge patterns and a lower k  indicating more irregular 221 

spike activities. 222 

Analyses were compared the patterns of putative principal cell activities in the four 223 

brain regions under both the quiet-awake state and the animals’ sleep (34 cells from the 224 

ACC, 102 cells from the RSC, 43 cells from the CA1, and 182 cells from the BLA).  The 225 

results showed that the two parameters of the gamma-distribution model were correlated 226 

between awake and sleep states in all four regions (Figure 5, correlation coefficient R 227 

between awakek and sleepk : ACC, R=0.89; RSC, R=0.91; CA1, R=0.94; BLA, R=0.77. 228 

Correlation coefficient R between awakeθ and sleepθ : ACC, R=0.81; RSC, R=0.71; CA1, 229 

R=0.79; BLA, R=0.48. Ps <0.0001, t-test).   230 
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We further fitted these two parameters with linear functions for visually displaying 231 

the changing trends by the slope of fitted linear dependencies (shown as the red lines and 232 

red numbers in Figure 5).  We observed that the transformations of the scale parameter θ  233 

(related to neuron’s mean firing rate) between awake and sleep states were varied among 234 

these brain regions.  Specifically, the mean firing rates of the principal cells in the ACC 235 

remained unchanged between the two states (in the right subpanel of Figure 5A, the slopes 236 

of fitted linear dependencies was 1.003).  The principal cells in the RSC exhibited increased 237 

mean firing rates in the sleep state (in the right subpanel of Figure 5B, the slopes of fitted 238 

linear dependencies was 0.835).  On the contrary, as shown in the right subpanels of Figures 239 

5C and D, the slopes of fitted linear dependences of the CA1 and BLA regions were 1.138 240 

and 1.512, respectively, indicating that the mean firing rates of the principal cells in these 241 

two regions decreased in sleep states as compared to awake states.   242 

Comparing the diverse transformations ofθ , our analyses showed that the shape 243 

parameter k  of the principal cells in all of these four brain regions was tightly correlated 244 

and highly preserved between the two states (the left subpanels of Figures 5A-D, as denoted 245 

by the slopes of fitted linear dependences of k : ACC, 1.056; RSC, 1.045; CA1, 1.010 and 246 

BLA, 1.027).  Given the fact that the shape parameter k  is the parameter for characterizing 247 

the overall shape of ISI distribution, our results provided strong evidence for the notion 248 

that the overall shapes of positive-skewed distributions of neuronal firing patterns were 249 

preserved across distinct brain states (sleep vs. awake), which is independent of the changes 250 

in firing rates under different cognitive states. 251 
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Striatal medium spiny neurons exhibited gamma distribution in spike timing 252 

Next, we investigated whether the gamma-like spike patterns reflect a general 253 

property that would remain true for GABAergic projection neurons.  Thus, we employed 254 

128-channel recording techniques and monitored activity patterns from the dorsal striatum 255 

of freely-behaving mice in the quiet-awake state.  We conducted the same statistical 256 

analysis on a dataset of 294 medium spiny projection neurons (see Materials and Methods).  257 

Being the principal projection neurons of the striatum, medium spiny projection neuron is 258 

a special type of GABAergic inhibitory cells distinct from many other types of local 259 

interneurons (Preston et al., 1980;Surmeier et al., 2007). 260 

Figure 6A showed the fitted gamma and log-normal distributions of a sample 261 

medium spiny neuron, it was evident that the gamma-distribution model produced a better 262 

result for the peak of the ISI distribution.  As shown in Figure 6B, skewness   3.77 0.10γ = ±  263 

and nonparametric-skew   0.357 0.003= ±S  (data were shown as mean ± SEM).  These 264 

results show that the neuronal spike patterns of medium spiny projection neurons also 265 

exhibited positive-skewed, long-tailed distributions.  Furthermore, the gamma-distribution 266 

model achieved superior performance on fitting neuronal spike patterns of medium spiny 267 

projection neurons over the log-normal distribution model ( 0D >  for all medium spiny 268 

projection neurons, Figure 6C).   269 

Spike-timing patterns of fast-spiking interneurons conformed to gamma distribution 270 

To further verify that the gamma-like spike-timing patterns were a universal 271 

characteristic of neuronal spike activity, we set out to examine if the neuronal spike patterns 272 

of fast-spiking interneurons also followed a gamma distribution.  A total of 136 putative 273 

fast-spiking interneurons recorded from four mice brain regions (36 from the ACC, 31 from 274 
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the BLA, 32 from the hippocampal CA1, and 37 from the RSC) were analyzed. As shown 275 

in Figures 7A and B, the neuronal spike patterns of interneurons also exhibited positive-276 

skewed, long-tailed distributions (    4.68 0.24γ = ± ,   0.327 0.004= ±S , mean ± SEM).  The 277 

goodness-of-fit analysis showed that the spike patterns of all these interneurons followed 278 

the gamma-distribution models (Figure 7C, 0D >  for all these interneurons, the 279 

correlation coefficient between D  and mean firing rates was 0.75).   280 

Dopaminergic neurons exhibited gamma-distribution spike-timing patterns 281 

To further evaluate the general utility of the gamma-distribution model for different 282 

cell types, we then analyzed dopaminergic (DA) neurons from the mouse VTA region.  The 283 

DA neuron dataset was collected from freely-behaving mice during the awake period using 284 

32- or 64-channel tetrodes as we have previously described (Wang and Tsien, 2011;Li et 285 

al., 2015).  DA neurons, which project over long distances to various cortical and 286 

subcortical sites (Swanson, 1982;Lammel et al., 2011;Beier et al., 2015), are well-known 287 

to subserve a wide range of biological functions, such as motivation and reward (Wise, 288 

2004;Everitt and Robbins, 2005;Bromberg-Martin et al., 2010;Schultz, 2013), addiction 289 

(Grace, 2000;Berridge et al., 2009), fear memory and behaviors (Pezze and Feldon, 290 

2004;Fadok et al., 2009;Wang and Tsien, 2011;Abraham et al., 2014).     291 

We analyzed a total of 84 well-identified DA neurons, as illustrated in Figure 8A. 292 

We found that the ISI distribution of VTA DA neurons can be better characterized by the 293 

gamma distribution. Skewness (   2.57 0.21γ = ± , mean ± SEM) and nonparametric-skew 294 

(   0.263 0.010= ±S , mean ± SEM) demonstrated that the neuronal spike patterns of VTA 295 

DA neurons followed positive-skewed distributions with heavy tails (Figure 8B).  Again, 296 

the gamma-distribution model outperformed the log-normal distribution model for fitting 297 
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the neuronal spike patterns of VTA DA neurons ( 0D >  for all VTA DA neurons, as shown 298 

in Figure 8C).  And the firing rates were linearly correlated with D  (the correlation 299 

coefficients between firing rates and D  was 0.33). 300 

Principal cells in the hamster prelimbic region also conformed to gamma distribution 301 

To examine the generality of gamma distribution patterns across the evolutionary 302 

spectrum, we asked whether the excitatory units in the prelimbic region (PrL) of Golden 303 

Syrian hamsters would follow the gamma-distribution spike patterns.  As described in our 304 

previous study (Xie et al., 2016a), we implanted 64-channel tetrode arrays bilaterally into 305 

the PrL region and recorded neural-activity patterns when animals were in their quiet-306 

awake states. A total of 200 putative excitatory principal cells recorded from 13 hamsters 307 

were identified as stable and well-isolated units for the analyses. 308 

The gamma and log-normal models of a sample PrL principal cell were shown in 309 

Figure 9A.  The spike patterns of these cells exhibited clearly positive-skewed, heavy-310 

tailed distributions (Figure 9B,   3.78 0.12γ = ± ,   0.341 0.003= ±S , mean ± SEM).  The 311 

goodness-of-fit analysis showed that all PrL excitatory principal cells can be better 312 

described by using the gamma-distribution models (Figure 9C, 0D >  for all PrL 313 

excitatory principal cells), and D  was linearly correlated with the mean firing rates 314 

(correlation coefficient is 0.79).  Together, we showed that these putative principal cells in 315 

the hamster PrL cortex also followed the gamma-distribution spiking patterns. 316 
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Spike-timing patterns in the monkey posterior parietal cortex area 5d exhibited 317 

gamma distribution 318 

 Next, we asked whether spike-timing patterns in primate species also followed the 319 

gamma distribution.  We analyzed the datasets collected from rhesus monkeys (Li and Cui, 320 

