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Chronic bacterial infections present a serious threat to the health of humans by decreasing life

expectancy and quality. Resilience of these populations is closely linked to a small fraction of

persister cells that are capable of surviving a wide range of environmental stressors that include

starvation, DNA damage, heat shock, and antibiotics. In contrast to inherited resistance, persistence

arises from a rare and reversible phenotypic change that protects the cell for one or a few generations.

The frequency and character of persistence is controlled in part by the dynamics of numerous toxin-

antitoxin (TA) modules, operons with an evolutionarily conserved motif including a toxin that slows

cell growth and an antitoxin that can neutralize the toxin. While many such modules have been

identified and studied in a wide range of organisms, relatively little consideration of the interactions

between multiple TA modules within a single host has been made. Particularly, a multitude of

different protein-based antitoxin species are known to be actively degraded by a limited number of

shared proteolytic pathways, strongly suggesting interaction via competition between antitoxins for

degradation machinery. Here we present a theoretical understanding of the dynamics of multiple TA

modules whose activity is coupled through either proteolytic activity, a toxic effect on cell growth

rate, or both. We also present a generalizable theoretical mechanism by which a toxic state is

tunable by regulation of proteolysis. Such regulation or indirect coordination between multiple TA

modules may be at the heart of the flexibility and robustness observed for bacterial persistence.

I. INTRODUCTION

It is well established that many bacteria are capable of collective behaviors which yield survival strategies unavailable

to individual cells [1–4]. Bacterial persistence is one such behavior that provides a broad spectrum response to

potentially deadly events within the environment. Persistence is characterized by a small fraction of a bacterial

population occupying a quasi-dormant (persistent) state in which the cells hardly metabolize or grow. This state

provides immediate robustness against a wide range of environmental stressors such as starvation and antibiotic

treatment, allowing the small subpopulation to survive events which would kill most normally growing cells [3, 5–

11]. With modern medicine, this strategy is indispensable to bacteria that are capable of chronic infection within

humans [3, 9, 12]. It has been claimed that as much as 65% to 80% of all bacterial infections are attributable to

bacterial persistence [3, 13]. Persistence is also strongly linked to biofilm formation and survival [2, 8, 9], which is

both necessary for many healthy processes in humans and the most likely source of hospital borne disease [1].

Toxin-antitoxin (TA) modules have been found to be central in the dynamics of bacterial persistence [3, 7–11, 13–

16]. TA modules are small gene networks following a motif that includes two or more genes within an operon, one

of which is a relatively stable toxin that slows the growth of the cell when it accumulates, and the other of which

is a relatively unstable antitoxin that neutralizes the toxin. While several classes of TA modules have been studied,

considerable attention has been given to type II modules, where the antitoxin is a protein that is capable of forming

complexes with its associated toxin [7, 10, 11, 15, 17–19]. TA modules are thought to exist in two major states.

Normally, TA modules reenforce a state where almost all of the toxin molecules are bound in complex with antitoxin,

thus neutralizing the action of toxin. This state is in contrast to a high free toxin state, where a sufficient quantity

of free toxin accumulates and results in cell growth arrest characteristic of the persistent state [10, 11]. These two

states theoretically are metastable, and this view has led TA modules to be interpreted as bistable switches, where

stochastic transitions govern jumping between states [6].
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Many bacteria have a surprisingly high number of TA modules (at least 36 within Escherichia coli [3, 13, 15]

and at least 88 within Mycobacterium tuberculosis [2, 3, 7, 13, 16, 17]), though why this is the case has not been

well explained [3]. The nonpathogenic organism Mycobacterium smegmatis has only two putative TA modules,

suggesting that the plurality of TA modules is related to the pathogenicity of some bacterial strains, or that many TA

modules play a role in achieving the particularly long periods of dormancy associated with M. tuberculosis [3, 15].

It is thus important for human medicine to understand the interplay of potentially many TA modules in promoting

pathogenicity and in particular bacterial persistence. Active proteolytic degradation of the antitoxin protein is equally

important for persistence. For E. coli , it has been shown that removal of either the Lon protease or a number of known

TA modules is sufficient to strongly suppress persistence [7, 9]. This suggests that both the presence of specific TA

modules and proteolytic degradation are necessary for persister formation. In E. coli , there are three proteases (Lon,

ClpAP, and ClpXP) responsible for more than 70% of ATP-dependent protein degradation within the cell [20, 21]. In

particular, Lon is responsible for approximately 50% of defective protein degradation and likely degrades the antitoxins

of more than 10 TA modules in E. coli [7, 9]. There are thus far fewer proteolytic pathways than the number of TA

modules, implying that more than one TA module is actively utilizing a given proteolytic pathway.

The effect of processing bottlenecks on biological networks can be understood in the context of queueing theory.

Queueing theory is a formalism traditionally used to describe the dynamics of a set of servers that serve a set of

customers, but it more broadly offers insight into the effects of bottlenecks on a system [22]. In particular, queueing

theory has been used to explain the observation of strong correlations appearing in networks containing molecules

competing for enzymatic processing resources [23–26], with these correlations being maximized near the queueing

theoretic point of balance in a phenomenon known as correlation resonance [23, 24, 26]. It is conceivable that the

positively correlating effect of proteolytic competition (queueing coupling) between the antitoxins of TA modules

provides a mechanism by which TA modules might coordinate their effects and shape the persistence behavior. We

note as an aside that analogous but distinct queueing effects have previously been proposed to gate persistence by

the rare overloading of metabolic bandwidth and subsequent metabolic poisoning [27], though we do not pursue such

a mechanism here.

