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Abstract

An open question in human evolution is the importance of polygenic adaptation:

adaptive changes in the mean of a multifactorial trait due to shifts in allele fre-

quencies across many loci. In recent years, several methods have been developed to

detect polygenic adaptation using loci identified in genome-wide association studies

(GWAS). Though powerful, these methods suffer from limited interpretability: they

can detect which sets of populations have evidence for polygenic adaptation, but

are unable to reveal where in the history of multiple populations these processes

occurred. To address this, we created a method to detect polygenic adaptation

in an admixture graph, which is a representation of the historical divergences and

admixture events relating different populations through time. We developed a

Markov chain Monte Carlo (MCMC) algorithm to infer branch-specific parameters

reflecting the strength of selection in each branch of a graph. Additionally, we

developed a set of summary statistics that are fast to compute and can indicate

which branches are most likely to have experienced polygenic adaptation. We show

via simulations that this method - which we call PhenoGraph - has good power

to detect polygenic adaptation, and applied it to human population genomic data

from around the world. We also provide evidence that variants associated with

several traits, including height, educational attainment, and self-reported unibrow,

have been influenced by polygenic adaptation in different human populations.
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1 Introduction

There is much interest in identifying the individual genetic variants that have experi-

enced natural selection during recent human evolution. Many popular methods tackle

this problem by identifying alleles that have changed frequency faster than can be ex-

plained by genetic drift alone, and that can instead be explained by selective processes.

These methods exploit patterns like haplotype homozygosity [1, 2, 3] and extreme popu-

lation differentiation [4, 5, 6], and have yielded several important candidates for human

adaptation: for example, LCT [7], EDAR [2], EPAS1 [4] and the FADS region [8]. In

order for these signals to be detectable at the level of an individual locus, the historical

changes in allele frequency must have been large and rapid. Therefore, they can only be

produced by alleles that confer a strong selective advantage.

With the advent of large-scale GWAS for a variety of measurable traits, however, it

has now become possible to detect a more subtle mechanism of adaptation. If a trait is

polygenic, positive selection may instead occur by concerted shifts at many loci that all

contribute to the variation in a trait. Over short time scales, these shifts are expected

to be small (but see [9] for polygenic dynamics under longer time scales). They are also

expected to occur in consistent directions, such that alleles that increase the trait will

systematically rise in frequency (if selection favors the increase of the trait) or fall in

frequency (if selection operates in the opposite direction). None of the allele frequency

changes need to be large on their own for the phenotypic change to be large. This process

is called polygenic adaptation and may underlie major evolutionary processes in recent

human history [10, 11, 12, 13].

A number of methods have been developed to detect polygenic adaptation using loci

identified from GWAS. Turchin et al. [14] was the first such study. They developed

a test for polygenic adaptation between two populations, and showed that there were

systematic frequency differences at height-associated loci between northern and southern

Europeans, which could not be explained by genetic drift alone. Berg et al. [15] devel-

oped a more general method to detect polygenic adaptation by testing for over-dispersion

of mean genetic values among several populations, using a genome-wide population co-

variance matrix to predict how alleles should behave under neutrality. More recently,

Robinson et al. [16] used theory by Ovaskainen et al. [17] to develop a similar population

differentiation method to detect polygenic adaptation with GWAS. They also made use

of the genome-wide covariance matrix, but, in contrast to Berg et al., their method is

implemented in a Bayesian linear mixed model.

None of these methods require a detailed model of human history to detect polygenic

adaptation. Their use of the genome-wide covariance matrix allows them to capture

patterns of genetic drift among populations without having to infer their history. While

this makes them quite powerful, it also means that they are not very useful at determining
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where and when polygenic adaptation took place in the past.

Here, we develop a method to detect polygenic adaptation that uses a more parameter-

rich model of historical population structure: an admixture graph, which is a simplified

representation of the history of divergences and admixture events among populations

[18, 19]. Having an explicit model allows us to infer where particular bouts of polygenic

adaptation took place in human history, so as to better understand how selection on

trait-associated variants has occurred over past generations.

2 Results

2.1 Model

Assume we have measured genotypes at a SNP that influences a trait in a set of M

populations. Let dm be the count of the derived allele in population m and let ~d be the

vector across the M populations of each dm observation. Let nm be the total number

of chromosomes observed in population m (together ~n). Assume we have an admixture

graph G relating these populations, and that this graph consists of an accurate topology,

as well as accurate branch lengths and admixture rates. Branch lengths are in units of

drift, which are approximately equal to t/2Ne, where, for each branch, t is the number of

generations and Ne is the effective population size, assuming t << Ne [20]. In practice,

we can estimate such a graph from neutral genome-wide data, and we use the program

MixMapper [21] when applying our method to real data below.

We wish to model the changes in frequency of the trait-associated allele over the graph

G. At each node in the graph, we introduce a parameter that corresponds to the allele

frequency of the variant at that node. Let fR be the derived allele frequency at the root

of the graph, ~fI be the vector of allele frequencies at all the other internal nodes of the

graph, and ~fT be the vector of allele frequencies at the tips of the graph.

The probability of the parameter values and the data can then be decomposed as

follows:

P (fR, ~fI , ~fT , ~d|~n,G) = P (~d|~n, ~fT )P (~fT |~fI , G)P (~fI |fR, G)P (fR) (1)

We now take each of terms above in turn. First, the probability of the observed counts

is simply a product of binomial probabilities:

P (~d|~n, ~fT ) =
M∏
m=1

Bin(dm;nm, fm). (2)

where fm is the element of ~fT that corresponds to population m.

To get the probabilities of the changes in allele frequency across different nodes,

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 4, 2017. ; https://doi.org/10.1101/146043doi: bioRxiv preprint 

https://doi.org/10.1101/146043
http://creativecommons.org/licenses/by-nc-nd/4.0/


consider a single branch of G. Assuming the branch is relatively short (such that the

allele does not approach fixation or extinction in this time period) and there is no natural

selection, we can use the Normal approximation to the Wright-Fisher diffusion [22, 23, 24]

to model the allele frequency at the descendant node of the branch (fD) as a function of

the allele frequency at the ancestral node (fA):

fD|fA, c ∼ N(fA, fA(1− fA)c), (3)

where c corresponds to the amount of drift that has occurred in the branch. In practice,

we use a truncated Normal distribution with point masses at 0 and 1, to account for the

possibility of fixation or extinction of the allele [25].

In our model there may have also been selection on the allele on the branch, such

that it was pushed to either higher or lower frequency because of its influence on a trait.

We can model the selected allele frequency by modifying the infinitesimal mean of the

Wright-Fisher diffusion and approximating the diffusion with a Normal distribution that

now includes some additional terms ([14, 25, 26], Bhérer et al. in prep.):

fD|fA, α, β̂, c ∼ N(fA + g(β̂)αfA(1− fA), fA(1− fA)c), (4)

where β̂ is the effect size estimate at that site (defined with respect to the derived allele),

g(β̂) is some function that relates the effect size estimate to the selective pressure and α

is our positive selection parameter, which is approximately equal to the product of the

selection coefficient for the advantageous allele and the duration of the selective process

[14, 27]. In practice, we will set g(β̂) to be equal to the sign (+1 or −1) of β̂ (Figure 2),

so as to avoid giving too much weight to variants of strong effect. We will model selection

only on SNPs that are associated with a trait in a particular GWAS.

We can calculate the probability of these parameters at a particular site as the prod-

uct of the Normal probability densities that correspond to the evolution of allele fre-

quencies down each branch times a binomial probability density to account for sampling

error. Let us denote the Normal density that corresponds to a particular branch λ as

h(fλD; fλA, c
λ, αλ), where we suppress notation of β̂ for clarity. Then, for example, the

probability of a given pattern of allele frequencies and sample counts over a rooted 3-leaf

tree with 4 branches λ, ι, υ, ψ (Figure 1) can be computed as follows:

P (~fI , ~fT , ~d|~α, ~n, fR, G) = h(fλD; fλA, c
λ, αλ)h(f ιD; f ιA, c

ι, αι)h(fυD; fυA, c
υ, αυ)h(fψD; fψA , c

ψ, αψ)P (~d;~n, ~fT )

(5)

when the α parameters and the allele frequency at the root of the tree (fR = f ιA = fψA) are

known. Note that some of the symbols here correspond to the same allele frequencies. For

example, if the υ branch is one of the immediate descendant branches of the ι branch,
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then f ιD = fυA. Assuming SNPs are independent, we can compute the probability of

the allele frequency configurations at all N trait-associated SNPs as a product over the

probabilities at each of the SNPs:

P1..N =
N∏
i=1

Pi (6)

where Pi is the probability of the parameters of interest at SNP i under our tree model.

More generally, we can also compute the probability of our parameters in an admix-

ture graph, containing nodes with more than one parent. In that case, the probability

of an allele frequency of an admixed node is a weighted sum of the probability paths

corresponding to its two parents, where the weights are the admixture rates for each of

the two contributions.