2013).  In this study, the single-neuron activities were recorded from the parietal cortex 321 

dorsal area 5 (area 5d) on the gyral surface adjacent to the medial bank of the intraparietal 322 

sulcus, which is closely linked to movement kinematics (Hamel-Pâquet et al., 2006) and 323 

movement preparation (Cui and Andersen, 2011). Briefly, the monkeys were required to 324 

touch the fixation center at the trial beginning. Then, the first- and second- reaching goals 325 

were simultaneously displayed for 400 ms with a green square and triangle (shifted by 135° 326 

counterclockwise from the square), respectively. After a 600 ms delay, the central green 327 

dot turned off (GO signal), and the monkeys were allowed to initiate the reaching sequence 328 

to touch the locations previously cued by the square and triangle in the correct order. 329 

Throughout the trial, the monkeys were either required to maintain eye fixation (fixation 330 

condition) at the center or allowed to move their eyes freely (free-view condition). Single-331 

reach trials were pseudo-randomly interleaved with the double-reach trials for control. 332 

Here, we analyzed a total of 211 single units and observed that the spike patterns of monkey 333 

area 5d neurons also exhibited obvious positive-skewed distributions (Figures 10A and B, 334 

  17.81 1.37γ = ± ,   0.219 0.007= ±S , mean ± SEM), and can be best modeled by gamma-335 

distribution (Figure 10C, 0D >  for all area 5d neurons, the correlation coefficient between 336 

D  and mean firing rates was 0.42). 337 
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Spike-timing patterns in cat primary visual cortex conformed to gamma distribution  338 

 To further investigate the generality of gamma distribution patterns in different 339 

animal species, we analyzed a dataset of extracellular recordings from the primary visual 340 

cortex of anesthetized adult cats that were deposited in the public domain (Dan et al., 2009).  341 

This dataset was originally performed for measuring the spatiotemporal receptive fields of 342 

cortical cells (Touryan et al., 2002;Felsen et al., 2005;Touryan et al., 2005;Dan et al., 2009).  343 

One of two different visual stimuli, either 1-D white noise [473 neurons, 1-D white noise 344 

(random bars) aligned to the preferred orientation of each cell] or 2-D stimuli (202 neurons, 345 

natural images, natural phase and random phase), were delivered to the anesthetized cats.  346 

Thus, this dataset was not only ideal for verifying the gamma-distribution model, but it 347 

also afforded us an opportunity to examine if the gamma-distribution model was robust 348 

under two different types of stimulus conditions. 349 

 First, we observed that the spike patterns of the neurons in the primary visual cortex 350 

of cats all followed positive-skewed distribution under 1-D white noise (cat V1: 1-D) 351 

(Figures 11A and C,   2.80 0.04γ = ± ,   0.421 0.004= ±S , mean ± SEM) and 2-D stimuli (cat 352 

V1: 2-D) (Figures 11B and D,   2.81 0.05γ = ± ,   0.392 0.006= ±S , mean ± SEM).  353 

Furthermore, the distributions of γ  and S  showed no significant differences under these 354 

two distinct types of stimuli (p > 0.94, t-test).  Second, the goodness-of-fit analysis 355 

demonstrated that the gamma distribution outperformed the log-normal distribution for 356 

characterizing the spike patterns of the primary visual cortex neurons under both 1-D white 357 

noise and 2-D stimuli (Figures 11E and F, the correlation coefficients between D  and 358 

mean firing rates were 0.44 for 1-D white noise and 0.41 for 2-D stimuli).  These results 359 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 9, 2018. ; https://doi.org/10.1101/145813doi: bioRxiv preprint 

https://doi.org/10.1101/145813


17 
 

demonstrated that spike-timing patterns in the primary visual cortex of cats also followed 360 

the gamma-distribution model.  Moreover, overall gamma distribution remained robust 361 

over different stimulus types. 362 

Preserved gamma-distribution spike patterns under fearful episodes 363 

To further examine whether and how well gamma-distribution patterns capture 364 

spike-timing patterns across different brain states, we performed additional set of 365 

experiments under which mice were subjected to fearful stimulation.  Specifically, two 366 

datasets were recorded from the ACC and RSC regions when mice experienced three 367 

fearful episodic events, namely, earthquakes, foot shocks and free-fall drops (see Materials 368 

and Methods) as well as during the quiet-awake and sleep states.  A total of 95 and 120 369 

principal cells were recorded from the ACC (three mice) and RSC (four mice), respectively.  370 

As shown in Figure 12, the goodness-of-fit analysis confirmed that the spike-timing 371 

patterns followed gamma distribution under these three brain states ( 0D > ).   372 

Furthermore, the firing rates and D  were highly linearly correlated in all three 373 

brain states (left subpanels of Figures 12A and B) with D  increasing with higher firing 374 

rates (the correlation coefficients between firing rates and D  were:  0.94 of the ACC and 375 

0.71 of the RSC for the quiet-awake state; 0.93 of the ACC and 0.71 of the RSC during 376 

sleep; and 0.91 of the ACC and 0.84 of the RSC during the fearful-event experiment).  377 

Interestingly, compared with the quiet-awake state and sleep, the gamma-distribution 378 

model provided even more accurate-fitting results from the stimulated states (as shown by 379 

the gradients of the fitted, linear relationships between firing rates and D , left subpanels 380 

of Figures 12A and B).   381 
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We also examined the robustness of the shape parameter k  by calculating the 382 

correlations between these three distinct brain states, revealing that the shape parameter k383 

was preserved not only between the quiet-awake state and sleep but also in behaving 384 

animals experiencing fearful events (right subpanels of Figures 12A and B, the correlation 385 

coefficients were: ACC, 0.83 between the quiet-awake state and sleep, 0.75 between sleep 386 

and the behaving state, and 0.71 between the quiet-awake state and behaving state; RSC, 387 

0.96 between the quiet-awake state and sleep, 0.95 between sleep and the behaving state, 388 

and 0.94 between the quiet-awake state and behaving state).  Thus, our analysis 389 

demonstrated that the spike-timing patterns conformed to gamma distribution with 390 

preserved shape parameter k  under both resting states (the quiet-awake and sleep states) 391 

and emotionally activated states (in which fearful experiences were represented). 392 

Regularities of spike-timing patterns across different cells and brain regions  393 

 Given the critical roles of regularity or irregularity of spike-timing patterns in 394 

synaptic plasticity and neural computations, we further asked how spike dynamics vary 395 

over a wide range of different brain regions.  Therefore, we systematically recorded and 396 

compared the regularities of neuronal spike patterns in a wide range of mouse brain regions.  397 

This includes a total of 10 mouse brain regions as follows: 1) 84 DA neurons from the 398 

VTA; 2) 85 excitatory principal cells from the somatosensory cortex; 3) 615 excitatory 399 

principal cells from the RSC; 4) 342 excitatory principal cells in the primary visual cortex 400 

(V1); 5) 325 CA1 pyramidal cells; 6) 41 excitatory principal cells recorded from the 2nd 401 

AuV, 7) 56 neurons from the primary motor cortex (M1); 8) 195 excitatory principal cells 402 

from the ACC; 9) 263 pyramidal cells in the BLA, and 10) 221 medium spiny neurons in 403 

the STR.  The datasets collected from these 10 mouse brain regions offered a unique 404 
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opportunity for cross-region comparisons, because the tetrode recording techniques and 405 

criteria used for spike sorting were from the same laboratory. 406 

Moreover, we analyzed 182 excitatory principal cells from the hamster PrL 407 

obtained in the laboratory; In addition, 475 units in the cat V1 during 1-D white noise and 408 

207 excitatory principal cells from the cat V1 area during 2-D stimuli (from Dan 409 

laboratory), as well as 206 excitatory cells in the monkey brain area 5d (from Cui 410 

laboratory).  In addition, GABAergic interneurons recorded from four mouse brain region 411 

(36 interneurons in mouse ACC region, 37 interneurons in mouse RSC region, 32 412 

interneurons in mouse hippocampal CA1 region, and 31 interneurons in mouse BLA region) 413 

were also included in our analysis for systematically comparison of spike-timing 414 

regularities across distinct brain regions as well as different cell types.  As a result, the 415 

datasets consisted of a total of 3,378 neurons obtained from 13 brain regions of the four 416 

species (mice, hamsters, cats and monkeys). 417 

We compared the regularities of neuronal spike patterns in these brain regions by 418 

examining the shape parameters k  of their gamma distribution patterns.  Based on its 419 

definition, k  provides an effective way to measure neuronal spike patterns’ regularities. A 420 

gamma distribution with =1k  is the mathematical equivalent to an exponential distribution, 421 

the corresponding neuronal spike pattern fits a Poisson process (shown as the gray 422 

horizontal line in Figure 13). Neuronal spike patterns with 1k <  indicate that the neuron 423 

discharges more frequently in short and long intervals than the exponential distribution – 424 

namely, irregular spiking. When 1k > , the peaks of ISI distributions shift away from zero, 425 

and the neuron discharges more regular spiking than the Poisson process. Gamma 426 
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distribution with k = ∞  is the distribution of no variance, and the corresponding neuronal 427 

spike pattern is perfectly regular. 428 

We grouped these neurons according to their general anatomical locations and cell 429 

types, namely, seneory cortices (mouse V1, cat V1, mouse RSC, mouse somatosensory, 430 

and mouse 2nd AuV), prefrontal cortices (mouse ACC and hamster PrL), motor cortices 431 