In the following, we support that competition between antitoxins for proteolytic machinery is a route to strong

positive coordination of TA modules. While several theoretical investigations have considered the dynamics of a single

TA module [10, 11], interactions between multiple TA modules have only more recently been explored [3, 13, 18],

and to the best of our knowledge, our work is the first to consider queueing coupling of antitoxins. We examine a

custom model with components and interactions motivated by the well-studied TA module mazEF [2, 15–17, 28, 29].

Extensive stochastic simulation of this model supports that proteolytic competition robustly leads to strong positive

coordination between TA modules, whether in the presence or absence of effects due to cell physiology (growth rate

coupling [3, 13]). We verify this phenomenon also in the context of a more robust model for TA modules that leverages

a novel return mechanism, which limits the period of toxic activity on the cell. Our return mechanism is based on

internally regulated affinity of protease to free toxin, as can be motivated by known regulation mechanisms of protease

in response to persister physiology [9, 30], but we emphasize that many alternate return mechanisms are plausible

and may indeed depend on the particular organism.

An outline of this article is as follows. Section II presents the details of the quantitative models used. Methods for

the simulation and analysis of these models appear in Section III. Results and corresponding discussion are presented

in Section IV. Section V provides concluding remarks.

II. MODELS

We consider models for one or more identical TA modules coupled using components and interactions that are

based on a well-studied TA module found in E. coli (see Figure 1 for a schematic of this network). Specifically, the

stoichiometric ratios of the complexes formed by the toxin and antitoxin and the mechanism of toxicity where the toxin

cleaves mRNAs with specific sequences are based on mazEF [2, 15, 17, 28, 29]. mazEF is of interest for exploring

proteolytic coupling, as the antitoxin MazE is degraded by both ClpAP and Lon [2, 15, 18, 28] and could thus

indirectly couple additional modules as in Ref. [26]. The toxin MazF inhibits the translation of approximately 90%

of all proteins in E. coli [17] and thus plays an important role in specifying protein production during environmental

stress.

A general model for M such identical TA modules interacting via N identical proteolytic pathways and via toxic

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 4, 2017. ; https://doi.org/10.1101/146027doi: bioRxiv preprint 

https://doi.org/10.1101/146027
http://creativecommons.org/licenses/by/4.0/


3

effect on a shared cell growth rate is presented in Section II A. In Section II B we describe several special cases of

the general model for which results are provided. We provide a modified version of this model to include a return

mechanism in Section II C. A description of the algorithm and software used is provided in Section III A. The

algorithm for the detection of high free toxin states (persister-like states termed events) is described in section III B,

and measurement of event statistics is described in section III C.

A. Model of Coupled TA Modules

We primarily use models that are special cases of a more general model for M identical TA modules interacting

via N identical proteolytic pathways (inspired by the model in Ref. [26]) and via toxic effects on the cell growth rate.

Each module, based on the well-studied mazEF module as found in E. coli (see Figure 1), tracks the counts for

toxin-encoding and antitoxin-encoding mRNA’s (tj and aj , respectively), the toxin and antitoxin proteins (Tj and

Aj , respectively), the dimer of the toxin protein (Tj2), the complex formed by the toxin dimer and antitoxin (Cj),

and the dimer of the complex (Cj2). The subscript j ranges from 1 ≤ j ≤M and denotes the TA module with which

these components associate. Complex formation results in a stoichiometric ratio of two toxin proteins to one antitoxin

protein, as observed in the mazEF module [15, 28]. Both toxin and antitoxin mRNAs are cleaved by free toxin

and its dimer. The degradation rates of free antitoxin, antitoxin bound in complexes, and free toxin are represented

using functional forms similar to those used in [23, 26]. All species of the jth module are diluted at common rate Γj ,

representing the process of cell growth and division. The functional dependence of Γj on the system state encodes

the effect of free toxin on growth rate. Though we in principle allow each Γj to be independent of other TA modules,

realistic models will have a common value for each Γj to reflect the growth rate for the host cell.

Our base model is implemented by several stochastic reactions, which are designed to allow for the model to have

molecular level detail, and which are intended to provide a generic platform for understanding TA modules rather than

providing a particular fitted model. This model also does not yet include our implementation of a return mechanism

(discussed in more detail in Section II C). The reactions for the model are as follows, where we assume mass action

kinetics when defining the propensities of reactions [31]. Transcription of a shared mRNA for toxin and antitoxin is

modeled as the reaction

∅
λj−−→ aj + tj (1)

where the function

λj
−−

σ

1 + k0 (Aj + Cj + Cj2)
(2)

encodes how complex and free antitoxin represses transcription, with σ the maximal transcription rate. Note that we

model aj and tj as independent entities, which allows for them to be degraded at different rates, as might be expected

for prokaryotic degradation [32]. Also, we do not include crosstalk due to transcriptional or translational coupling

between modules. Degradation of mRNA molecules follows from the reactions

tj

βtj−−→ ∅ (3)

aj

βaj−−→ ∅ (4)

where the functions

βtj
−−µta + βT(Tj + Tj2

) (5)