In practice, for a given SNP, we know neither the allele frequencies at the inner nodes

(~fI) nodes, at the tip nodes (~fT ) and at the root node (fR), nor the α parameters in

each branch (~α). We want to obtain a posterior distribution of these parameters, given

the data and the known graph: P (~fT , ~fI , fR, ~α|~d, ~n, β̂, G). We aim to do this for all trait-

associated SNPs. We therefore developed an MCMC sampler to transition between the

states of these variables and estimate their posterior distribution (Figure 2).

We set the prior for the frequencies at the root fR to be a uniform distribution. For

a given SNP i,

fi,R ∼ Unif [0, 1] (7)

As there are many combinations of α parameters that generate almost equivalent

likelihoods in a complex admixture graph (Figure S1), we use a “spike-and-slab” prior

for the α parameters, so as to promote sparsity. For a given branch j,

αj|τ, ζ, κ ∼ κN(0, (τ/ζ)2) + (1− κ)N(0, τ 2) (8)

This is a mixture of two Normal distributions centered at 0: one of the distributions

has a wide standard deviation (τ), while the other has a much narrower standard devia-

tion, which is a fraction (1/ζ) of τ , and approximates a point mass at 0 [28, 29]. Here, κ is

the mixture probability of drawing from the narrower Normal distribution, and we model

it as a uniform hyperprior (see Methods). The idea behind this is that our assumed prior

belief is that only a few of the branches in the admixture graph have experienced bouts of

polygenic adaptation, so we reward α parameters that tend to stay in the neighborhood

of 0 during the MCMC run.
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2.2 A statistic for prioritizing branches

We observed via simulations that different combinations of α parameters can produce

very similar likelihood values. This causes the MCMC sampler to explore different com-

binations of α values in the same posterior run, when only one such combination is

actually correct (Figure S1). The aforementioned spike-and-slab prior serves to partially

ameliorate this problem, but we aimed to find a way to further encourage sparsity by

reducing the possible number of candidate branches that are explored in the MCMC.

We therefore devised a set of summary statistics that can be computed before starting

an MCMC run and are meant to detect branch-specific deviations from neutrality. Let

F be the empirical population covariance matrix, which - under ideal neutral conditions

- should be determined by the admixture graph connecting all the populations. Let ~z be

the mean-centered vector of estimated mean genetic values for each of the M populations,

computed from the N SNPs that are known to be associated with a trait. For a specific

population m:

zm = 2
N∑
i

f̂i,mβ̂i (9)

Here, f̂i,m is the sample frequency of SNP i in a panel of population m, and β̂i is its

effect size estimate. The vector ~z therefore contains the zm values for all M populations.

Furthermore, let us define the vector ~bj for a particular branch j to be equal to the

contribution w of that branch to each of the leaves of the graph. For example, branch

v-q in Figure 2 is a full ancestral branch to leaf C, a partial ancestral branch to leaf B

(due to the admixture event), but not an ancestral branch to either A or D. Therefore,

the vector ~bv−q is equal to (wA, wB, wC , wD) = (0, 1 − γ, 1, 0). By the same reasoning,
~bC−v = (0, 0, 1, 0) and ~bq−r = (1, 1, 1, 0).

Now, let:

QB(j) =
(~zT ~aj)

2

2VA ~aj
TF~aj

(10)

where ~aj is a scaled version of ~bj so that is has unit length. The numerator of this

statistic is proportional to the squared covariance between the genetic values and the

vector representing the contribution of drift down branch j to the overall pattern of

among population divergence. The denominator gives the expectation of the numerator

under the neutral model. This statistic reflects how much of the deviations from neutrality

among the population mean genetic values for a trait is due to branch j. One can show

(see Methods) that QB(j) has a χ2
1 distribution under a null model of multivariate Normal

drift, for any branch j, and excessively large values of QB(j) therefore represent evidence

suggesting non-neutral evolution down branch j.
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We used this summary statistic (computed for each branch) to prioritize which branches

to explore in our MCMC. We applied a prior point mass of zero to all branches whose

corresponding QB statistic were smaller than a particular cutoff. The choice of cutoff was

based on simulations (see Methods). The MCMC only produces posterior samples for

branches that pass this cutoff and are therefore highly deviated from their expectation

under neutrality. We also update the α parameters of these latter branches in our MCMC

with a frequency proportional to their QB values, in a similar fashion to [30].

2.3 Implementation

We implemented both the MCMC and the QB statistic computation in a program that we

call PhenoGraph. We use the R packages admixturegraph [31] and igraph [32] to visualize

and manipulate various aspects of a graph. The R scripts to run PhenoGraph can be

downloaded here: https://github.com/FerRacimo/PhenoGraph

2.4 Simulations

We explored different demographic scenarios. We first simulated a simple three-leaf tree

with four branches, in which the sampled panels in the leaves were each composed of 100

diploid individuals (Figure 3.A). We tested scenarios of different branch lengths: each of

the branches was simulated to be either of length 0.02 or of length 0.05. We also tested

different types of branch under selection (either a terminal branch or an internal branch).

We additionally tested a four-leaf admixture graph with one admixture event (Figure 3.C)

in these same scenarios. For comparison, the amount of genetic drift between Spanish

and French human populations is 0.016 and the amount of drift between French and Han

Chinese human populations is 0.22 [33]. The latter is approximately equal to the drift

separating populations A and C in our 4-population graph, when each branch has length

equal to 0.05.

In each scenario, we simulated N = 400 trait-associated SNPs. For each SNP, we

sampled the root allele frequency (fR) from a Beta(2,2) distribution, to emulate the fact

that, in the real data, variants in the leaf populations tend to be further away from the

boundaries of fixation and extinction than under a uniform distribution. We evolved the

SNPs throughout an admixture graph forwards in time using truncated Normal distri-

butions with point masses at the boundaries of 0 and 1, and used binomial distributions

to sample panel allele frequencies from the leaf populations. The effect sizes of the SNPs

were drawn from a Normal distribution with mean 0 and we simulated polygenic adap-

tation (with α = 0.1 and α = 0.2) in a particular branch using only the sign of the effect

size of each SNP. We also simulated an additional 10,000 SNPs that evolved neutrally

under the same demography, so as to estimate the neutral population covariance matrix.

For all simulation scenarios, we tested five 400-SNPs replicates. We ran the MCMC
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four times on each simulation to check that it was behaving consistently. We observed

that the runs for each simulation were very similar to each other, so we only show one

run for each simulation.

When the α parameter is large (α = 0.2), the MCMC performed very well (Figure

3). For a tree (Figures S2 and S3) or a graph (Figures S4 and S5) with small branch

lengths (0.02), the QB statistic corresponding to the selected branch was included as a

potential candidate branch in the MCMC in all simulations. PhenoGraph then consis-

tently converged on the appropriate joint distribution of selection parameters. When the

branches were simulated to be longer (0.05), the MCMC performed well, but, in a few

simulations, it produced positive estimates for α parameters in neutral branches or failed

to find evidence for selection in any branch (Figures S6 to S9). This occurred more often

when the α parameter was simulated to be smaller (α = 0.1), but again, this was less of

a problem with short-branch graphs (Figures S10 to S13) than with long-branch graphs

(Figures S14 to S17). In general, we conclude that the method performs best when selec-

tive pressures are strong and/or exerted over long time periods (i.e. large α), and when

drift parameters are small.

We were concerned about false positive estimates of selection when the graph is mis-

specified. To assess this, we simulated a graph like the one shown in Figure 3.C but

with no selection. We first run PhenoGraph while correctly specifying the topology and

the branch lengths (of length equal to 0.02) as input (Figure S18), and observed that

all posterior α estimates are tightly centered at 0, as expected. Then, we simulated a

graph with the same topology but with each branch having length equal to 0.03, while

incorrectly under-estimating the length of each branch to still be equal to 0.02 (Figure

S19). Finally, we simulated the same graph but with each branch having length equal to

0.04 while incorrectly under-estimating the branch lengths to all be equal to 0.02 (Figure

S20). With increasingly stronger misspecification of the branch lengths, we observe that

the behavior of some of the posterior estimates becomes more erratic. Visual inspec-

tion of the MCMC trace indicates that underestimation of the branch lengths makes the

chain to become more “sticky”, causing some parameters to get stuck at incorrect areas

of parameter space for long periods of time

We also simulated a neutral graph as in Figure 3.C but pretended like population

A had not been sampled, and that the graph was (incorrectly) estimated to be a 3-

population tree like the one in Figure 3.A. This topological misspecification does not

seem to affect the inference of neutrality (Figure S21), but we do not discard the pos-

sibility of other incorrect types of topologies that could generate wrong inferences. We

therefore stress that the admixture graph - especially the branch lengths - relating the

populations under study should be correctly estimated before running PhenoGraph. We

also advise to run the MCMC only when there is significant evidence for selection based

on the QX statistic [15], which does not need an admixture graph as input, as it uses
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the full covariance matrix to model the expected amount of drift separating each of the

populations.