(mouse M1 and monkey 5d), limbic regions (mouse BLA and mouse CA1), DA neurons 432 

(mouse VTA), and GABAergic neurons (mouse STR, interneurons in mouse ACC, BLA, 433 

CA1 and RSC).   434 

As shown in Figure 13, we observed that the neuronal spike patterns in most brain 435 

regions exhibited more irregular spiking than the Poisson process ( k : 0.844±0.015 in 436 

mouse V1, 0.530±0.007 in Cat V1: 1-D, 0.636±0.013 in Cat V1: 2-D, 0.921±0.008 in 437 

mouse RSC, 0.719±0.040 in mouse 2nd AuV, 0.689±0.015 in mouse ACC, 0.793±0.018 in 438 

hamster PrL, 0.791±0.033 in mouse M1, 0.632±0.013 in mouse BLA, 0.825±0.010 in 439 

mouse CA1, 0.601±0.014 in mouse STR, 0.921±0.032 of interneurons in mouse ACC, 440 

0.749±0.061 of interneurons in mouse BLA, and 0.804±0.029 of interneurons in mouse 441 

hippocampal CA1, data were shown as mean ± SEM).  442 

We also noted that neurons in the other three brain regions seemed to discharge 443 

more regular spikes than the Poisson process ( k : 1.240±0.039 in the mouse somatosensory 444 

cortex, 1.610±0.055 in the monkey brain motor area 5d, and 1.806±0.104 by DA neurons 445 

from the mouse VTA, data were shown as mean ± SEM). There were significant 446 

differences between three regular-spiking regions in comparison to 15 regions which 447 

showed irregular-spiking (p < 0.0001, One-way ANOVA coupled with Tukey's posthoc 448 
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test).  Overall, there is no obvious tendency in increased firing regularity from the sensory 449 

and subcortical neurons to prefrontal or motor cortices. 450 

Gamma-distribution spike patterns were dramatically altered under anesthesia 451 

If the gamma-distribution spike-timing patterns reflect a fundamental and 452 

conserved property for natural cognitions produced by naturally occurring internal states 453 

and external inputs, we hypothesized that such gamma-distribution spike-timing patterns 454 

would be altered if naturally occurring cognitions were pharmacologically shut down (i.e., 455 

upon anesthesia).  Accordingly, we used ketamine/domitor to induce general anesthesia 456 

and compared neuronal spike activities from the BLA, CA1 and RSC regions with those in 457 

the awake states from the same set of mice.  We found that ketamine induced rhythmic 458 

spike discharge patterns as well as synchronized local field potential (LFP) oscillation In 459 

all these three brain regions (Figures 14A-C). Most notably, ketamine-induced general 460 

anesthesia produced profound delta band in LFP (Figures 14A-C, middle subpanels).  while 461 

the frequencies of the rhythmic spike patterns were different in these brain regions - 462 

specifically, BLA > CA1> RSC, the spike patterns of pyramidal cells in these three regions 463 

during awake periods conformed to the gamma-distribution model (Figures 14A-C).  464 

However, the spike patterns of these pyramidal cells during anesthesia were broken down 465 

from a single gamma distribution (p<1E-5, one-sample Kolmogorov-Smirnov test) into 466 

two distinct subtypes of gamma distributions - as shown in the right subpanels of Figures 467 

14A-C.  The gamma shapes of the two subtypes of the distributions revealed that the 468 

Subtype-1 is highly irregular, reflecting bursting firing, whereas the second gamma 469 

distribution subtype showed highly regular, rhythmic spike-timing patterns in the range of 470 

delta frequency. This pharmacologically-based manipulation experiment demonstrated that 471 
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the naturally-occurring and ongoing external and internal processes are essential for 472 

generating a singular gamma-distribution spike pattern for various neurons, whereas 473 

ketamine-induced general anesthesia were associated with the breakdown of this singular 474 

distribution pattern into two distinct subtypes of gamma-distribution spiking patterns. 475 

Discussion 476 

Given the critical roles of spiking-timing patterns in synaptic plasticity and neural 477 

coding, it is important to understand the statistical patterns in spike-discharge dynamics in 478 

a brain-wide manner, as well as across multiple mammalian species.  Although researchers 479 

have extensively modeled spike-timing patterns over decades of research, only several 480 

studies have compared spike regularity or irregularity over multiple brain subregions 481 

and/or animal species (Maimon and Assad, 2009;Mochizuki et al., 2016).  One major 482 

caveat of any comparative experiment is that datasets were collected using rather different 483 

recording methods and with or without stringent spike-sorting criteria, leading to variations 484 

that may affect the outcome.   To circumvent or minimize such technical variability, we 485 

have employed large-scale tetrode recording techniques and recorded from a total of 10 486 

brain regions from mice and one region from hamsters using the same procedures and 487 

similar experimental protocols.  These datasets were further compared with additional 488 

datasets from two brain regions of cats and monkeys that were collected by other 489 

laboratories.  This systematic analysis of a wider range of brain regions, behavioral states, 490 

cell types and animal species has produced several important insights that are revealing to 491 

us. 492 
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First, the gamma distribution consistently outperforms Poisson distribution or log-493 

normal distribution models across all datasets.  Throughout the literature, spike patterns 494 

were often modeled with three different methods - namely, gamma distribution (Kuffler et 495 

al., 1957;Averbeck, 2009;Maimon and Assad, 2009;Mochizuki et al., 2016), log-normal 496 

distribution (Hromadka et al., 2008;Mizuseki and Buzsaki, 2013a) and Poisson-distribution 497 

process (Amarasingham et al., 2006;Beck et al., 2008), respectively.  Because three 498 

statistical models have made different assumptions with underlying biological meaning 499 

that may or may not be true, it would be important to assess the statistical patterns over a 500 

wide range of cell types, regions, brain states and animal species, which have not been 501 

performed until now.  We found that the neuronal spike-timing patterns have all conformed 502 

to gamma distributions. 503 

In our analyses, we showed that Poisson process can only account for very small 504 

numbers of cells (when shape parameter =1k ) (see Figure 13), a special case of the gamma-505 

distribution.  This is consistent with the notion that the Poisson model can either 506 

underestimate or overestimate the variabilities of neuronal spike patterns (Kara et al., 2000; 507 

DeWeese et al., 2003; Lindner, 2006; Heil et al., 2007; Kang et al., 2010; Berkes et al., 508 

2011; Li et al., 2015; Moezzi et al., 2016).  According to the independent spike hypothesis 509 

that the generation of each spike is independent of all the other spikes, the neuronal spike 510 

train would be completely described as a particular kind of random process called the 511 

Poisson process.  If the Poisson process holds true for neuronal spike-activity patterns, ISI 512 

distribution would be statistically described by the exponential-distribution model.  513 

However, there are certain important features of neuronal firing that may render this 514 

simplistic assumption unsatisfactory or inaccurate for capturing spike-time patterns.  In 515 
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fact, burst-firing and the refractory periods after the generation of spikes can make neuronal 516 

spike patterns deviate away from a Poisson process (exponential-distribution model).   We 517 

showed that the neuronal spike-timing patterns were best captured by gamma distributions.   518 

Recently, log-normal distribution has been proposed to account for many variables 519 

of brain parameters (e.g., firing-rate distributions of neurons, the number of synaptic 520 

contacts between neurons, and the size of dendritic boutons), which had a positive-skewed, 521 

long-tailed distribution (Mizuseki and Buzsaki, 2013; Buzsaki and Mizuseki, 2014).  522 

Quantifications of cortical principal neurons have shown that the mean firing rates of 523 

individual neurons can span at least four orders of magnitude and that the firing-rate 524 

distribution of both stimulus-evoked and spontaneous activity in cortical neurons fit well 525 

with the log-normal distribution model.   While our results support the notion that spike-526 

timing patterns of single neurons followed a positive-skewed distribution, we found that 527 

the gamma-distribution model has consistently offered more precise fitting to the spike-528 

timing patterns from all these brain regions, cell types, animal species and brain states.   529 