βaj
−−µta + ω βT(Tj + Tj2

) (6)

encode both basal degradation rate µta and accelerated degradation due to toxin. The parameter ω allows for

differential degradation of antitoxin and toxin transcripts by the toxin Tj, e.g. due to a different number of cut sites

in the transcript. Translation of proteins follows from the reactions

aj
αa−−→ aj + Aj (7)

tj
αt−−→ tj + Tj (8)
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where αt is a constant. We relate translation rates by

αa−−ναt (9)

where ν scales the relative translation rate of antitoxin to that of the toxin (expected to be genetically encoded by

the transcript). This parameter is one of the few very sensitive parameters we identified in our model, and it is set

by the need for cells to consistently produce enough antitoxin protein to deactivate toxin protein [2]. Formation of

toxin dimers and complexes follows from the reactions

2Tj
kC−−→ Tj2

(10)

Tj2
+ Aj

kC−−→ Cj (11)

2Cj
kC−−→ Cj2

(12)

for which we assume irreversible (tight) binding, for simplicity. It is worth noting that we use the convention that

the reaction 2Tj
kC−−→ Tj2

occurs with velocity (1/2) kC Tj (Tj − 1), and the reaction 2Cj
kC−−→ Cj2

occurs with velocity

(1/2) kC Cj (Cj − 1). Proteolytic degradation of antitoxin and other species by protease is modeled by multiple

reactions

Aj

ζAj−−→ ∅ (13)

Cj

ζCj−−→ Tj2
(14)

Cj2

ζCj−−→ Tj2
+ Cj (15)

Tj

ζTj−−→ ∅ (16)

Tj2

ζTj−−→ Tj (17)

where

ζ` = µ
N∑
i=1

κi`

ε+
∑M
j=1 κij (KAAj +KC (Cj + Cj2) +KT (Tj + Tj2))

(18)

and

ζAj
= ζjKA (19)

ζCj = ζjKC (20)

ζTj
= ζjKT (21)

define reaction rates for competitive proteolytic degradation. The coefficients κij will define with what affinity multiple

proteases target multiple TA modules [26], while the coefficients KA, KC , and KT define with what affinity antitoxin,

complex, and toxin are degraded, respectively. The value of ε sets the overall affinity of substrate to protease. Note

that we use the convention that the reaction velocities for Eqs. 13-17 (as in all our reactions) are determined by

multiplication of their reaction rate functions by their respective mass action terms. Finally, all species are removed

from the system by dilution (cell growth and division), which leads to a reaction for all species (generically labeled

Zj) in a TA module

Zj

Γj−−→ ∅ (22)

with a dilution rate

Γ` = γ
M∑
i=1

(
φi`

1 + βg
∑M
j=1 φij (Tj + Tj2)

)
(23)
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that is sensitive to free toxin levels. The coefficients φij allow for the following scenarios

φij
−−

1

M
for growth rate coupled modules (24)

φij
−−δij for artificially decoupled modules (25)

with δij the Kronecker delta (1 if indices are equal and 0 otherwise).

Values for the above parameters are as follows unless otherwise specified σ = 20.0, k0 = 0.05, ν = 1.6, αt = 200.0,

kC = 1000.0, µta = 5.0, ω = 0.2, βT = 20.0, µ = 100.0, KA = 1.0, KC = 0.1, KT = 0.0, ε = 0.01, γ = 1.0,

βg = 0.25. This parameter set leads to infrequent high toxin (persister-like) events for a single TA module. This

frequency is usually much higher than that seen experimentally (approximate persister frequency range 10−6 to 10−4

in experiments), but we have chosen a high persister frequency to efficiently explore the dynamics of our model using

direct stochastic simulation only. Extension of our methods to much lower persister frequencies is planned for future

work.

Parameter values in our model were motivated by experimental observations and theoretical flexibility when possible.

Our choice of ω = 0.2 follows from a simple analysis that compares the number of toxin cut sites (ACA) on the toxin vs.

antitoxin segments of the mRNA for the mazEF TA module. Our choice of ν > 1 follows from the general observation

that antitoxin protein should be produced at a higher rate than toxin to ensure proper function of the TA module [2].

Our choice of small ε ensures generally high antitoxin affinity to protease [26], which is likely the case if antitoxin is

degraded quickly and efficiently in the cell. Our choice of γ = 1.0 for the maximum growth rate of cells was achieved

by rescaling time (this can always be done). Parameter values were also motivated by a decision to investigate a

model with specific properties. Our choice of large kC encodes the assumption that toxin monomers rapidly dimerize,

that free toxin dimers rapidly bind to antitoxin to form complexes, and that toxin-antitoxin complexes can rapidly

dimerize. Our choice of KA = 1.0, KC = 0.1, KT = 0.0 reflects that free antitoxin is more likely to be degraded than

antitoxin in complexes (this is apparently not critical, as will be supported in Fig. 4), and that toxin is relatively

unlikely to undergo proteolytic degradation. The overall scale for parameter values associated with transcription

and translation was adjusted to ensure that production and degradation reactions were sufficiently rapid relative to

dilution. Remaining parameters were adjusted self consistently to achieve a system with sufficiently high persister

frequencies that are readily accessible by direct stochastic simulation.