2.5 Application to 1000 Genomes data

We tested our method on traits from 43 GWAS on 42 different traits (Table S1, two

of the GWAS are for age at menarche) that were previously assembled as part of a

meta-analysis studying the genetic correlations between such traits, using approximately

independent linkage disequilibrium blocks across the genome [34]. For each block with a

posterior probability of containing an association > 90%, we included the SNP with the

maximum posterior probability of being the causative variant into our list of candidate

trait-associated SNPs. We used the VCF data from the 1000 Genomes Project [35]

and built admixture graphs using MixMapper [21]. We excluded SNPs for which the

ancestral allele in the 1000 Genomes data was unknown or unsure (lower case in VCF

file). Because MixMapper cannot distinguish between the two drift values corresponding

to two admixing branches with a common child node and the drift value specific to the

immediate descendant branch of the child node (Figure 2 in ref. [21]), we forced the drift

in the two admixing branches to be equal to 0.001 and assigned the drift estimated by

MixMapper to the branch immediately descending from the child node.

We began by fitting a 7-leaf tree with no admixture events containing diverse popula-

tions sampled across the world (Figure S22.A). The tree included Nigerian Esan (ESN),

Sierra Leone Mende (MSL), Northern Europeans from Utah (CEU), Southern Europeans

from Tuscany (TSI), Dai Chinese (CDX), Japanese (JPT) and Peruvians (PEL). We

took trait-associated variants to be under polygenic adaptation if the P-value for the

corresponding QX [15] statistic (testing for overall selection among the populations) was

< 0.05/n, where n is the number of assessed GWASs. Traits with associated variants that

passed this criterion are shown in Table 1. To account for possible artifacts arising from

the ascertainment scheme for each GWAS, we also generated 1,000 pseudo-replicates in

which we randomly switched the sign of the estimated effect size for all trait-associated

SNPs. This serves to preserve the SNP ascertainment of each trait, while removing the

effect of selection. We then computed a second P-value of the observed QX (Prand) by

comparing it to these pseudo-replicates (Table 1).

We ran our MCMC on these trait-associated variants and obtained posterior distribu-

tions for the α parameters with the strongest evidence for selection, prioritizing branches

as explained above (Figure S23). The P-values of the QB statistic (obtained from a

χ2
1 distribution) for each branch are shown in Table S2. We find strong evidence for

selection on variants associated with height, educational attainment and self-reported

unibrow, but little or no evidence for variants associated with male-pattern baldness or

schizophrenia: even though these trait-associated variants are significant under the QX
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and QB frameworks, all their α parameters are approximately centered at 0. For height,

we observe both selection for variants increasing height in the ancestral European branch

and for variants decreasing height in the ancestral East Asian / Native American branch.

However, this is only a consequence of the MCMC showing alternate strong support for

selection in either one or the other branch at different points in the run, but only weak

support for selection in both branches simultaneously (Figure S24), suggesting we are

unable to discern which among these is the correct configuration.

We also tested a graph with an admixture event (Figure S22.B). This graph contained

Yoruba (YRI), Colombians (CLM), CEU, CHB and PEL. We modeled CLM as resulting

from an admixture event between CEU (76.55%) and PEL (23.45%), the latter of which

is the panel with the highest amount of Native American ancestry in the 1000 Genomes

Project [35]. Here, we recapitulated many of our previous findings from the 7-leaf tree

(Table 1, Figure S25), like selection on variants associated with height and educational

attainment. We list the P-values of the QB statistic for each branch in Table S3.

To facilitate the visualization of posterior distributions for α parameters, we developed

a new way to plot polygenic adaptation in a graph: a “pheno-graph”. In a pheno-

graph, the vertical component of a non-admixing branch is proportional to the amount

of genetic drift that it experienced (calculated via MixMapper). The position of admixed

nodes was determined based on the drift value of one randomly chosen parent branch.

The colors indicate the mean posterior estimate of the selection parameter for variants

associated with the corresponding trait (with red indicating an increase in trait-increasing

variant frequency, and blue indicating a decrease in trait-increasing variant frequency).

We plotted pheno-graphs for all traits that passed the significance criterion in the 7-leaf

tree (Figure 4) and in the 5-leaf admixture graph (Figure 5).

To make sure there were no artifacts due to GWAS ascertainment [15], we also gener-

ated an empirical null distribution in which we produced 1,000 samples, each containing

SNPs that were frequency-matched to the trait-associated SNPs, using their allele fre-

quency in CEU, for our three sets of SNPs with strongest evidence of selection: variants

associated with educational attainment, with self-reported unibrow and with height. We

computed the QX statistic for each of these SNP samples, using the population panels

from Figure 4. We do not observe a value of QX as high as the one observed in the real

data, for either of the three sets (Figure 6).

To test how robust our results were to our modeling assumptions, we also performed

a simpler two-tailed binomial sign test between every pair of 1000 Genomes panels. The

assumption here is that - for every panel X and Y - we should observe roughly equal

number of trait-increasing alleles at higher frequency in X than in Y as trait-decreasing

alleles at higher frequency in X than in Y, under a model of neutrality with respect to the

effect size sign [36]. This test only uses information about the sign of the effect estimates

of each SNP, not their magnitudes, and does not use information about genome-wide
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drift parameters between each population. Thus, they are bound to have less power than

the QB, QX or MCMC tests. The P-values for these pairwise binomial tests are shown

in Tables S4 to S8 for all traits that were found to have significant evidence of selection

using the QX statistic. The top 10 most significant pairwise comparisons are shown in

Tables S9 to S13. For ease of visualization, we also plotted, for each panel, the number of

pairwise tests involving that panel that resulted in a P-value < 0.05 (Figures S26 to S30).

We were interested in verifying how sensitive different proportions of missing data (i.e.

removal of SNPs) or erroneous effect size estimates would be to our three strongest signals

of polygenic adaptation, on variants associated with height, educational attainment and

unibrow. For this purpose, we focused on the comparison between CEU and CHB.

First, we simulated different proportions of missing trait-associated SNPs - ranging from

5% to 95%, with step sizes of 5%. For each of 10,000 simulations under each missing

data scenario, we assessed how often the polygenic score for unibrow and educational

attainment in CHB was higher than the polygenic score for CEU, like we observe in the

1000 Genomes data. Height follows the opposite pattern (with CEU having a higher

polygenic score than CHB), so in that case we assessed how often its polygenic score in

CEU was higher than in CHB, across the 10,000 simulations for each scenario. Note that

we built these scores using only the SNPs used in our selection tests. The results are

in Figure S31. For example, we see that - even with 20% missing data - the polygenic

scores for either of the 3 traits preserve the observed relationship of inequality between

CEU and CHB almost 100% of the time. Finally, we simulated a situation in which some

proportion of the signs of the effect size estimates were misassigned. We then assessed

how often we could replicate the signal we see between CEU and CHB, but this time

under different proportions of sign misassignment (Figure S32).

Finally, to understand how the signal of selection was distributed among our SNPs,

we plotted the absolute value of the effect sizes of trait-associated SNPs for height, educa-

tional attainment and self-reported unibrow, as a function of the difference in frequency

observed between CHB and CEU, polarized with respect to the trait-increasing allele in

each SNP (Figure S33). We find that, in the case of self-reported unibrow, there are three

variants of large effect with large frequency differences contributing to a higher polygenic

score in CHB: rs3827760, rs16891982 and rs12916300. These SNPs are located in the

genes EDAR, SLC45A2 and OCA2. These are genes involved in pigmentation and skin

development, and all three have documented signatures of selective sweeps causing strong

allele frequency differences between Europeans and East Asians [7, 3, 37, 2, 12]. After

removing SNPs with large absolute effect size values (≥ 0.05), the P-value of the QX

statistic for these variants remains significant (P = 7.04 ∗ 10−5). When looking at the

other two sets (variants associated with height and educational attainment), the signal of

selection is more uniformly distributed among the SNPs, with no strong outliers of large

effect with large frequency differences (Figure S33).
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2.6 Application to Lazaridis et al. (2014) data

We applied our method to a more broadly sampled SNP chip dataset containing present-

day humans from 203 populations genotyped with the Human Origins array [18, 38].

This dataset was imputed using SHAPEIT [39] on the Michigan Imputation Server [40]

with the 1000 Genomes Phase 3 data [35] as the reference panel (Bhérer et al. in prep.).