Second, assessing from 13 different brain regions, we noted that there is the lack of 530 

a clear trend in increased regularity from primary sensory to higher cortical or motor 531 

cortical areas, as two previous studies had indicated (Maimon and Assad, 2009;Mochizuki 532 

et al., 2016).   While our analysis of the parietal cortex dorsal area 5 (area 5d) in the monkey 533 

brain indeed found these motor-related neurons exhibited higher regularity, we showed that 534 

the mouse M1 cortex seemed to have similar irregular firing patterns in comparison to the 535 

mouse V1, auditory cortex, and RSC - as well as the prefrontal cortices, such as the PrL 536 

and ACC.  The fact that we confirmed more regular firing in monkey 5d datasets from Cui 537 

laboratory argue against the idea that the discrepancy was simply due to different recording 538 
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and analysis techniques.  One possible explanation for this discrepancy between monkey 539 

parietal cortex area 5d and mouse M1 cortex is the difference in how the datasets were 540 

collected under different training conditions.  In monkey, spike datasets were typically 541 

collected after monkeys were subjected to extensive behavioral training over many weeks 542 

and months, whereas our M1 datasets from mice were collected from naïve mice which 543 

were not subjected to any particular motor tasks.  In fact, past studies have reported that 544 

cortical neurons, including M1 neurons, can generate spike trains with high irregularity 545 

(bursting) (Mountcastle et al., 1969;Bair and Koch, 1996;Buracas et al., 1998;Masse and 546 

Cook, 2008).  Thus, trial conditions (such as oscillatory stimulus presentation or rhythmic 547 

motor actions) and extensive training of animals (over weeks and months) on motor tasks 548 

may influence spiking dynamics via experience-dependent plasticity and learning 549 

experience.   550 

Among cells exhibiting higher firing regularity, we noted that DA neurons in the 551 

VTA and excitatory principal cells from the somatosensory cortex of the mouse brain 552 

belonged to this list.  Tonic firing of DA neurons with their unique synaptic and cellular 553 

machinery can contribute to this unique pattern.  We and other laboratories have reported 554 

different subtypes of DA neurons (Wang and Tsien, 2011), it will be interesting to further 555 

analyze how subtype DA neurons differ in their spike-timing patterns in future experiments. 556 

We found that principal neurons in the mouse and cat V1 cortex – such as principal 557 

excitatory cells from the mouse retrosplenial cortex, secondary auditory cortex, anterior 558 

cingulate cortex, basolateral amygdala and hippocampal CA1 pyramidal cells – as well as 559 

inhibitory projection cells of striatum and fast-spike putative local interneurons, all tend to 560 

exhibit greater irregularity, a property likely due to different burst-firing dynamics of these 561 
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neurons.  It is noteworthy that current classification of cell types were based on waveforms 562 

and/or firing rates.  More sophisticated classification will be necessary for future analyses.  563 

It is known that even within CA1 pyramidal cells, they may contain distinct subtype cells 564 

with a different burst index (Mizuseki et al., 2011; Li et al., 2015), a feature that can affect 565 

spike-time irregularity. 566 

Third, by taking advantage of recorded spike datasets collected from the same 567 

animals under different cognitive states, we have examined the question of how different 568 

brain states influence the overall statistical patterns of spike-timing dynamics.  Accordingly, 569 

we have verified that the spike-timing patterns conformed to gamma distribution under the 570 

quiet-awake and sleep states. One may argue that the spike-timing patterns during these 571 

brain states could be represented or dominated by “noise.”  Therefore, it would be 572 

important to exclude such a possibility by using spike datasets from animals during more 573 

active states.  By performing fearful stimulation experiments, we showed that gamma-574 

distribution spike patterns not only continued to remain robust, but also the gamma-575 

distribution model provided even more accurate-fitting results in comparison to awake 576 

resting or sleep states. 577 

It should be noted that despite neurons’ mean firing rates varied between distinct 578 

natural states (i.e., sleep vs. awake resting period) (shown by the scale parameter θ  in the 579 

right subpanels of Figures 5A-D), the overall shapes of the neuronal spike patterns are 580 

preserved across different states (shown by the scale parameter k  in the left subpanels of 581 

Figures 5A-D).  This supports the notion that while distinct brain activity states or inputs 582 

may boost or lessen the mean firing rates, the statistical characteristics of spike-timing 583 

patterns are able to remain robust and likely reflect preconfigured, skewed synaptic 584 
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connections and/or intrinsic electrical/chemical attributes of a neuron.  Similarly, the 585 

datasets from the anaesthetized cat V1 under two different visual stimulation conditions 586 

also showed the conserved gamma-distribution patterns.   This conserved characteristic 587 

may be useful in term of offering a potential way of estimating a neuron’s spike pattern 588 

among distinct states.  For example, instead of recording a single neuron’s spike train for 589 

a long period to get the statistical distribution of its spike pattern in the awake resting state, 590 

one may predict it by using the shape parameter k  calculated under the sleep state and/or 591 

a mean firing rate within a shorter period in the stimulated state, or vice versa.   592 

Fourth, given the widely conserved gamma-distribution spike-timing patterns 593 

across cell types, brain regions and naturally-occurring cognitive states, one may ask how 594 

important this pattern would be.  In other words, does the disruption of this conserved 595 

gamma distribution pattern alter brain state and/or cognition?  To address this question, we 596 

used ketamine-induced general anesthesia as a way to examine the relationship between 597 

gamma-distribution patterns and cognitions.  The main action of ketamine is the blockade 598 

of the NMDA receptors, which is traditionally believed to reduce activation in the thalamo-599 

cortical structures via blocking the inputs of afferent stimuli and information integration to 600 

the conscious mind (Alkire et al., 2008;Sinner and Graf, 2008).  Interestingly, we found 601 

that ketamine turned a singular gamma distribution of spike-time patterns in the BLA, CA1 602 

and RSC cells into two distinct subtypes of gamma distributions (see gamma distributions 603 

1 and 2 in Figure 14).   Most notably, subtype-2 gamma distribution showed highly regular 604 

firing patterns, which seem to be associated with the emergence of the delta band 605 

oscillation in simultaneously recorded LFP.  Therefore, ketamine-induced unconsciousness 606 
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is different from natural unconscious (sleep) states in term of dynamic spike-timing 607 

patterns. 608 

In conclusion, we systematically investigated the statistical patterns of spike-timing 609 

irregularity in 13 different cortical and subcortical regions of mouse, hamster, cat and 610 

monkey brains.  By comparing the effectiveness of different models, we show that spike-611 

timing patterns of various projection neurons - including cortical excitatory principal cells, 612 

hippocampal pyramidal cells, inhibitory striatal medium spiny neurons and dopaminergic 613 

neurons, as well as fast-spiking interneurons – all invariantly conform to the gamma-614 

distribution model.  While higher regularity in spike-timing patterns is observed in a few 615 

cases, such as mouse DA neurons and monkey motor cortical neurons, there is no clear 616 

tendency in increased firing regularity from the sensory and subcortical neurons to 617 

prefrontal or motor cortices.  Moreover, gamma shapes of spike-timing patterns remain 618 

robust over various natural brain states - such as sleep, awake resting periods, as well as 619 

during fearful experiences.  However, ketamine-induced general anesthesia led to the 620 

breakdown of spike patterns from a singular gamma distribution into two distinct subtypes 621 

of gamma distributions.  Taken together, the above results suggest that gamma-distribution 622 

patterns of spike timing reflect not only a fundamental property (Song et al., 2000;Lisman 623 

and Spruston, 2005) conserved across different neurons, regions and animal species, but 624 

also an operation crucial for supporting naturally-occurring cognitive states.  Such gamma-625 

distribution-based, spike-timing patterns may also have important implications for 626 

investigating real-time neural coding (Buzsaki, 2010;Gupta et al., 2010;Xie et al., 2016a) 627 

and perhaps better modeling of neuromorphic computing.   628 

  629 
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Materials and Methods 630 

Ethics Statement 631 

All animal work described in the study was carried out in accordance with the 632 

guidelines laid down by the National Institutes of Health in the United States, regarding 633 

the care and use of animals for experimental procedures, and was approved by the 634 

Institutional Animal Care and Use Committee of Augusta University (Approval AUP 635 

number: BR07-11-001).  636 

Construction of tetrode headstages and animal surgery of the datasets of mouse BLA, 637 

CA1, ACC, RSC, STR, V1, 2nd AuV, M1, and somatosensory cortex, and hamster 638 

PrL. 639 

Tetrodes and headstages were constructed using the procedures as we have 640 

previously described (Lin et al., 2006;Xie et al., 2016a;Xie et al., 2016b). To construct 641 

tetrodes, a folded piece consisting of four wires (90% platinum, 10% iridium, 13 μm, 642 