A number of other potential modes of coupling were not included in our model for simplicity. These include the

effect of toxin activity directly on transcription rates due to altered metabolic state of the cell, targeting of a TA

module’s mRNA by another TA module’s toxin, and transcriptional crosstalk between TA modules at the promoter

level.

B. Particular Models without a Return Mechanism

The majority of this work uses the above model, which exhibits bistable behavior for a variety of parameter values.

We begin our exploration with the simplest variation of the general model, where M = N = 1. Figure 1 contains a

basic schematic of this situation. No proteolytic or growth rate coupling is investigated here. Rather, the aim is to

establish a baseline understanding of the mazEF -like module. Results of this model are discussed in Section IV A.

We next consider the case where M = N = 2. Figure 2 contains a basic schematic of this situation. This model

permits exploration of the effects of both coupling via proteolytic competition and via toxic effect on a shared cell

growth rate. To this end, we impose a parameterization of the proteolytic affinities of each module, κij , as in Ref. [26].

κ11
−−1−ηp (26)

κ21
−−ηp (27)

κ12
−−ηp (28)

κ22
−−1−ηp (29)

The strength of proteolytic coupling is encoded in the parameter ηp. This additional parameter is bounded below by

0, where coupling is nonexistent, and above by 0.5 for maximal proteolytic coupling. As ηp is increased above 0.5, the

identities of the associated proteolytic pathways are effectively exchanged due to symmetry in the representations of

ζj . Results of this model are discussed in Section IV B.
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C. Particular Model with a Return Mechanism

As discussed in Section IV C, reliance on a bistable model for persistence leads to a number of negative consequences,

including a potentially low rate to return to a normal (low free toxin) state. A system that is instead excitable (noise-

induced transition to the toxic state, but more reliable transition to the normal state) can be created by regulating

the mean lifetime of the toxic state. There are a multitude of potential return mechanisms that could lead to this

behavior, but we investigate for definiteness only one such mechanism: a molecule is produced during the toxic

state that increases the affinity of free toxin (both monomeric and dimeric) towards proteolytic degradation. This

mechanism is motivated by known regulation of proteolytic pathways affecting persistence [9, 30]. For brevity, We

will consider this mechanism only in the case of two coupled TA modules that include perfect growth rate coupling

(φij = 1/2 in Eq. 24), but effectiveness of the return mechanism holds for other parameter regimes.

For this, we introduce an additional molecule (e.g. protein) X with precursor (e.g. mRNA) x. The identities of these

molecules are not particularly important, but it is important that X is created or at least active when the system

has entered a toxic state. The molecule x, which is only produced in the presence of free toxin (both monomeric and

dimeric), is produced at rate σx, while X is produced by x at rate αX . This is implemented by the reactions

∅ σx−−→ x (30)

x
αX−−→ x + X (31)

where the production rate of x is state dependent

σx−−ρx(T1 + T12
) + ρx(T2 + T22

) (32)

Both x and X are diluted at rate Γ1 for simplicity via the reactions

x
Γ1−−→ ∅ (33)

X
Γ1−−→ ∅ (34)

where recall that Γ1 and Γ2 are identical. We suppose the protein X permits the degradation of toxin by increasing

KT , which in turn allows toxin to be degraded by protease. The strength this effect is encoded by βX by substituting

KT
−−βXX (35)

Thus, in the absence of X or if βX = 0, free toxin is not actively degraded by protease. Typical values for the return

mechanism are ρx = 0.05, αX = 0.01, and βX = 10−7 which lead to notably reduced mean event lifetimes.

III. METHODS

A. Simulation Algorithm

All simulations were performed using a custom implementation of the Gillespie algorithm [31] in Python lever-

aging optimizations made possible by the Cython library [33]. Libraries from the Scipy stack [34] were used for

analysis. These simulations were primarily executed and analyzed using a custom Python package, available at

www.github.com/ctogle/modular.

B. Event Detection

To analyze the likelihood that one or more TA modules are in a sufficiently high concentration (toxic) or sufficiently

low concentration (normal) free toxin state, we automatically identify windows of time, labeled events, with high

free toxin (monomeric and dimeric). The following details a particular algorithm for event detection that produced

reasonable results in our study.

Event detection for the jth module only considers the count of total free toxin Tj,free = (Tj + Tj2) after an initial

transient (ignoring the first 0.1% of each long realization). To scale our definition of a high free toxin state, we define
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T ∗j as the 99.9th percentile of Tj,free. We initially defined T ∗j as the maximum value of Tj,free over time, but this

definition was avoided because the maximum is not a stable statistic (the expectation value of the maximum continues

to increase for longer duration trajectories). The algorithm uses T ∗j to define a low transition threshold (Tlow) and

the high transition threshold (Thigh) by the following definition

Tlow = max(0.075T ∗j , 1) (36)

Thigh = 0.325T ∗j (37)

The difference of these thresholds must be greater than or equal to 4, i.e. Thigh − Tlow ≥ 4, or else no events are

detected for a trajectory. The numbers 0.075 and 0.325 are somewhat arbitrary and may be adjusted in other studies,

but we keep these numbers fixed in this study. Subsequent studies may consider a more general algorithm based on

clustering analysis to identify these thresholds.