We tested for polygenic adaptation in a 7-leaf admixture graph. This graph contains

the panels Yoruba, Mandenka and Sardinian, along with the following 4 combinations of

panels, which we built so as to have a large number of individuals per panel. The panel

“Oceanian” contains the panels Papuan and Australian. The panel “EastAsian” con-

tains the panels Cambodian, Mongola, Xibo, Daur, Hezhen, Oroqen, Naxi, Yi, Japanese,

Han NChina, Lahu, Miao, She, Han, Tujia and Dai. The panel “NativeAmerican” con-

tains the panels Maya, Pima, Surui, Karitiana and Colombian. Finally, we modeled

Europeans as a 2-way mixture of an ancestral component related to “NativeAmerican”

and another component that split basally from the Eurasian tree. This was the mixture

fitted to Europeans by ref. [21], and provides a better fit to the data than modeling

Europeans merely as a sister group to East Asians and Native Americans. Though we

recognize that Europeans are better modeled as a 3- or 4-way mixture of ancestral compo-

nents [38, 33, 41], it is hard to produce such a mixture without resorting to ancient DNA

data (see Discussion). We tested 3 different versions of this graph, each containing three

different sets of European populations (Figure S22.C) distinguished by how much “early

European farmer” (EEF) ancestry they had (based on Figure 4 of ref. [38]). “Euro-

peA” (low EEF) contains the following panels: Estonian, Lithuanian, Scottish, Icelandic,

Norwegian, Orcadian, Czech, English. “EuropeB” (medium EEF) contains Hungarian,

Croatian, French, Basque, Spanish North and French South. Finally, “EuropeC” (high

EEF) contains Bulgarian, Bergamo, Tuscan, Albanian, Greek and Spanish.

Trait-associated variants with significant evidence for polygenic adaptation are listed

in Table 2 and the P-values of the QB statistic for each branch are shown in Tables S14

to S16. With these data, we are able to recapitulate the adaptive increase in height-

increasing variants in Europeans we had seen before, but only observe it in populations

with medium or low EEF ancestry (Figures 7 and S34 to S38). This pattern is consistent

with previous observations made using ancient DNA in Europeans [12]. We also recapit-

ulate selection patterns on variants associated with other traits, like unibrow, educational

attainment and male-pattern baldness, and observe evidence for polygenic adaptation in

some additional trait-associated variants, like photic sneeze reflex (Table 2).

To check if there were systematic biases in ancestral/derived allele polarity relative

to the direction of the effect size, we performed a two-tailed binomial test on each trait

for which we found significant evidence of polygenic adaptation in the Lazaridis et al. or

the 1000 Genomes dataset (Table S17). We find that only schizophrenia has a significant
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bias, showing an excess of derived alleles with negative effect sizes (P = 0.03511), though

this is not significant after Bonferroni correction. We therefore caution that the evolution

of these trait-associated variants may not be well-modeled by the multivariate Normal

assumptions that we make to calculate the QB statistic or when running the MCMC.

As before, to check the robustness of our results to our modeling assumptions, we show

P-values for pairwise binomial sign tests involving each of the panels in the Lazaridis et

al. (2014) dataset in Tables S18 to S22. The top 10 most significant pairwise comparisons

are in Tables S23 to S27. Figures S39 to S43 show, for each panel, the number of pairwise

tests involving that panel that resulted in a P-value < 0.05.

3 Discussion

We have developed a method to infer polygenic adaptation on trait-associated variants

in an admixture graph, so as to be able to pinpoint where in the history of a set of

populations this type of selective processes took place. Our method requires GWAS data

for a particular trait, allele frequency data for a set of populations, and a precomputed

admixture graph that relates these populations with each other. Importantly, the method

relies on the admixture graph as an accurate description of the ancestral genome-wide

relationships among the populations under study. Potential users should be careful about

correctly estimating branch lengths and ghost populations which are not included in the

graph but may have substantial unaccounted ancestry contributions to the populations

that are included. We used MixMapper [21] to infer the graph topology and branch

lengths. Alternatively, one can also use other programs, like qpGraph [18] or TreeMix

[19] to build graphs, though we caution that the estimated drift values of the branches

in the output of these programs are scaled (in different ways) by the heterozygosity of

ancestral nodes (see Supplementary Material of [21] for a way to properly obtain drift

values from differences in allele frequencies between populations).

Running PhenoGraph involves a two-step process, each of which is complementary

to the other. The first step - the calculation of the QB statistic - is fast and provides a

preliminary way to assess which branch in a graph has significant evidence for polygenic

adaptation. However, this statistic does not model the ancestral allele frequencies at

each node of the graph. The second step - the MCMC - is slower, but provides posterior

distributions for selection parameters under a more parameter-rich model of population

history. In our pipeline, we use the first method as a filtering step, to avoid exploring

selection parameters in the MCMC for those branches that have little evidence for selec-

tion, and encourage the MCMC to be sparse in its assignments of selection in the graph.

We illustrate this point in Figure S44, where we show a side-by-side comparison of a

pheno-graph built using the posterior α estimates and a pheno-graph built using qb - a

signed version of the QB statistic (see Methods).
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In application to human populations, we detected signals of polygenic adaptation on

sets of variants that have been identified to influence height, educational attainment, and

unibrow. Selection on variants associated with height in Europeans has been previously

reported elsewhere [15, 14, 16, 12] and our results are consistent with previous findings

showing that height-increasing variants are at significantly and systematically higher

frequencies in northern than in southern European populations. The signal for selection

affecting variants associated with self-reported unibrow is also strong, but partly driven by

a few variants of large effect with large frequency differences between populations, which

have documented evidence for selective sweeps in genes involved in hair, skin and eye

pigmentation, and skin development [3, 37, 7, 2, 12]. Additional trait-associated variants

had inconsistent evidence across datasets and graph frameworks (like schizophrenia or

male-pattern baldness) and/or were driven by differences in only a few SNPs of small

effect (like age at voice drop), and so we do not discuss them.

We find evidence for polygenic adaptation in East Asian populations at variants that

have been associated with educational attainment in European GWAS. This result is

robust to the choice of data we used (1000 Genomes or Lazaridis et al. (2014) panels).

Our modeling framework suggests that selection operated before or early in the process

of divergence among East Asian populations - whose earliest separation dates at least

as far back as approximately 10 thousand years ago [42, 43, 44, 45] - because the signal

is common to different East Asian populations (Han Chinese, Dai Chinese, Japanese,

Koreans, etc.). The signal is also robust to GWAS ascertainment (Figure 6), and to our

modeling assumptions, as we found a significant difference between East Asian and non-

East-Asian populations even when performing a simple binomial sign test (Tables S4, S9,

S19 and S24).

Interpreting this and the other signals we found requires awareness of a number of

technical caveats, as well as several fundamental conceptual difficulties with the study of

polygenic adaptation, some of which may ultimately prove intractable.

3.1 What is the signal of polygenic adaptation?

Before discussing these difficulties, it is worth articulating exactly what a signal of poly-

genic adaptation consists of. Taking the height example as a case in point, the signal

is that a set of genetic variants that have been identified as associated with increased

height in a European GWAS are (as a class) at higher frequency in northern Europeans

today than would be expected by genetic drift alone. Though this observation is consis-

tent with the hypothesis that natural selection has operated on these variants, it does

not necessarily imply that natural selection has operated directly on “height”, nor that

observed height differences between northern Europeans and other populations are nec-

essarily genetic and due to selection.
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3.2 Pleiotropy and phenotype definition

When looking at all our variant classes, we are necessarily limited by the traits that have

been defined and studied by others, as we have grouped variants together based on these

phenotypes. The use of previously established definitions makes it difficult to understand

exactly why these variants may have been under selection in the past. This is perhaps

best exemplified by the signal of polygenic adaptation for genetic variants associated with

educational attainment.

Standardized schooling - and consequently, the concept of “educational attainment”

- was only invented and implemented widely in the last few generations. It is obviously

nonsensical to discuss its evolution over the past tens of thousands of years. Instead, it is

likely that the set of variants for which we find evidence of selection was associated with

some (unknown) phenotype(s) in the past. However, given that selection on these variants

likely took place more than 10 thousand years ago, it may be difficult or impossible to

identify what these were. A similar problem arises when thinking about the signal of

polygenic adaptation on “unibrow”. This is a self-reported phenotype, and the genetic

variants that have been identified may simply be associated with pigmentation (assuming

people with certain hair and/or skin pigmentation phenotypes are more likely to notice

they have hair between their eyes), or alternatively with some other (unmeasured) hair-

related phenotype. It is also possible that direct sexual selection for absence or presence

of unibrow as an attractive facial feature in certain cultures [46] may be the cause of

this signal. Indeed, if a selective agent is cultural, but the culture has since changed, it

may be impossible to determine what actually occurred. All these variants are also likely

pleiotropic [47], which makes it even harder to determine which phenotypes were truly

targeted by selection.