California Fine Wire Company, Grover Beach, CA, USA) was twisted together using a 643 

manual turning device and soldered with a low-intensity heat source (variable temperature 644 

heat gun 8977020, Milwaukee, Brookfield, WI, USA) for six seconds. The impedances of 645 

the tetrodes were measured with an electrode impedance tester (Model IMP-1, Bak 646 

Electronics, Umatilla, FL, USA) to detect any faulty connections, and our tetrodes were 647 

typically between 0.7 MΩ and 1 MΩ. The insulation was removed by moving the tips of 648 

the free ends of the tetrodes over an open flame for approximately three seconds. The 649 

tetrodes were then placed into appropriate polyimide tubes. The recording ends of the 650 

tetrodes were cut differentially (Vannas spring scissors −3 mm cutting edge, Fine Science 651 

Tools, Foster City, CA, USA) according to the different depths of the recording sites. This 652 
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ensures that only tetrodes, but not the surrounding polyimide tubes, were inserted into the 653 

brain tissue, thereby minimizing the tissue damage. 654 

We employed adjustable 128-channel tetrode microdrives to target the basolateral 655 

amygdala (BLA; n = 8 WT mice), hippocampal CA1 (n = 9 WT mice), anterior cingulate 656 

cortex (ACC; n = 7 WT mice), the retrosplenial cortex (RSC; n = 20 WT mice), dorsal 657 

striatum (STR; n = 7 WT mice), primary visual cortex (V1; n = 14 WT mice), 2nd auditory 658 

cortex (2nd AuV; n = 9 WT mice), somatosensory cortex (n = 11 WT mice), and hamster 659 

prelimbic region (PrL; n = 13 WT Golden Syrian hamsters) bilaterally with 64 channels 660 

per hemisphere (Lin et al., 2006).  Stereotaxic coordinates were as follows: for BLA, 1.7 661 

mm posterior to bregma, 3.5 mm lateral, −4.0 mm ventral to the brain surface; for ACC, 662 

+0.5 mm AP, 0.5 mm ML, −1.75 mm DV; or CA1, 2.0 mm lateral to the bregma and 2.3 663 

posteriors to the bregma; for RSC, −2.5 mm AP, 0.5 mm ML, −0.8 mm DV; for STR, +0.62 664 

mm AP, 1.35 mm ML, −2.0 mm DV; for V1, -3.08 mm AP, 2.5 mm ML, −0.5 mm DV; 665 

for 2nd AuV, -1.94 mm AP, 4.75 mm ML; for somatosensory cortex, -1.1 mm AP, 1.5 mm 666 

ML; and for recording in the prelimbic cortex (PrL) of the Golden Syrian hamster, the 667 

stereotaxic coordinate was +3.50 mm AP, ± 0.7 mm ML, −4.0 mm DV (Paxinos and 668 

Franklin, 2004). 669 

Male wild-type mice (6–8 months old) or adult male hamsters (3–4 months old) 670 

were moved from home cages housed in the LAS facility to the holding area next to the 671 

chronic recording rooms in the laboratory and stayed in a large plastic bucket (20 inches in 672 

diameter and 16 inches in height – per mouse, Walmart) with access to water and food for 673 

a week prior to surgery. During this period, the animals were also handled daily to 674 

minimize the potential stress from human interaction. On the day of the surgery, the animal 675 
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was given an intraperitoneal injection of 60 mg/kg Ketamine (Bedford Laboratories, 676 

Bedford, OH, USA) and 4 mg/kg Domitor (Pfizer, New York, NY, USA) prior to the 677 

surgery. The head of the animal was secured in a stereotaxic apparatus, and an ocular 678 

lubricant was used to cover the eyes. The hair above the surgery sites was removed, and 679 

Betadine solution was applied to the surface of the scalp. An incision was then made along 680 

the midline of the skull. Hydrogen peroxide (3% solution, Fisher Scientific) was placed 681 

onto the surface of the skull so that bregma could be visualized. The correct positions for 682 

implantation were then measured and marked. For fixing the microdrive headstage, four 683 

holes for screws (B002SG89S4, Amazon, Seattle, WA, USA) were drilled on the opposing 684 

side of the skull and, subsequently, the screws were placed in these holes with reference 685 

wires being secured to two of the head screws. Craniotomies for the tetrode arrays were 686 

then drilled, and the dura mater was carefully removed. After the electrodes were inserted 687 

and tetrodes were secured to the fiberglass base, the reference wires from the connector-688 

pin arrays were soldered such that there would be a continuous circuit between the ground 689 

wires from the head screws and those from the connector-pin arrays. Finally, the connector-690 

pin arrays were coated with epoxy. Aluminum foil was used to surround the entire 691 

headstage to aid in the protection and to reduce noise during recordings. The animals were 692 

then awoken with an injection of 2.5 mg/kg Antisedan. The animals were allowed to 693 

recover post-surgery for at least 3–5 days before recording began. Then, the electrode 694 

bundles targeting the BLA, STR and hippocampal CA1 region were slowly advanced over 695 

several days in small daily increments. For the cortical sites, tetrodes were advanced 696 

usually only once or twice in a small increment.  At the end of the experiments, the mice 697 

were anesthetized, and a small amount of current was applied to the recording electrodes 698 
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in order to mark the positions of the stereotrode bundles. The actual electrode positions 699 

were confirmed by histological Nissl staining using 1% cresyl echt violet. In some 700 

experiments, for facilitating the identification of electrode array position, the electrode tips 701 

were dipped in fluorescent Neuro-Dil (Neuro-Dil, #60016, Red oily solid color, from 702 

Biotium, Inc.), which then reveal the electrode track. 703 

Experimental Design  704 

 We recorded mouse (B6BCA/J) STR, V1, 2nd AuV, M1, somatosensory cortex, 705 

and hamster PrL when animals were in the quiet-awake state.  The datasets of the mouse 706 

(B6BCA/J) ACC, RSC, CA1 and BLA were recorded under two distinct states: the quiet-707 

awake state and sleep state. 708 

In vivo recording of the datasets of the mouse BLA, CA1, ACC, RSC, STR, V1, 2nd 709 

AuV, M1, somatosensory cortex, and hamster PrL 710 

After surgery, the animals were handled for another 5–10 days while electrodes 711 

were advanced to the recording sites for obtaining the maximum neural units.   712 

For the datasets of the mouse STR, 2nd AuV, M1, somatosensory cortex, and 713 

hamster PrL, recordings were carried out while the animals were in their home cages. 714 

Quiet-awake episodes were manually assigned when the mice were awake and immobile.  715 

Neuronal spike data during the awake state was recorded for at least 15 minutes for each 716 

animal.   717 

For the datasets of the mouse ACC, RSC, CA1 and BLA, we recorded the neuronal 718 

spike activity in both the quiet-awake state and the sleep state.  Recordings were first 719 

carried out while the animals were in their home cages. To identify the sleep episodes, local 720 
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field potentials were first band-pass filtered in theta band (4–12 Hz) and delta band (1–721 

4 Hz); then the ratio of the power in theta band to that of delta band was calculated. Two 722 

criteria were applied to extract from the sleep state: (1) Duration of an epoch was longer 723 

than five seconds, and (2) the ratio of the power during an epoch was greater than mean 724 

5SD. For each mouse, the awake and sleep states were recorded for at least 15 minutes. 725 

For the dataset of mouse V1, we set up an experimental configuration modified 726 

from the design of a previous study (Niell and Stryker, 2010).  Briefly, a treadmill (five 727 

inches in diameter) was levitated by a stream of pressured air, the tangential force of a 728 

mouse running on the treadmill was calculated to be comparable to the force needed for 729 

free running.  There was a lick port in front of the mouse’s mouth, dropping sugar water 730 

every minute. A camera with a telescope was set at the right side of the mouse eye (8cm 731 

distance) for monitoring eye movement.  The mouse has implanted electrode arrays in the 732 

primary visual cortex of the left hemisphere for chronic recording a week before a head-733 

fixed visual stimulation experiment. For habituation, the mouse was fixed on the top of a 734 

treadmill two hours every day, by mounting the headstage on a metal holder.  An optical 735 

mouse was placed underneath the treadmill to measure the animal’s movements.  During 736 

the recording, the mouse was to either sit still or run on the treadmill.  We found that the 737 

eye movement and animal’s movement state were highly synchronized; the eyeball was 738 

almost fixed when the mouse was in a still state. 739 

Visual stimuli were generated in MATLAB and displayed on a Dell 24-inch 740 

monitor placed 27 cm in front of the right eye.  Before any recordings, we calibrated the 741 

location of the monitor.  Specifically, black and white dots with one - four degrees were 742 

randomly presented on the monitor with a 10 ms duration. The visual responses of the 743 
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primary visual cortex were amplified, acquired and streamed to the computer by the Plexon 744 

electrophysiology recording system. The time stamps of the visual stimulations were also 745 

sent to the Plexon simultaneously. The receptive field mapping software was written in 746 