Identification of events proceeds in two phases: identification of primary events and filtering of events. Primary

events are windows of time defined by consecutive time points all satisfying Tj,free ≥ Tlow, with at least one such

time point satisfying Tj,free ≥ Thigh, and with the requirement that this window of time has a boundary consisting

of two time points satisfying Tj,free < Tlow. The collection of primary events already represents a useful tool for the

statistical analysis of our model, but we opted to filter these events to remove short isolated events and to merge

events separated by short gaps of time. Our detailed algorithm for this filtering is controlled by a single filtering

parameter nf , which we fix nf = 5 time units (note that simulations are sampled every 1 time unit). Filtering is as

follows

1. Consider an ordered list of events LE that will be the final list of events after filtering. When it exists, the last

event in this list is labeled El.

2. LE initially contains only the earliest primary event with more than nf data points. Define Ec as the immediately

following primary event. If LE is empty or Ec does not exist, abort filtering.

3. Determine if the data points in the gap between El and Ec satisfy either of the following: (a) the gap contains

fewer than nf data points, or (b) mean free toxin in the gap exceeds Thigh (this latter condition is very rare

in our simulations). If so, modify the event El to be the merger of events El and Ec (the new event is the the

window of time defined by the start of El and the end of Ec). If not, append the event Ec to the list LE if it

contains more than nf data points.

4. If possible, update the event Ec to be the event immediately following the current event Ec, then repeat Step 3.

Otherwise, continue to Step 5.

5. Remove events in the list LE that include points within nf data points of the first and last time points of the

data.

The net result of this filter is a list LE of events used for analysis.

In reporting results, we exclude simulations with fewer than 100 filtered events for any TA module. This is to avoid

statistically unreliable data.

C. Event Measurements

The dynamics of single TA modules are characterized by three primary statistics: number of events, event prob-

ability, and event duration. Event probability Pi for the ith TA module is found by measuring the fraction of time

points in a trajectory belonging to events of the ith TA module. Mean event duration for the ith TA module is the

total time spent in events of the ith TA module divided by the number of measured events for this TA module.

Coupled TA modules can produce tightly coordinate events. There are a number of approaches to measuring this

behavior, and we chose a conditional probability measure. Conditional event probability Pi|j is defined by Pij/Pj ,

where the joint event probability Pij for TA modules i and j is the fraction of time points simultaneously belonging

to an event in both TA modules. If TA modules i and j are statistically independent, then Pij = PiPj , which implies

Pi|j = Pi. However, Pij can approach a value of 1 for TA modules with highly correlated behavior.
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IV. RESULTS AND DISCUSSION

Our investigation reveals that our model for a single TA module without a return mechanism operates essentially as

a bistable system, largely owing to the relative instability of antitoxin protein to toxin protein, where we loosely use

the term “toxin” here to include both toxin monomers and dimers. Noise allows our model to spontaneously switch

between two metastable states, a low free toxin state (representing a cell in a normal metabolic state) and a high free

toxin state (representing a cell in a persister-like state). Our choice to include enzymatic degradation of proteins allows

for coupling of multiple TA modules through competition (queueing coupling) of antitoxins for proteases, the effect

of which is a rapid positive coordination of the TA modules, such that the presence of an event (period of high free

toxin) for one TA module strongly predicts a simultaneous event for another TA module. This effect robustly occurs

for a wide range of proteolytic coupling. Inclusion of a return mechanism in our model changes the model’s qualitative

nature so as to be better described by an excitable system, where events have a short though still stochastic lifetime

relative to the mean time between events. Queueing coupling continues to lead to strong positive coordination in the

presence of this return mechanism. These observations are derived from the analysis of direct numerical simulations

of particular models detailed in this article, but our findings are consistent with a range of analytic, numerical, and

experimental results showing the positively correlating effects of queueing coupling [23, 24, 26, 35, 36].

A. Single TA Module Model

We first investigated the behavior of our model for an isolated TA module, with the goal of understanding how

proteolytic queueing influences the dynamics of multiple coupled TA modules. The temporal behavior of this model

for the parameters considered leads to essentially bistable behavior, where the system transitions between metastable

states either with low levels of free toxin protein or with high levels of free toxin protein (see Fig. 1). We identify

toxic state events by considering sufficiently long windows of time in the high free toxin state (see Section III B).

Correlations between the counts of components and events (see Fig. 3) suggest that events correspond to periods of

high free toxin counts, as expected, but also correspond to reduced counts for all of antitoxin-toxin complex, mRNA

for antitoxin and toxin, and free antitoxin.

Metastability of these two approximate states was explored by scanning parameters. In the low free toxin state (anal-

ogous to the normal metabolic state of cells), metastability of the state is expected to be ensured by the maintenance

of sufficiently high antitoxin count relative to toxin count, thus ensuring the toxic effect of toxin is neutralized [10, 11].

The 2:1 ratio of toxin monomer to antitoxin binding in our model predicts that a relative translation ratio ν > 0.5

would produce sufficient antitoxin. However, since antitoxin is expected to be degraded at a higher rate than toxin,

the value of ν required for metastability of the low free toxin state is likely required to be larger than the approx-

imate bound of 0.5. The stabilizing effect of sufficiently large ν was demonstrated by significantly decreasing event

probability (increasing probability to be in the low free toxin state) with increasing ν (see Fig. 4A). Increasing ν also

decreased mean event time (decreased time in the high free toxin state) (see Fig. 4B). For our study, we chose ν = 1.6

as a reasonable value for this parameter.