Perhaps, one could try to find the phenotypic gradients along which selection most

likely operated [48] by modeling the evolution of trait-associated SNPs for multiple phe-

notypes together. However, it is also possible that genetic correlations among traits in

the present are not good proxies for genetic correlations in the past.

3.3 Relationship between polygenic scores and population

mean phenotypes

Another fundamental limitation in interpreting all studies of polygenic adaptation (in-

cluding this one) is that the connection between the distribution of allele frequencies

today and any historical or geographic trends in phenotypes remains questionable. In-

deed, though we have motivated this method as a way to identify adaptive shifts in the

mean of a polygenic trait, it is a simple fact that massive changes in the mean values of

many of the traits we consider have occurred by purely non-genetic environmental pro-

cesses. For example, the mean height of men in the Netherlands increased from around
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166 cm in the mid-1800s to currently over 180 cm [49], bringing the population from

around the middle of the pack among European countries to the tallest one in the world.

This likely occurred for environmental reasons, like improvements in diet and health care

[50, 51]. Likewise, the average educational attainment in Iceland and North America has

increased dramatically over the past century, despite a slight estimated decrease in the

frequencies of genetic variants associated with the phenotype [52, 53, 54]. The somewhat

paradoxical conclusion is that actual phenotypes can and do change across populations

in directions that are uncorrelated to natural selection (which may in fact be a minor

contributor to any such differences). It would be an understatement to say this poses

challenges for the interpretation of the current study and others like it.

In fact, the trait-associated variants that we have used only explain a fraction of the

narrow-sense heritability of their respective traits, even in the populations in which the

association studies were performed. As we have only looked at genome-wide-significant

variants, this fraction is small in most cases. For example, the heritability for ’educational

attainment’ is estimated to be around 40%, and educational attainment itself is strongly

determined by environmental factors [55]. The genome-wide significant SNPs we used in

this study (themselves a subset of all SNPs tested in the original GWAS [56]) explain only

1.05% of the total variance for this particular trait. All of the aforementioned traits are

likely affected by a myriad of environmental and social variables, which might contribute

to determine their ultimate expression in each human individual.

3.4 Additional caveats

Beyond the above conceptual difficulties, there are a number of additional caveats with

our approach to keep in mind. First, the effect sizes we have used derive from GWAS

performed primarily on individuals of European ancestry. Thus, our tests can only detect

if variants that have been found to be associated with a trait in European GWAS are sig-

nificantly higher or lower in a particular (European or non-European) population, relative

to what they should be under a pure drift model. This does not necessarily imply that

populations for which we find evidence for selection have higher or lower average genetic

values of such a trait than other populations. In fact, there is evidence to suggest that

loci ascertained in European GWAS do not serve to make good predictors for traits in

populations that are distantly related to Europeans [57]. One reason for this is that many

or all of the traits we are studying are likely to be influenced in non-European populations

by different variants from the ones that have been discovered in European GWAS. SNPs

that may be strongly associated with a trait in a particular non-European population

(like an African or East Asian panel) may have not reached genome-wide significance in

a European GWAS, where those SNPs may not strongly affect the trait or may be at low

frequencies. We also do not model dominance, epistasis or gene-by-environment inter-
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actions between our trait-associated variants and the diverse environments that human

populations occupy, and any of these factors may further obscure the relationship between

the patterns we observe and the actual underlying genetic contribution to phenotypes in

these populations.

Second, we have assumed that all of the GWAS that we have used have properly

accounted for population structure. If some of the trait-associated SNPs are in fact false

positives caused by uncorrected structure, this could generate a false signal of polygenic

adaptation. A future direction could be the incorporation of effect sizes that have been

corrected for ancestry or population stratification [16, 58] and also effect sizes from GWAS

performed on other populations [59, 60, 61], in order to assess the robustness of our

empirical results across variants discovered in studies involving participants of different

ancestries.

Third, we made the assumption that the admixture graph for the populations that

we use as input is correct. If there are additional unmodeled aspects of the history

of the populations, this could induce incorrect inference about the branch on which

natural selection has occurred. We also recommend that the individuals in the population

panels used as leaves in the graphs have roughly similar amounts of admixture. In other

words, the method works best when admixture in the population was ancient enough for

the admixed ancestry to have spread uniformly among members of the admixed panel.

Otherwise, an admixture graph may not be the most appropriate way to model their

evolution.

Finally, we have made an explicit assumption that our model should be sparse; i.e.

that polygenic adaptation is rare. If in reality adaptation is common, the PhenoGraph

approach will necessarily only identify selection on a small number of branches.

3.5 Future directions

A natural extension to the analyses we performed here would be to look at admixture

graphs that include extinct populations or species, using ancient DNA [62]. For example,

present-day Europeans are known to have resulted from admixture processes involving

at least 3 ancestral populations [38], and so modeling them as a sister group to East

Asians or as a 2-way mixture between a Native American-related component and a basal

Eurasian component may be overly simplistic. Incorporating ancient DNA would not

require any additional theoretical work, as ancient populations can be naturally included

as leaves in an admixture graph [38, 12]. Care should be taken, however, in making sure

that the quality of the ancient DNA data at trait-associated SNPs is accounted for while

inferring the number of ancestral and derived alleles, and that there is a sufficient number

of ancient individuals per population to detect polygenic adaptation. One could envision

either performing pseudo-haploid sampling [18, 33, 12] or using allele frequency estimators
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obtained from genotype likelihoods [63, 64], while accounting for errors characteristic of

ancient DNA [65, 66]. When working with SNP capture data [18, 33], it may be necessary

to perform imputation at the GWAS SNPs, if these were not originally covered in the

SNP capture array. We aim to tackle these issues in a future study.

One concern when analyzing admixture graphs is identifiability. As we mentioned

before, there are multiple configurations of the α parameters that may lead to almost

identical likelihoods. The use of the spike-and-slab prior and the QB filtering step serve to

ameliorate this problem, assuming selection was sparse and only affected a few branches.

An avenue of research could involve testing other types of models or constraints that

may serve to better compare among different selection configurations, perhaps without

having to reduce the space of possible candidate branches a priori, for example using

reversible-jump MCMC for model selection [67].

In the future, it may be worth incorporating stabilizing selection into this method

[47], or exploring tests of polygenic adaptation in the context of other types of demo-

graphic frameworks, like isolation-by-distance [68] or population structure [69] models.

For example, one could envision settings in which trait-associated variants would be best

modeled as expanding or contracting over a geographically extended area over time, in a

way that is not explainable by genetic drift alone.

Lastly, we note that despite some clear methodological and conceptual differences, our

method bears a close relationship to a number of methods for inferring changes in the

rate of phenotypic evolution on species phylogenies over macroevolutionary timescales.

Our use of the Normal model of drift as an approximation to the Wright-Fisher diffusion

is closely analogous to the use of Brownian motion models in some phylogenetic methods

[70, 71, 72, 73]. It may also be worth exploring the relationship between Ornstein-

Uhlenbeck models for phenotypic evolution on phylogenies [74, 75] and the aforementioned

hypothetical extension of our method to include stabilizing selection, as the two processes

are closely related [76, 47].

4 Methods

4.1 MCMC implementation

For the MCMC transition probabilities of the α parameters, we use a Normal distribution

with constant variance. For the transition probabilities of the ancestral allele frequencies,

we use a truncated Normal distribution with point masses at 0 and 1, with variance equal

to a constant (input by the user) times fX(1− fX) where fX is the frequency of an allele

in its current state. This allows for the proposed transitions to be larger for SNPs at

medium frequencies and smaller for SNPs at high or low frequencies. We apply a Hastings

correction in the acceptance ratio to account for this asymmetric proposal distribution.
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For all applications above, we run our MCMC sampler for 1 million steps with a

burn-in period of 10,000, and obtain posterior samples every 1,000 steps. The variance

of the transition probabilities of the ancestral nodes and the α parameters were chosen

so that the acceptance rate was close to 23% for each set of parameters. For the spike-

and-slab prior, we set τ to be equal to 0.1, and ζ to be equal to 25. The lower and upper

boundaries of the uniform hyperprior for κ were set to be 60% and 80%, respectively. We

note that all of these parameters can be adjusted by the user as needed.

4.2 Derivation of QB statistic

Let ~z be the mean-centered vector of genetic values, F be the among-population genetic

covariance matrix, and VA be the additive genetic variance of the ancestral population

for a given character. We compute VA by taking the ancestral frequency for each SNP i

to be the mean sample frequency over all populations (f̂i,G):

VA = 2
N∑
i

(1− f̂i,G)f̂i,Gβ̂
2
i (11)

where β̂i is the effect size estimate for the trait at SNP i. Following ref. [77, 15], if we

are willing to assume that

~z ∼MVN
(
~0, 2VAF

)
(12)

then by the definition of the multivariate normal distribution, ~zT~b ∼ N (0, σ2) for any

choice of ~b and

σ2 = 2VA~b
TF~b (13)

= 2VAu. (14)

where we have set u = ~bTF~b for notational convenience. It follows that

qb =
~zT~b√
2VAu

∼ N (0, 1) , (15)

and this holds for all choices of ~b. Therefore, the square of qb has a χ2
1 distribution under

the null. Importantly, one is free to choose ~b such that it represents a branch (j) in an

admixture graph.