MATLAB, which could tag the receptive field of the recorded neurons on the monitor, 747 

based on the e-Phys data. Then we adjusted the location of the monitor to make sure the 748 

neuron group receptive field would be located in the center of the monitor. 749 

Two different visual stimuli were employed in the formal recording: 1. Full-length 750 

drifting bars [combinations of eight orientations (π/8, π/4, π3/8, π/2, π5/8, π3/4, π7/8 and 751 

π), four spatial frequencies (0.25, 0.5, 1 and 2 Hz), four temporal frequencies (0.25, 0.5, 1 752 

and 2 Hz) and two directions (drifting either left or right)]; and 2. Two-dimensional stimuli 753 

[we recorded 624 gray-scale images of 78 objects (42 toy animals and 36 toy cars), each 754 

object was recorded from eight different viewing directions in a 45º interval].  For each 755 

recording section, one of these three visual stimuli were delivered.  At least 30 minutes of 756 

neuronal spike data were recorded during each recording section.  Basically, the mice 757 

stayed on the treadmill without struggling for more than two hours, then they were freed 758 

to the home cages. 759 

Cell-type classification in mouse BLA, ACC, RSC, STR, CA1 and hamster PrL 760 

 For the datasets recorded from the mouse BLA, ACC, RSC, STR, CA1 and hamster 761 

PrL, well-isolated units were classified as either putative excitatory principal cells or 762 

inhibitory interneurons based on three characteristic features of their spike activities - 763 

namely, trough-to-peak width, half-width after trough, and the mean firing rates. The k-764 

means method was employed to achieve automated cell-type clustering. In general, 765 
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putative principal cells fire at lower rates and have broader waveforms, whereas 766 

interneurons have higher rates and relatively narrower waveforms.   767 

Animal surgery and in vivo recording of mouse VTA dataset 768 

The details have been previously described (Wang and Tsien, 2011).  A 32-channel 769 

(a bundle of eight tetrodes) electrode array was constructed.  One week before surgery, 770 

mice (3–6 months old) were removed from the standard cages and housed in customized 771 

home cages (40×20×25 cm). On the day of surgery, the mice were anesthetized with 772 

Ketamine/Xylazine (80/12 mg/kg, i.p.); the electrode array was then implanted toward the 773 

VTA in the right hemisphere (3.4 mm posterior to bregma, 0.5 mm lateral and 3.8–4.0 mm 774 

ventral to the brain surface) and secured with dental cement. 775 

Two or three days after surgery, the electrodes were screened daily for neural 776 

activity. If no dopamine neurons were detected, the electrode array was advanced 40∼100 777 

µm daily, until we could record from a putative dopamine neuron. In brief, spikes (filtered 778 

at 250–8000 Hz; digitized at 40 kHz) were recorded during the entire experimental process 779 

using the Plexon multichannel acquisition processor system (Plexon Inc.). Mice behaviors 780 

were simultaneously recorded using the Plexon CinePlex tracking system.  Recorded 781 

spikes were isolated using Plexon Offline Sorter software.  Dopamine neurons were 782 

distinguished from other neurons in the region by the characteristics of their extracellularly 783 

recorded impulses - including long, multiphasic waveforms and low basal firing rates. 784 

Fearful-event experiment 785 

Mice were subjected to three fearful episodic events, earthquakes, foot shocks, and 786 

free-fall drops.  For the earthquake-like shake, the mouse was placed in a small chamber 787 
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(4" x 4" x 6"H circular chamber) fixed on top of a vortex mixer and shaken at 300 rpm for 788 

400ms six times with 1~3-minute time intervals between each shake.  For fearful foot shock, 789 

the foot-shock chamber was a square chamber (10" × 10" × 15"H) with a 24-bar shock grid 790 

floor. The mouse was placed into the shock chamber for three minutes and received the 791 

foot-shock stimulus (a continuous 300-ms foot shock at 0.75 mA) for a total of six times 792 

with inter-trial time interval between 1~3 minutes.  For free-fall in the elevator, the animal 793 

was placed inside a small box (3" x 3" x 5"H) and dropped from a 13-cm height (a cushion 794 

which made from a crumbled tablecloth was used to dampen the fall and to stop the 795 

bouncing effect).  After 1~2 minutes, the elevator was raised gently back to the 13-cm 796 

height and dropped again after 1~2 minutes (this process was also repeated six times). 797 

These episodic stimuli are fearful as evidenced from physiological indications including a 798 

rapid increase in heart rates as well as reduced heart rate variability (Liu et al., 2013;Liu et 799 

al., 2014). To maintain the consistency of stimulation timing (minimizing the possible 800 

prediction of upcoming stimuli), the stimuli were triggered by a computer and delivered at 801 

randomized intervals within 1-3 minutes. After the completion of all fearful event sessions, 802 

the mouse was placed back into the home cage. 803 

Dataset recorded from the quiet-awake state and anesthesia 804 

Three datasets were recorded from the BLA, hippocampal CA1, and RSC under 805 

two distinct states - namely the quiet-awake state and anesthesia.  Recordings were first 806 

carried out when animals were awake and immobile in their home cages. Minimum 40-807 

minute neural activities were recorded in the quiet-awake state.  To produce ketamine-808 

induced anesthesia, the animals were injected with a 60 mg/kg Ketamine and 0.5 mg/kg 809 

Domitor cocktail mixture via i.p.; the animals lost the righting reflex in a few minutes. 810 
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Neural spike activities were recorded for 50 minutes under the anesthetized state.  Forty-811 

minute neural spike data recorded from the fully anesthetized state starting from 10 minutes 812 

after the Ketamine/Domitor injections were selected for the present analysis.  The dataset 813 

for neuronal variability analyses of awake state vs. anesthesia (Figure 14) contained 92 814 

BLA putative principal cells from two mice, 59 CA1 putative principal cells from three 815 

mice, and 59 RSC putative principal cells from three mice. 816 

Monkey area 5d dataset 817 

 The dataset was previously described (Li and Cui, 2013).  Data were recorded from 818 

two male rhesus monkeys (Macaca mulatta, 7-10 kg).  The animals were trained to perform 819 

visually guided single- and double-arm reaching tasks.  All procedures were in accordance 820 

with NIH guidelines and were approved by the Institutional Animal Care and Use 821 

Committee of Augusta University.  Recorded spikes were re-sorted using Plexon Offline 822 

Sorter software for obtaining the spike trains of single neurons; multiple spike-sorting 823 

parameters (e.g., principal component analysis, energy analysis) were used for the best 824 

isolation of single-unit spike trains.  Because of the absence of the spike waveform 825 

information, we were not able to separate different neuron types (excitatory vs. inhibitory 826 

cells, etc.).  However, we observed that the previously-held conclusion that neuronal spike 827 

activities can be best described by the gamma-distribution model still holds true in the 828 

monkey area 5d region. 829 

Cat V1 Datasets 830 

 The cat V1 datasets (1-D and 2-D) were downloaded from the Collaborative 831 

Research in Computational Neuroscience (CRCNS) website (data from Yang Dan Lab at 832 

UC-Berkeley, download link: http://crcns.org/data-sets/vc/pvc-2).  Experimental 833 
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procedures have been previously described (Touryan et al., 2002;Felsen et al., 834 

2005;Touryan et al., 2005).  The data were obtained with extracellular recordings from the 835 

primary visual cortex of anesthetized adult cats.  Single-unit recordings were made in area 836 

17 of adult cats (2–6.5 kg) using tungsten electrodes (A-M Systems, Carlsborg, WA).  837 

Animals were initially anesthetized with isoflurane (3%, with O2) followed by sodium 838 

pentothal (10 mg/kg, i.v., supplemented as needed). During recording, anesthesia was 839 

maintained with sodium pentothal (3 mg · kg−1 · hr−1, i.v.), and paralysis was maintained 840 

with pancuronium bromide (0.1–0.2 mg · kg−1 · hr−1, i.v.).  Because of the absence of the 841 

spike waveform information, we were not able to separate different neuron types 842 