We hypothesized that the system might also be sensitive to the relative magnitude of degradation affinity KC for

complex-bound antitoxin as compared to the affinity KA of free antitoxin. Our results support that that if KA = 1.0

and ε = 10−2 (see Eq. 18), then system statistics were relatively stable if KC > ε (see Fig. 4A-D), which is consistent

with a parameter regime where absolute substrate affinity to protease is high [26]. The choice of KC � ε instead led

to increased chance to be in the low free toxin state, as expected. We chose to focus on the high affinity parameter

regime by choosing KC = 0.1 as a typical value for this parameter.

Fluctuations can eventually destabilize the low free toxin state inducing transition into the high free toxin state,

where toxin is largely unbound to antitoxin and is permitted to actively degrade mRNA transcripts and slow cell

growth and division. Toxic activity thus leads to at least two positive feedbacks: degradation of antitoxin mRNA and

reduction of toxin dilution rate, the former of which reduces expression of a repressor of toxin activity, and the latter

of which allows for buildup of free toxin in the cell. These positive feedbacks enforce maintenance of the high free

toxin state. However, toxin activity also asserts a negative feedback: degradation of toxin mRNA. A key parameter

that influences the strength of these feedbacks is toxin RNase activity, set by the parameter βT . Indeed, we found

that scanning values for βT strongly influenced event statistics (see Fig. 4). In particular, very low values for βT led

to the system becoming “stuck” in the high free toxin state, since only positive feedback due to growth rate reduction
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remains from the above three feedback mechanisms. Larger values of βT reliably led to regular events.

Our above investigation led us to explore parameter values near our standard parameter values (see Models, Sec-

tion II) when investigating multiple couple TA modules.

B. Double TA Module Model

Having established that our model for isolated TA modules exhibits stochastic switching between two states that

roughly correspond to normal and toxic states, we then considered two identical but distinguishable TA modules

that are coupled (see Fig. 2). We predict that relatively modest coupling between these modules could dramatically

influence coordination between their events. Intuitively, transitions between metastable states in bistable systems are

thought to be exponentially sensitive to parameters in general based on the formalism of transition state theory and

similar large deviation theories [37, 38]. Coupling between modules could then lead to strong positive correlation (an

event for one TA module promotes an event for the other TA module) or even strong negative correlation (an event

for one TA module greatly diminishes the chance of an event in another module).

This picture for probabilistic TA module coupling led us to measure the probability P2|1 of an event for one TA

module (labeled TA module 2) conditional on an event for another TA module (labeled TA module 1). By symmetry

of our system, statistics are identical if we exchange the labels 1 and 2. A value of P2|1 approaching 1 ensures that

one event is highly likely given another event. More precisely, if P2|1 > P2, where P2 is the event probability for TA

module 2, then this corresponds to events that are positively coordinated, i.e. events for TA module 1 predict events

for TA module 2. If P2|1 < P2, then events are negatively coordinated, i.e. an event for TA module 1 instead leads to a

decreased chance for TA module 2 events. It is of note that if the baseline event probability P2 approaches 1, as might

be the case for a system that has become stabilized towards the high free toxin state (long events separated by short

intervals between events), then P2|1 approaching 1 by itself does not necessarily imply strong positive coordination

between events.

Two modes of coupling were considered when measuring the probabilistic coordination between TA modules. The

first was proteolytic coupling, or queueing coupling, where antitoxins compete for common proteases. Antitoxin

affinity for the less preferred protease is modulated by the parameter ηp, such that proteolytic coupling is absent

when ηp = 0.0 and strongest when ηp = 0.5. Our prediction is that when one TA module is in a high free toxin state,

then the free bandwidth of the preferred proteolytic pathway taken by this antitoxin has been increased, which then

allows for more rapid degradation of antitoxins (free and in complex) associated with other TA modules, which in

turn promotes switching of these other TA modules to a high free toxin state. Hence, we predict proteolytic coupling

leads to positive event coordination, i.e. an event for one TA module promotes an event for other TA modules. This

positively correlating effect would be similar to the phenomenon of correlation resonance studied previously [23].

The second mode of coupling considered was growth rate coupling, where the dilution rate of all cellular molecules

is reduced by the free toxin’s effect on cell growth and division. We predict growth rate coupling leads to positive

coordination similar to proteolytic coupling, since low dilution rate is apparently an important stabilization factor

for the high free toxin state. Though growth rate coupling can in principle be continuously parameterized, we only

considered the cases where growth rate coupling was either completely absent (Eq. 25) or completely present (Eq. 24).