If j is a branch in an admixture graph, and we choose to scale ~bj such that it has unit
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length:

~aj =
~bj

‖~bj‖
(16)

then

σ2 = 2VA~a
T
j F~aj (17)

has an interpretation as the amount of among population additive genetic variance which

we would expect to come about because of drift which occurs down branch j. In turn,

(~zT~aj)
2 is the actual amount of variance observed along the axis consistent with that

branch. The ratio of these two quantities is our statistic QB(j) (with distribution χ2
1)

and it is therefore the appropriate test statistic to ask whether there is evidence to reject

neutrality along a certain branch. Note that, by design, branches with the exact same

child nodes have equal QB statistics, as do branches at the root of the graph.

4.3 Choosing a cutoff for QB

We aimed to find a cutoff for QB that would serve to minimize the number of candidate

branches to be explored in the MCMC while at the same time trying to ensure that

the true selected branches are included among these candidates. One choice would be

to select the cutoff of a χ2
1 distribution that would correspond to a P-value of 0.05/k,

where k is the number of branches tested. We find, however, that a constant value for

this cutoff is not the most desirable choice as a way to prioritize branches for exploring

the strength of selection in each of the branches in the MCMC, as graphs of different

sizes (i.e. amounts of drift) result in quite different senstivity values, as well as number

of candidate branches included, when α = 0.1 (Panels B and C in Figures S45 and S46

for two cases where each branch has drift length = 0.02 and Figures S47 and S48 for

two cases where each branch has drift length = 0.05). We observe the same issues when

simulating under α = 0.2 (Figures S49 to S52).

A more stable strategy across graphs of different sizes that also works better at mini-

mizing the number of candidates is to choose the cutoff to be a fraction of the largest QB

statistic among all branches in the graph (Panels D and E in Figures S45 to S48). For

all analyses below, we chose this to be 1/3 of the maximum QB statistic. We note that

this is a less conservative strategy than the fixed χ2
1 cutoff. However, it is important to

remember that we do not aim to formally test for selection here, but merely obtain a set

of likely candidate branches for the MCMC to explore downstream, some of which may

end up producing a posterior mean estimate of α that is consistent with neutrality (i.e.

α = 0).
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6 Tables

Graph Trait P Prand

7-leaf tree height**

educational attainment**

unibrow*

male-pattern baldness

3.516 ∗ 10−14

3.404 ∗ 10−6

9.115 ∗ 10−14

0.000679

< 0.001

< 0.001

0.012

0.177

5-leaf graph height**

educational attainment**

schizophrenia*

unibrow

male-pattern baldness

2.355 ∗ 10−11

1.379 ∗ 10−7

0.000608

2.846 ∗ 10−11

0.000562

< 0.001

< 0.001

0.01

0.056

0.213

Table 1: Trait-associated variants with Bonferroni-corrected significant evidence of being under polygenic
adaptation in the 1000 Genomes data, using the QX statistic: P < 0.05/n where n is the number of
GWAS tested, assuming a χ2 distribution. We also computed P-values from 1,000 pseudo-replicates in
which we randomly switched the sign of effect size estimates, to account for each GWAS’s ascertainment
scheme (Prand). Trait-associated variants for which Prand < 0.05/n are denoted with **, and trait-
associated variants for which Prand < 0.05 are denoted with *.
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Graph Trait P Prand

7-leaf graph (w/EuropeA) height**
photic sneeze reflex**
educational attainment**
unibrow

1.506 ∗ 10−8

0.00087
6.11 ∗ 10−6

4.763 ∗ 10−7

< 0.001
< 0.001
0.001
0.173

7-leaf graph (w/EuropeB) height**
educational attainment**
age at voice drop**
photic sneeze reflex**
unibrow

2.448 ∗ 10−8

6.838 ∗ 10−6

0.000953
0.00086
2.784 ∗ 10−6

< 0.001
< 0.001
< 0.001
< 0.001
0.166

7-leaf graph (w/EuropeC) educational attainment**
photic sneeze reflex
unibrow

4.032 ∗ 10−6

0.000653
2.957 ∗ 10−6

< 0.001
0.004
0.199

Table 2: Trait-associated variants with Bonferroni-corrected significant evidence of being under polygenic
adaptation in the Lazaridis et al. (2014) dataset, using the QX statistic: P < 0.05/n where n is the
number of GWAS tested, assuming a χ2 distribution. We also computed P-values from 1,000 pseudo-
replicates in which we randomly switched the sign of effect size estimates, to account for each GWAS’s
ascertainment scheme (Prand). Trait-associated variants for which Prand < 0.05/n are denoted with **,
and trait-associated variants for which Prand < 0.05 are denoted with *. We tested 3 different graphs
with different sets of European panels, containing either low (EuropeA), medium (EuropeB) or high
(EuropeC) EEF ancestry.
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7 Figures

Figure 1: Schematic of drift values (c) and allele frequencies (f) for a 3-leaf population tree with no
admixture.
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Figure 2: Schematic of PhenoGraph estimation procedure for a 4-population graph with one admixture
event. Panel A: The first step is the estimation of the admixture graph topology using neutral SNP
data, via an admixture-graph fitting program like MixMapper. Panel B: Then, we use the QB statistic to
determine which branches to explore in the MCMC. Selection parameters whose corresponding branches
have a QB statistic that is smaller than a specific cutoff (red line) are set to a fixed value of 0 in the
MCMC. Panel C: Model for MCMC sampling. The SNP frequencies in the nodes of the graph are shown
in green, while the selection parameters for each candidate branch are shown in purple. For each SNP,
the likelihood of each branch of the graph is a Normal distribution. To model the sampling of derived
alleles in the leaves of the graph, we use a binomial distribution.
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Figure 3: We simulated 400 SNPs affecting a trait under polygenic adaptation, and then used our MCMC
to obtain posterior distributions of the α parameters for each branch. The red arrows denote the selected
branch. The red line in the box-plots denotes the simulated value of α (in this case, 0.2). The lower,
middle and upper hinges denote the 25th, 50th and 75th percentiles, respectively. The upper whisker
extends to the highest value that is within 1.5 * IQR of the upper hinge, where IQR is the inter-quartile
range. The lower whisker extends to the lowest value within 1.5 * IQR of the lower hinge. Data beyond
the whiskers are plotted as points. The numbers in each graph denote the drift lengths and admixture
proportions. A) Three-leaf tree with selection in a terminal branch (B-q). B) Three-leaf tree with
selection in an internal branch (q-r). C) Four-population admixture graph with selection in an internal
branch (v-q). D) Four-population admixture graph with selection in a terminal branch (C-v).
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Figure 4: Pheno-graphs for trait-associated variants that show significant evidence for polygenic adap-
tation in the 7-leaf tree built using 1000 Genomes allele frequency data. ESN = Nigerian Esan; MSL =
Sierra Leone Mende; CEU = Northern Europeans from Utah; TSI = Southern Europeans from Tuscany;
CDX = Dai Chinese; JPT = Japanese; PEL = Peruvians.
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Figure 5: Pheno-graphs for trait-associated variants that show significant evidence for polygenic adap-
tation in the 5-leaf admixture graph built using 1000 Genomes allele frequency data. CEU = Northern
Europeans from Utah; TSI = Southern Europeans from Tuscany; PEL = Peruvians; CLM = Colombians;
YRI = Yoruba; CHB = Han Chinese.
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Figure 6: We generated an empirical null distribution by sampling SNPs from the genome that matched
the CEU allele frequency of the SNPs associated with educational attainment, self-reported unibrow and
height. We generated 1,000 samples this way, and computed the QX statistic for each sample, using the
population panels from Figure 4. The QX value observed in the real data is depicted with a red line.
We also plot the density of the corresponding χ2 distribution (blue line) for comparison.
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Figure 7: Pheno-graphs for trait-associated variants that show significant evidence for polygenic adap-
tation in the 7-leaf admixture graph built using the Lazaridis et al. (2014) dataset and including the set
of European populations with low EEF ancestry (”EuropeA”).
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8 Supplementary Tables