(excitatory vs. inhibitory cells, etc.).  However, we observed that the previously-held 843 

conclusion that neuronal spike activities can be best described by the gamma-distribution 844 

model still holds true in the cat V1 region (both 1-D and 2-D stimuli). 845 

Data processing and spike sorting 846 

Neuronal activities from mouse experiments were recorded by the MAP system 847 

(multi-channel acquisition processor system, Plexon Inc., Dallas, TX) in the manner as 848 

previously described (Kuang et al., 2010).  Extracellular action potentials and local field 849 

potentials data were recorded simultaneously and digitized at 40 kHz and 1 kHz, 850 

respectively.  The artifact waveforms were removed, and the spike waveform minima were 851 

aligned using the Offline Sorter 2.0 software (Plexon Inc., Dallas, TX), which resulted in 852 

more tightly clustered waveforms in principal component space.  Spike sortings were done 853 

with the MCLUST 3.3 program with an auto-clustering method (KlustaKwik 1.5).  Only 854 

units with clear boundaries and less than 0.5% of spike intervals within a 1 ms refractory 855 

period were selected.  The stability of the in vivo recordings was judged by waveforms at 856 
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the beginning, during and after the experiments.  Well-separated neurons were assessed by 857 

“Isolation Distance” (Schmitzer-Torbert et al., 2005).  Neurons whose “Isolation 858 

Distance” >15 were selected for the present analysis as previously described (Lin et al., 859 

2006;Xie et al., 2016a;Xie et al., 2016b). 860 

Statistical Analysis 861 

 As shown in Figure 5, a t-test was used to assess whether k  (or θ ) was linearly 862 

correlated between the quiet-awake state and the sleep state.  In Figure 11, one-way 863 

ANOVA analysis and Tukey post-hoc tests were conducted for the comparisons of multiple 864 

means of k  across different brain regions. Three asterisks denoted the p-value is less than 865 

0.001. Data were represented as mean ± SEM. 866 

Statistical properties of neural spike patterns 867 

A two-step analysis was employed to examine the statistical properties of neural 868 

spike patterns. 869 

Step 1: Positive-skewed vs. negative-skewed distributions. The distribution of ISI 870 

was characterized by two well-defined statistics - namely, nonparametric-skew ( S ) and 871 

skewness (γ ), defined as follows: 872 

   S µ υ
σ
−

=                                                               (1) 873 

( )

( )( )
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where µ  is the mean, υ  is the median, σ  is the standard deviation, Ε  is the expectation 875 

operator, and I  denotes the ISIs of a neuronal spike train. 876 

In probability theory and statistics, nonparametric-skew ( S ) and skewness 877 

[ ( ),γ ∈ −∞ +∞ ] are measurements of the skewness (or long-tailedness) of a random 878 

variable’s distribution – that is, the distribution’s tendency to lean to one side or the other 879 

of the mean (Figure 1B).  A positive-skewed distribution (red curve in Figure 1B) has 880 

  0S >  and 0γ > , a negative-skewed distribution (blue curve in Figure 1B) has 0S < and 881 

0γ < , while a symmetric distribution (gray dotted curves in Figure 1B) has 0S =  and 882 

0γ = . 883 

Step 2: Gamma distribution vs. log-normal distribution.  Let 1 2, , nI I I  denote the 884 

ISIs of a neuron’s spike train, the probability density function for a gamma distribution of 885 

I  is defined by a shape parameter 0k >  and a scale parameter 0θ > : 886 

( ) 11; ,
( )

i
k

GA kf i k i e
k

θθ
θ

−−=
Γ

                                         (3) 887 

where ( )kΓ  is the gamma function. 888 

The probability density function of a log-normal distribution of I  is defined by a 889 

location parameter ( , )µ∈ −∞ +∞  and a scale parameter 0σ > : 890 
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  In the present analyses, both gamma distribution and log-normal distribution were 892 

estimated using the maximum likelihood estimates (MLE) method, which selected values 893 

of parameters that produced corresponding distributions for the histograms of ISI with 894 

minimal errors.  The parameters of both gamma distribution and log-normal distribution 895 

were directly estimated by using the raw ISIs of neuronal spike activities, which ensured 896 

that the analyses of ISI distributions were independent of the bin sizes used.   897 

Goodness-of-fit analyses were then conducted to quantitatively discriminate 898 

between the gamma-distribution and log-normal distribution models.  For convenience, we 899 

termed a gamma distribution and a log-normal distribution as ( , )GA k θ  and ( , )LN µ σ , 900 

respectively.  Thus, the likelihood functions of data that follow  ( , )GA k θ  and ( , )LN µ σ  901 

can be denoted as: 902 

( )
1

( , ) ; ,
n

GA G
j

L k f i kθ θ
=

=∏                                                 (5) 903 

( )
1

( , ) ; ,
n

LN LN
j

L f iµ σ µ σ
=

=∏                                               (6) 904 

Therefore, the RML between a gamma distribution and a log-normal distribution is 905 

defined as:  906 
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where ˆ ˆ( , )k θ  and ˆ ˆ( , )µ σ  are the MLEs of ( , )k θ  and ( , )µ σ  for I .  The natural logarithm 908 

of RML can be written as: 909 
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∏  are the arithmetic and geometric means of I , 911 

respectively. 912 

 The natural logarithm of RML, D , measured the goodness-of-fit between the 913 

gamma-distribution model and the log-normal distribution model of ISI.  That is, the 914 

gamma-distribution model precedes the log-normal distribution model if 0D > ; otherwise, 915 

choose the log-normal distribution as the preferred model of ISI.  The larger the absolute 916 

value of D , the more accurate-fitting the result of the chosen model over the other model.  917 

Local field potential spectral analysis 918 

To generate the power spectra of LFP in Figure 14, the local field potential power 919 

density was calculated in a range of 0.025–20.0 Hz with 0.025 Hz intervals for the 920 

recording dataset of hippocampal CA1, BLA and RSC regions. The fast Fourier transform 921 

(with Hann windowing function) was applied to the EEG signal, the resulting frequency 922 

resolution was 0.025 Hz, and the frequency bins less than 1 Hz were discarded due to the 923 

sensitivity of these bins to noise.   924 
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Figure legends 1124 

Figure 1.  Statistical properties of neural spike patterns. 1125 

(A)  Neuronal spikes are highly variable.  The upper subpanel illustrates the spike-activity 1126 

patterns of 20 neurons within a 10-sec time period recorded from the VTA region of a 1127 

mouse during the awake state.  The lower subpanel shows the ISI distribution of a sample 1128 

VTA DA neuron. 1129 

(B)  Illustrations of a positive- and negative-skewed distribution.  The red and blue curves 1130 

illustrate a positive-skewed distribution and a negative-skewed distribution, respectively.  1131 

Gray dashed lines denote symmetric distributions.  Skewness (γ ) and nonparametric-skew 1132 

( S ) are applied to examine the positive/negative-skewed properties. 1133 

(C)  Illustrations of a gamma-distribution model and a log-normal distribution model.  1134 

Fitted gamma distribution and log-normal distribution of the ISI in the lower subpanel of 1135 

(A) are plotted as red and blue curves.  The goodness-of-fit analysis is conducted to 1136 

compare the gamma-distribution model with the log-normal distribution model for 1137 

characterizing neuronal spike patterns. 1138 

 1139 

Figure 2.  Putative principal cells in mice’s cortical and subcortical regions discharge 1140 

positive-skewed, heavy-tailed spike patterns.   1141 

 (A) ACC, (B) RSC, (C) CA1, and (D) BLA.  The left subpanels of (A-D) show the 1142 

histograms of skewness  γ  in the corresponding regions, where the gray vertical lines 1143 

denote the symmetric distributions ( =0γ ), positive-skewed distributions have 0γ > , while 1144 

negative-skewed distributions have 0γ < .  The middle subpanels of (A-D) show the 1145 

histograms of nonparametric-skew S  in the corresponding regions, the symmetric 1146 
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distributions have 0S = , 0S >  for positive-skewed distributions and 0S <  for negative-1147 

skewed distributions.  The right subpanels of (A-D) show their relationships with the 1148 

neurons' mean firing rates, where the colors of each dot represent the mean firing rates of 1149 

corresponding neurons.   1150 

 1151 

Figure 3.  Spike-timing patterns of principal cells conformed gamma distribution 1152 

across mice cortical and subcortical regions under the quiet-awake state.   1153 

(A) ACC, (B) RSC, (C) CA1, and (D) BLA.  The left subpanels of (A-D) show the spike-1154 

timing patterns of sample neurons recorded from the corresponding brain regions, their 1155 

fitted gamma distributions (red curves) and log-normal distributions (blue curves).  The 1156 

right subpanels of (A-D) are the distributions of D  (the natural logarithm of RML) vs. 1157 

mean firing rates of principal cells under the quiet-awake state.  The lines in these plots 1158 

illustrate the linear regression between D  and mean firing rates of principal cells. 1159 