Measurement of system behavior for coupled TA modules revealed that either proteolytic coupling or growth rate

coupling could lead to substantial positive coordination between TA modules, though proteolytic coupling led to

stronger coordination in our model. In the absence of growth rate coupling (see Fig. 5A,B,C), a lack of proteolytic

coupling (ηp = 0.0) sensibly produced a conditional probability equal to the event probability, as would arise from

statistically independent TA modules. Increasing ηp to 0.5 led to a lower event probability and a conditional probability

much higher than the event probability, indicating a strong positive coordination between events of different TA

modules. Strong coordination persisted roughly for the range ηp > ε, where ε = 10−2 scales the absolute affinity of

substrate to protease. This result is consistent with earlier work showing that absolute affinity sets an important

boundary for system correlations [26]. Models that included growth rate coupling (see Fig. 5D,E,F) exhibited similar

results but with stronger coordination between events. These results support that even in the presence of growth rate

coupling, proteolytic coupling can lead to substantial additional coordination between events.
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C. Single TA Module Return Mechanism Models

Robustness of coordination due to proteolytic coupling was tested for a modification of our model to include a

return mechanism that limits the lifetime of a high free toxin state by increasing the affinity of toxin to proteolytic

degradation in response to the accumulation of free toxin (see Section II C for details). This negative feedback on free

toxin is only one of many possible return mechanisms, but existence of a return mechanism ensures cells can reliably

reset to a normal physiological state in a reasonable time (see Fig. 6A,B). Addition of a return mechanism to the

original bistable model for TA modules leads instead to an excitable system, where transition to the high free toxin

state can be slow and highly stochastic, while transition away from the high free toxin state can be faster and often

more regular. In principle, addition of a return mechanism can even lead to a model that is oscillatory (results not

shown), but such behavior does not seem to be relevant for the typical behavior of TA modules.

We find that the inclusion of a return mechanism leads to enhanced robustness of coupled TA modules. This is

indicated by preservation of regular TA module switching dynamics when the toxin RNase activity parameter βT is

sufficiently small (see Fig. 6C,D), which was associated with the system being stuck in the high toxin state without

a return mechanism. This increased robustness does not impact our qualitative conclusion that proteolytic coupling

leads to strong positive coordination between TA modules. For small βT , the system with a return mechanism

decreases event probabilities while preserving high conditional probabilities (see Fig. 6E), indicating strong positive

coordination between events. We conclude that proteolytic coordination can be extended from bistable systems to

excitable systems.

V. CONCLUSIONS

In this article, we examined the role of competition for proteolytic machinery in bacterial persistence. Specifically,

we demonstrated that two toxin-antitoxin (TA) modules with antitoxins competing for a common set of proteases

robustly display strongly coordinated toxic events. This effect is enhanced but not overshadowed by the coupling of

TA modules due to slowed cell growth rate consequent of toxin activity. To demonstrate the influence of proteolytic

coupling, we leveraged a novel model motivated by experimentally known molecular species and interactions, and

we found using extensive stochastic simulation that such models were tightly coordinated when sharing a common

proteolytic pathway. Finally, our findings were extended to a model where TA modules were made more robust by

introducing a return mechanism that promotes the reset of the system to a normal physiological state in a reasonable

time, as is needed if cells are to return to normal growth after persistence. While the modules considered in this article

are identical and based somewhat specifically on the translational inhibition mechanism and complex stoichiometric

ratio characteristic of the mazEF module in E. coli , proteolytic degradation of antitoxins is a common feature of all

known TA modules which may differ in complex formation and deleterious toxic effects [2, 7, 8].

Our results suggest more generally that tight coordination of the many TA modules in living cells could occur in

large part due to rapid post-translational proteolytic coupling. A mostly unstudied network of proteolytic crosstalk

could then be the primary factor behind particular activation patterns of TA modules, and these activation patterns

are likely key to understanding the details for persister cell survival. Perhaps the ability for TA modules to mutually

activate one another may be a source of redundancy and thus robustness in the activation of persistence, or perhaps

proteolytic coupling tunes the particular persister physiology by selectively coordinating TA modules. It is conceivable

then that drugs interfering with proteolytic crosstalk could be a major tool for eliminating persistence by providing

avenues to new therapies. For example, treatments might be developed to fully clear M. tuberculosis infections,

which kill approximately 1.6 million people per year [3, 13] and are known for their ability to generate cells with long

and robust persistent states [15, 16]. Alternatively, an enhanced understanding of how proteolytic coupling affects

persistence may lead to new industrial applications for synthetic biology. A knowledge of how proteolytic coupling

affects persistence is likely essential when considering retention of synthetic circuits, especially since many synthetic

systems depend on rapid proteolytic degradation, which in turn may suppress persistence. Engineered bacterial

persistence could lead to enhanced survival of cells containing synthetic circuits of interest, e.g. in bioreactors or

biosensors, leading to reduced cost to maintain these synthetic systems.
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VII. FIGURES
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FIG. 1: (A) Schematic of our model for a TA module with features similar to the mazEF system. A single mRNA is produced

encoding both toxin and antitoxin proteins. The toxin protein forms a dimer, which then forms a complex with the antitoxin

protein. This complex can also dimerize. The antitoxin, complex, and complex dimer all repress transcription of the mRNA

(dark red lines). Proteases can degrade free antitoxin and antitoxin bound in complexes (blue lines). Free toxin and its dimer

inhibit translation of both the toxin and antitoxin by cleaving the mRNA encoding them (orange lines). All species are also

subject to effective dilution by cell growth and division (not shown). The rate of dilution is dependent on the level of free

toxin and its dimer because cell growth is assumed to be slowed by toxin activity. (B) A sample single trajectory for free toxin

count Tfree = (T + T2) (red lines) of a single isolated TA module, with detected high free toxin events (toxic events) indicated