Trait Data source Abbreviation Number of loci Approx. no. of participants x 1K

Age at menarche 23andMe AAM 23 45 77

Age at menarche Perry et al. (2014) [78] AAM 69 133

Alzheimer’s disease Lambert et al. (2013) [79] AD 9 17/37

Any allergies 23andMe ALL 23 35 67/114

Asthma 23andMe ATH 23 29 28/129

Age at voice drop 23andMe AVD 23 4 56

Beighton hypermobility 23andMe BHM 23 15 64

Body mass index Locke et al. (2015) [80] BMI 2015 28 240

Coronary artery disease Schunkert et al. (2011) [81] CAD 10 22/65

Crohn’s disease Jostins et al. (2012) [82] CD 52 6/15

Childhood ear infections 23andMe CEI 23 10 47/75

Breast size 23andMe CUP 23 11 34

Chin dimples 23andMe DIMP 23 47 58/13

Educational attainment Okbay et al. (2016) [56] EDU 86 294

Fasting glucose Manning et al. (2012) [83] FG 15 58

Bone mineral density (femoral neck) Estrada et al. (2012) [84] FNBMD 19 33

Hemoglobin van der Harst et al. (2012) [85] HB 15 51

High-density lipoproteins Teslovich et al. (2010) [86] HDL 40 89

Height Wood et al. (2014) [87] HEIGHT 531 253

Hypothyroidism 23andMe HTHY 23 22 18/117

Low-density lipoproteins Teslovich et al. (2010) [86] LDL 37 85

Bone mineral density (lumbar spine) Estrada et al. (2012) [84] LSBMD 20 32

Mean cell hemoglobin concentration van der Harst et al. (2012) [85] MCHC 15 46

Mean red blood cell volume van der Harst et al. (2012) [85] MCV 36 48

Migraine 23andMe MIGR 23 29 53/231

Male-pattern baldness 23andMe MPB 23 41 9/8

Mean platelet volume Gieger et al. (2011) [88] MPV 27 17

Nose size 23andMe NOSE 23 11 67

Nearsightedness 23andMe NST 23 151 106/86

Packed red blood cell volume van der Harst et al. (2012) [85] PCV 12 44

Parkinson’s disease 23andMe PD 23 37 10/325

Platelet count Gieger et al. (2011) [88] PLT 44 44

Photic sneeze reflex 23andMe PS 23 52 32/67

Rheumatoid arthritis Okada et al. (2014) [89] RA 65 14/44

Red blood cell count van der Harst et al. (2012) [85] RBC 24 45

Schizophrenia SWGPGC (2014) [90] SCZ 190 34/46

Type 2 diabetes Morris et al. (2012) [91] T2D 9 12/57

Total cholesterol Teslovich et al. (2010) [86] TC 48 89

Triglycerides Teslovich et al. (2010) [86] TG 26 86

Tonsillectomy 23andMe TS 23 37 60/113

Ulcerative collitis Jostins et al. (2012) [82] UC 40 7/21

Unibrow 23andMe UB 23 45 69

Waist-hip ratio Shungin et al. (2015) [92] WHR 12 143

Table S1: List of GWAS assembled by [34] and used to test for polygenic adaptation in this study. Under
“Number of loci”, we list the number of autosomal SNPs that are significant for the trait in question, that
overlap with the 1000 Genomes dataset and that have a confidently determined ancestral allele. Under
“Approx. no. of participants x 1K”, we list two numbers corresponding to the approximate number
of cases and controls (in thousands), if available. Otherwise, we list the approximate total number of
participants, in thousands. SWGPGC = Schizophrenia Working Group of the Psychiatric Genomics
Consortium.
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Branch (child-parent) Educational attainment Height Male-pattern baldness Unibrow

q-r 0.245 0.819 0.0247 0.24

t-q 0.0129 0.000191 5.87e-5 0.001

u-t 7.63e-06 0.000304 0.000155 0.00698

s-r 0.245 0.819 0.0247 0.24

v-q 0.147 5.14e-6 0.0777 6.08e-10

MSL-s 0.231 0.851 0.0216 0.301

ESN-s 0.292 0.799 0.0407 0.215

TSI-v 0.217 0.00284 0.217 7.51e-7

CEU-v 0.114 4.54e-9 0.0284 1.48e-12

CDX-u 0.000227 0.00105 0.000111 0.00177

JPT-u 1.59e-6 0.000362 0.000973 0.0482

PEL-t 0.0127 0.0632 0.0282 0.0118

Table S2: P-values from the QB statistics of the 7-leaf population tree built using the 1000 Genomes
data, for trait-associated variants with significant overall evidence of selection (P-value of QX < 0.05/no.
of GWAS tested).

Branch (child-parent) Educational attainment Height Male-pattern baldness Schizophrenia Unibrow

YRI-r 0.629 0.752 0.0554 0.0747 0.282

q-r 0.629 0.752 0.0554 0.0747 0.282

s-q 0.0611 0.000286 2.82e-5 0.912 0.000106

v-q 0.107 7.11e-7 0.0178 0.013 1.717e-10

CEU-v 0.146 5.62e-10 0.0099 0.00154 1.183e-12

CHB-s 2.87e-7 0.00142 0.000127 0.447 0.0027

t-s 0.00516 0.0369 0.0248 0.309 0.00722

u-t 0.128 0.33 0.197 0.717 0.00169

u-v 0.128 0.33 0.197 0.717 0.00169

PEL-t 0.00719 0.0216 0.0123 0.315 0.00129

CLM-u 0.128 0.33 0.197 0.717 0.00169

Table S3: P-values from the QB statistics of the 5-leaf population graph built using the 1000 Genomes
data, for trait-associated variants with significant overall evidence of selection (P-value of QX < 0.05/no.
of GWAS tested).

Table S4: Results from pairwise two-tailed binomial sign tests using the 1000 Genomes data, for variants
associated with educational attainment. Each cell contains the number of SNPs in which the two panels
have different frequencies, the number of SNPs in which the column panel has a higher frequency of the
trait-increasing allele than the row panel and the P-value from the binomial test.

Table S5: Results from pairwise two-tailed binomial sign tests using the 1000 Genomes data, for variants
associated with height. Each cell contains the number of SNPs in which the two panels have different
frequencies, the number of SNPs in which the column panel has a higher frequency of the trait-increasing
allele than the row panel and the P-value from the binomial test.

Table S6: Results from pairwise two-tailed binomial sign tests using the 1000 Genomes data, for variants
associated with self-reported male-pattern baldness. Each cell contains the number of SNPs in which
the two panels have different frequencies, the number of SNPs in which the column panel has a higher
frequency of the trait-increasing allele than the row panel and the P-value from the binomial test.
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Table S7: Results from pairwise two-tailed binomial sign tests using the 1000 Genomes data, for variants
associated with schizophrenia. Each cell contains the number of SNPs in which the two panels have
different frequencies, the number of SNPs in which the column panel has a higher frequency of the
trait-increasing allele than the row panel and the P-value from the binomial test.

Table S8: Results from pairwise two-tailed binomial sign tests using the 1000 Genomes data, for variants
associated with self-reported unibrow. Each cell contains the number of SNPs in which the two panels
have different frequencies, the number of SNPs in which the column panel has a higher frequency of the
trait-increasing allele than the row panel and the P-value from the binomial test.

Pop1 Pop2 N P1 > P2 Two-tailed Pval

JPT AMR 86 63 1.88E-05

CHB AMR 86 61 0.000130379

KHV PEL 84 58 0.000627947

JPT GIH 86 59 0.00073171

JPT TSI 86 59 0.00073171

PUR CHB 86 27 0.00073171

PUR JPT 86 27 0.00073171

MXL CHB 85 27 0.001016221

MXL CHS 85 27 0.001016221

JPT MXL 85 58 0.001016221

Table S9: Top 10 most significant comparisons from pairwise two-tailed binomial sign tests using the
1000 Genomes data, for variants associated with educational attainment. N = number of SNPs in which
the two panels have different frequencies. P1 > P2 = number of SNPs in which Pop1 has a higher
frequency of the trait-increasing allele than Pop2. Two-tailed Pval = P-value from the binomial test.

Pop1 Pop2 N P1 > P2 Two-tailed Pval

CLM CEU 531 194 5.68E-10

AMR CEU 531 198 5.04E-09

EUR AMR 531 329 3.95E-08

CLM GBR 531 203 6.47E-08

CEU PEL 531 327 1.05E-07

AMR GBR 531 204 1.05E-07

PUR CEU 531 205 1.70E-07

EUR CLM 531 326 1.70E-07

CEU TSI 531 325 2.73E-07

CEU IBS 531 324 4.34E-07

Table S10: Top 10 most significant comparisons from pairwise two-tailed binomial sign tests using the
1000 Genomes data, for variants associated with height. N = number of SNPs in which the two panels
have different frequencies. P1 > P2 = number of SNPs in which Pop1 has a higher frequency of the
trait-increasing allele than Pop2. Two-tailed Pval = P-value from the binomial test.
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Pop1 Pop2 N P1 > P2 Two-tailed Pval

AFR KHV 40 29 0.006426576

CDX ITU 40 11 0.006426576

ESN KHV 38 27 0.013852965

PJL SAS 40 28 0.016589003

AFR CHS 40 28 0.016589003

KHV ASW 39 12 0.023702702

CHS STU 39 12 0.023702702

CDX STU 39 12 0.023702702

CHS EAS 36 11 0.02881672

KHV LWK 38 12 0.03355244

Table S11: Top 10 most significant comparisons from pairwise two-tailed binomial sign tests using the
1000 Genomes data, for variants associated with self-reported male-pattern baldness. N = number of
SNPs in which the two panels have different frequencies. P1 > P2 = number of SNPs in which Pop1 has
a higher frequency of the trait-increasing allele than Pop2. Two-tailed Pval = P-value from the binomial
test.