 1160 

Figure 4.  Spike-timing patterns of principal cells conformed gamma distribution 1161 

across different mice cortical and subcortical regions during the animals’ sleep.   1162 

The distributions of D  vs. mean firing rates of principal cells recorded from different 1163 

cortical and subcortical regions during the animals’ sleep.  The lines in these plots illustrate 1164 

the linear regression between D  and mean firing rates of principal cells. 1165 

 1166 

Figure 5.  Preserved shape parameter k across brain states.     1167 

Distributions of shape parameter k  of principal cells in four brain regions during awake 1168 

and sleep states are shown in the left subpanels of (A-D), while distributions of scale 1169 
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parameter θ  in these two states are shown in the right subpanels.  Red lines denote the 1170 

linear regressions of corresponding parameters, red numbers at the upper-left corner of 1171 

each subpanel denote the correlation coefficients. 1172 

 1173 

Figure 6.  Spike-timing patterns of striatum medium spiny projection neurons 1174 

conformed to gamma distribution.   1175 

(A)  The spike-timing pattern of a medium spiny projection neurons recorded from the 1176 

dorsal striatum of mice, and its fitted gamma distribution (red curve) and log-normal 1177 

distribution (blue curve). 1178 

(B)  Medium spiny projection neurons discharge positive-skewed, heavy-tailed spike 1179 

patterns.  The upper subpanel: the histogram of γ .  The middle subpanel: the histogram of 1180 

S .  The lower subpanel: the distribution of γ  and S , where the dots’ colors represent 1181 

neurons’ mean firing rates.   1182 

(C)  The distribution of D  vs. mean firing rates of medium spiny projection neurons.  The 1183 

line in the plot denotes the linear regression between D  and mean firing rates. 1184 

 1185 

Figure 7.  Spike-timing patterns of interneurons conformed to gamma distribution.   1186 

(A)  Interneurons recorded from four brain regions (ACC, BLA, hippocampal CA1, and 1187 

RSC) discharge positive-skewed, heavy-tailed spike patterns.  The left subpanel: the 1188 

histogram of γ .  The right subpanel: the histogram of S .   1189 

(B) The distribution of γ  and S , where the dots’ colors represent neurons’ mean firing 1190 

rates.   1191 
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(C)  The distribution of D  vs. mean firing rates.  The line in the plot denotes the linear 1192 

regression between D  and mean firing rates. 1193 

 1194 

 1195 

Figure 8.  Spike-timing patterns of VTA DA neurons conformed to gamma 1196 

distribution.   1197 

(A)  Fitted gamma distribution and log-normal distribution of the spike-timing pattern of a 1198 

DA neuron recorded from mice VTA region. 1199 

(B)  VTA DA neurons discharge positive-skewed, heavy-tailed spike-timing patterns.  The 1200 

upper subpanel: the histogram of γ .  The middle-subpanel: the histogram of S .  The lower 1201 

subpanel: the distribution of γ  and S , where the dots’ colors represent neurons’ mean 1202 

firing rates.   1203 

(C)  The distribution of D  vs. mean firing rates of VTA DA neurons.  The line in the plot 1204 

represents the linear regression between D  and mean firing rates. 1205 

 1206 

Figure 9.  Spike-timing patterns of principal cells in hamster PrL region conformed 1207 

to gamma distribution.   1208 

(A)  Fitted gamma distribution and log-normal distribution of a principal cell recorded from 1209 

hamster PrL region. 1210 

(B)  Principal cells in hamster PrL region discharge positive-skewed, heavy-tailed spike 1211 

patterns.  The upper subpanel: the histogram of γ .  The middle subpanel: the histogram of 1212 
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S .  The lower subpanel: the distribution of γ  and S , where the dots’ colors represent 1213 

neurons’ mean firing rates.   1214 

(C)  The distribution of D  vs. mean firing rates of principal cells in the hamster PrL region.  1215 

The line in the plot represents the linear regression between D  and mean firing rates. 1216 

 1217 

Figure 10.  Spike-timing patterns in monkey area 5d conformed to gamma 1218 

distribution.   1219 

(A)  Fitted gamma distribution and log-normal distribution of a sample neuron recorded 1220 

from monkey area 5d. 1221 

(B)  Neurons in area 5d discharge positive-skewed, heavy-tailed spike patterns.  The upper 1222 

subpanel: the histogram of γ .  The middle-subpanel: the histogram of S .  The lower 1223 

subpanel: the distribution of γ  and S , where the dots’ colors represent neurons’ mean 1224 

firing rates.     1225 

(C)  The distribution of D  vs. mean firing rates of neurons in area 5d.  The line in the plot 1226 

denotes the linear regression between D  and mean firing rates. 1227 

 1228 

Figure 11.  Spike-timing patterns in cat primary visual cortex conformed to gamma 1229 

distribution.   1230 

(A and B)  Fitted gamma distributions and log-normal distributions of two neurons 1231 

recorded from cat primary visual cortex under 1-D white noise (A) and 2-D stimuli (B). 1232 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 9, 2018. ; https://doi.org/10.1101/145813doi: bioRxiv preprint 

https://doi.org/10.1101/145813


55 
 

(C and D)  Neurons in cat primary visual cortex discharge positive-skewed, heavy-tailed 1233 

spike patterns under both 1-D white noise (C) and 2-D stimuli (D).  The upper subpanels: 1234 

the histograms of γ .  The middle subpanels: the histograms of S .  The lower subpanels: 1235 

the distributions of γ  and S , where the dots’ colors represent neurons’ mean firing rates.   1236 

(E and F) The distributions of D  vs. mean firing rates of neurons in the cat primary visual 1237 

cortex under 1-D white noise (E) and 2-D stimuli (F).  The line in the plot denotes the 1238 

linear regression between D  and mean firing rates. 1239 

 1240 

Figure 12.  Preserved shape parameter k across resting states and behaving states.     1241 

The distributions of D  vs. mean firing rates of principal cells recorded from the ACC and 1242 

RSC regions during two resting states (the quiet-awake state and sleep) and the behaving 1243 

state are shown in the left subpanels of (A and B). The lines in the left subpanels of (A and 1244 

B) are the linear regressions between D  and mean firing rates.  3D distributions of k  1245 

during three states are shown in the right subpanels of (A and B). 1246 

 1247 

Figure 13.  Comparisons of spike-timing regularities and irregularities across 1248 

different cell types and brain regions. 1249 

The distributions of k  in 18 datasets recorded from four mammalian species (mice, 1250 

hamster, cat and monkey), it consisted of a total of 3,378 neurons obtained from 13 brain 1251 

regions.  These neurons were grouped according to their general anatomical locations and 1252 

cell types, namely, the sensory cortices (mouse V1, cat V1, mouse RSC, mouse 1253 

somatosensory, and mouse 2nd AuV), prefrontal cortices (mouse ACC and hamster PrL), 1254 

motor cortices (mouse M1 and monkey 5d), limbic regions (mouse BLA and mouse CA1), 1255 
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DA neurons (mouse VTA), and GABAergic neurons (mouse STR medial spiny neurons, 1256 

and fast-spiking interneurons in mouse ACC, BLA, CA1 and RSC). Each dot represents a 1257 

neuron. The gray horizontal line denotes the Poisson process ( 1k = ), regular spiking ( 1k > ) 1258 

and irregular spiking ( 1k < ) are shown as a red-arrow line and blue-arrow line, 1259 

respectively.  Error bars represent mean ± SEM. 1260 

 1261 

Figure 14.  Gamma-like spike-timing patterns diminished under anesthesia. 1262 

(A-C)  Left subpanels: spike activities of 15 example principal cells recorded during awake 1263 

state and anesthesia from CA1 (A), BLA (B), and RSC (C).  Middle subpanels: power 1264 

spectra of LFP recorded during awake state and anesthesia from CA1 (A), BLA (B), and 1265 

RSC (C).  Right subpanels: spike-timing patterns under the quiet awake state conform 1266 

single gamma distribution (shown as the plots in red color), spike-timing patterns during 1267 

ketamine-induced anesthesia can be described by using two gamma distributions (shown 1268 

as the plots in blue color).  The subplots show the similarity between the empirical 1269 

cumulative probabilities and the cumulative probabilities of corresponding fitted gamma 1270 

distributions.  The one-sample Kolmogorov-Smirnov test is applied to verify the fitness of 1271 

the gamma distribution. 1272 
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