(dashed red lines and solid boxes). Dashed black lines represent high and low thresholds used to detect events (see Methods

Section III B). The trajectory and its thresholds are derived from a simulation of 105 time units. Parameters are βT = 5.0 and

standard otherwise (see Models Section II).
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FIG. 2: (A) With the addition of an identical mazEF -like module and a proteolytic pathway, the effect of proteolytic coupling

can be measured. There are now four distint proteolytic actions, where either pathway may process the antitoxin of either

module. In the uncoupled case, the pathways shown by grey arrows would not be present. Maximal coupling requires that

antitoxins do not prefer either proteolytic pathway over the other (both pathways effectively constitute a single pathway) [26].

The antitoxins are shown to repress their associated toxins because of the neutralization concomitant with complex formation

(and autorepression of the operon). The toxin is shown to repress the antitoxin as it inhibits translation preventing the

production of additional antitoxin (and toxin). With proteolytic coupling, the toxins of each module are coupled transitively

(green arrows) because of antitoxin coupling via proteolysis. Although artificial, the effective separation of dilutive pathways

presents a similar picture, except that toxin-toxin interaction is more direct as both toxins are diluted, as opposed to the strictly

transitive coupling of toxins owed to proteolytic competition. (B) A representative trajectory for TA modules with perfect

proteolytic coupling (ηp = 0.5) but no growth rate coupling or other coupling. It is evident that events for the two modules are

tightly coordinated by this coupling. Parameters are ηp = 0.5, βT = 5.0, no growth coupling (Eq. 25), and standard otherwise

(see Models Section II).
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FIG. 3: (A) Representation of the higher dimensional switching dynamics of a single isolated TA module without a return

mechanism that is simulated for 106 time units. Shown is the Pearson correlation coefficient between events and the counts of

free toxin (Tfree = T +T2), total complex (Ctotal = C + C2), mRNA (t and a), and free antitoxin (A). Correlation coefficient is

calculated by first defining a time-dependent quantity E that is 1 during an event and 0 otherwise, then by taking the standard

correlation coefficient between E and other quantities. (B) Similarly for the pairwise correlation coefficient between all these

quantities. Parameters are standard (see Models, Section II).
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FIG. 4: Statistics for a single isolated TA module without a return mechanism for scans of parameters ν, KC , and βT (see

Fig. 1B for a single trajectory). Statistics in (A) through (D) show results using a trajectory of 106 time units for each

data point. In these scans, it is seen that decreasing ν, increasing KC , and decreasing βT are associated with increasing

event probability and mean event duration. Statistics in (E) and (F) show results scanned more densely over two parameters

using trajectories of 105 time units, with the consequence that shorter trajectories lead to fewer events. Pixels shaded black

were determined not measurable, primarily due to low event frequency (100 events minimum required, see Event Detection,

Section III B). Parameters are specified in the figure and standard otherwise (see Models, Section II).
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FIG. 5: Coordination between TA modules was studied in the case where two TA modules couple to one another by either

proteolytic or growth rate coupling (see Fig. 2B for single trajectories showing correlation). (A) For trajectories of duration 106

time units for a system without growth rate coupling (Eq. 25) and with βT = 20.0, the event probability for a single TA module 1

(black line), the joint event probability for TA modules 1 and 2, and the event probability of TA module 1 conditional on an event

for TA module 2 were computed as a function of the proteolytic coupling parameter ηp (see Section III C for definitions of these

probabilities). It was seen that a wide range of proteolytic coupling strengths led to strong coordination between TA modules,

as indicated by their mutual conditional probabilities approaching 1. (B) and (C) show event probability and conditional

probability, respectively, for shorter trajectories of length 105 as the parameters ηp and βT are scanned. (D), (E), and (F) are

the same as (A), (B), and (C), respectively, but for a system with perfect growth rate coupling (Eq. 24). Additional growth rate

coupling was seen to overall increase the conditional probability while lowering the single event probability, supporting enhanced

coordination between TA modules. Parameters are specified in the figure and standard otherwise (see Models, Section II).
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FIG. 6: Inclusion of a return mechanism for a model with growth rate coupling leads to increased robustness while maintaining

our results for positive coordination. (A) For a model with growth rate coupling (Eq. 24) and without a return mechanism, the

choice of parameters ηp = 0.5 and βT = 1.0 leads to simulations that switch to a high free toxin state but fail to return to a low

free toxin state by the end of a 105 time unit simulation. (B) The same model with return mechanism added leads to a series of

finite duration events. (C), (D), and (E) show event probability, event count, and conditional probability, respectively, for this

model as a function of βT and for different values of proteolytic coupling strength ηp. Statistics for models without a return

mechanism (no RM) are shown as solid lines, while models with a return mechanism (with RM) are shown as dashed lines.

It is seen that the return mechanism ensures low event probability with high conditional probability at low βT . Lines for the

model without a return mechanism end at low βT due to insufficient event count (100 events minimum required). Parameters

for the return mechanism are αX = 0.01, σX = 0.1, and βX = 10−7. Other parameters are either specified in the figure or

standard (see Models, Section II).
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