Pop1 Pop2 N P1 > P2 Two-tailed Pval

PJL FIN 189 118 0.000775545

ITU GBR 189 116 0.002165972

YRI LWK 173 107 0.002262171

FIN MSL 190 74 0.002837056

ESN GBR 190 116 0.002837056

ASW GWD 185 72 0.003165809

FIN STU 189 74 0.00350814

ESN ASW 184 112 0.003917461

AFR GBR 190 115 0.004537135

AFR FIN 190 115 0.004537135

Table S12: Top 10 most significant comparisons from pairwise two-tailed binomial sign tests using the
1000 Genomes data, for variants associated with schizophrenia. N = number of SNPs in which the two
panels have different frequencies. P1 > P2 = number of SNPs in which Pop1 has a higher frequency of
the trait-increasing allele than Pop2. Two-tailed Pval = P-value from the binomial test.

Pop1 Pop2 N P1 > P2 Two-tailed Pval

ESN LWK 37 28 0.002563208

EUR ASW 45 13 0.006608823

CEU GIH 45 13 0.006608823

SAS CEU 45 32 0.006608823

CLM CEU 45 32 0.006608823

EUR CEU 45 32 0.006608823

CEU IBS 44 13 0.009559879

CEU BEB 45 14 0.01609436

FIN IBS 45 14 0.01609436

ESN GWD 37 26 0.020073852

Table S13: Top 10 most significant comparisons from pairwise two-tailed binomial sign tests using the
1000 Genomes data, for variants associated with self-reported unibrow. N = number of SNPs in which
the two panels have different frequencies. P1 > P2 = number of SNPs in which Pop1 has a higher
frequency of the trait-increasing allele than Pop2. Two-tailed Pval = P-value from the binomial test.

43

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 4, 2017. ; https://doi.org/10.1101/146043doi: bioRxiv preprint 

https://doi.org/10.1101/146043
http://creativecommons.org/licenses/by-nc-nd/4.0/


Branch (child-parent) Educational attainment Height Photic sneeze reflex Unibrow

q-r 0.591 0.948 0.00478 0.453

t-r 0.591 0.948 0.00478 0.453

s-q 0.419 0.183 0.00812 0.377

v-s 0.0883 0.52 0.999 0.0619

x-v 0.169 0.544 0.722 0.829

Mandenka-t 0.588 0.975 0.0388 0.56

Yoruba-t 0.648 0.876 0.00136 0.414

Oceanian-s 0.322 0.192 1.509e-5 0.277

EastAsian-v 3.34e-7 0.041 0.629 0.00111

NativeAmerican-x 0.2 0.843 0.537 0.223

w-q 0.53 6.75e-5 0.218 1.299e-6

w-x 0.53 6.75e-5 0.218 1.299e-6

EuropeA-w 0.53 6.75e-5 0.218 1.299e-6

Table S14: P-values from the QB statistics of the 7-leaf population graph built using the Lazaridis et al.
(2014) data, with the ”EuropeA” panel, for traits with significant overall evidence of selection (P-value
of QX < 0.05/no. of GWAS tested).

Branch (child-parent) Age at voice drop Educational attainment Height Photic sneeze reflex Unibrow

q-r 0.935 0.648 0.965 0.00525 0.297

t-r 0.935 0.648 0.965 0.00525 0.297

s-q 0.562 0.385 0.123 0.0325 0.0682

v-s 0.114 0.0777 0.325 0.71 0.00514

x-v 0.0772 0.222 0.942 0.477 0.211

y-q 0.361 0.6321 0.0309 0.169 4.64e-5

Mandenka-t 0.938 0.641 0.965 0.0755 0.388

Yoruba-t 0.94 0.698 0.898 0.149 0.275

Oceanian-s 0.00221 0.362 0.217 5.72e-5 0.478

EastAsian-v 0.517 7.06e-7 0.0498 0.81 0.000278

NativeAmerican-x 0.0748 0.234 0.861 0.438 0.127

Sardinian-y 0.068 0.666 0.769 0.144 0.00134

w-y 0.757 0.631 2.75e-5 0.265 3.11e-6

w-x 0.757 0.631 2.75e-5 0.265 3.11e-6

EuropeB-w 0.757 0.631 2.75e-5 0.265 3.11e-6

Table S15: P-values from the QB statistics of the 7-leaf population graph built using the Lazaridis et al.
(2014) data, with the ”EuropeB” panel, for traits with significant overall evidence of selection (P-value
of QX < 0.05/no. of GWAS tested).

Branch (child-parent) Educational attainment Photic sneeze reflex Unibrow

q-r 0.648 0.00525 0.297

t-r 0.648 0.00525 0.297

s-q 0.385 0.0325 0.0682

v-s 0.0777 0.71 0.00514

x-v 0.222 0.477 0.211

y-q 0.632 0.169 4.64e-5

Mandenka-t 0.641 0.0367 0.388

Yoruba-t 0.698 0.00159 0.275

Oceanian-s 0.362 5.72e-5 0.478

EastAsian-v 7.06e-7 0.81 0.000278

NativeAmerican-x 0.234 0.438 0.127

Sardinian-y 0.666 0.144 0.00134

w-y 0.631 0.265 3.11e-6

w-x 0.631 0.265 3.11e-6

EuropeB-w 0.631 0.265 3.11e-6

Table S16: P-values from the QB statistics of the 7-leaf population graph built using the Lazaridis et al.
(2014) data, with the ”EuropeC” panel, for traits with significant overall evidence of selection (P-value
of QX < 0.05/no. of GWAS tested).
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Trait P-value

Age at voice drop 0.625

Educational attainment 0.7465

Height 0.3397

Male-pattern baldness 0.5327

Photic sneeze reflex 0.6778

Schizophrenia 0.03511

Unibrow 0.1352

Table S17: P-values from two-tailed binomial test performed to check if there were systematic biases
in ancestral/derived allele polarity relative to the direction of the effect size, for all traits for which we
found significant evidence of polygenic adaptation.

Table S18: Results from pairwise two-tailed binomial sign tests using the Lazaridis et al. (2014) data,
for variants associated with self-reported age at voice drop. Each cell contains the number of SNPs in
which the two panels have different frequencies, the number of SNPs in which the column panel has a
higher frequency of the trait-increasing allele than the row panel and the P-value from the binomial test.

Table S19: Results from pairwise two-tailed binomial sign tests using the Lazaridis et al. (2014) data,
for variants associated with educational attainment. Each cell contains the number of SNPs in which
the two panels have different frequencies, the number of SNPs in which the column panel has a higher
frequency of the trait-increasing allele than the row panel and the P-value from the binomial test.

Table S20: Results from pairwise two-tailed binomial sign tests using the Lazaridis et al. (2014) data,
for variants associated with height. Each cell contains the number of SNPs in which the two panels
have different frequencies, the number of SNPs in which the column panel has a higher frequency of the
trait-increasing allele than the row panel and the P-value from the binomial test.

Table S21: Results from pairwise two-tailed binomial sign tests using the Lazaridis et al. (2014) data,
for variants associated with self-reported photic sneeze reflex. Each cell contains the number of SNPs in
which the two panels have different frequencies, the number of SNPs in which the column panel has a
higher frequency of the trait-increasing allele than the row panel and the P-value from the binomial test.

Table S22: Results from pairwise two-tailed binomial sign tests using the Lazaridis et al. (2014) data, for
variants associated with self-reported unibrow. Each cell contains the number of SNPs in which the two
panels have different frequencies, the number of SNPs in which the column panel has a higher frequency
of the trait-increasing allele than the row panel and the P-value from the binomial test.
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Pop1 Pop2 N P1 > P2 Two-tailed Pval

Kyrgyz Estonian 3 0 0.25

Spanish North Estonian 3 3 0.25

Mayan Estonian 3 0 0.25

BantuSA Estonian 3 0 0.25

Brahui Estonian 3 3 0.25

Cochin Jew Estonian 3 0 0.25

Luo Estonian 3 3 0.25

Mbuti Estonian 3 0 0.25

Saami WGA Estonian 3 0 0.25

Jordanian Estonian 3 3 0.25

Table S23: Top 10 most significant comparisons from pairwise two-tailed binomial sign tests using the
Lazaridis et al. (2014) data, for variants associated with self-reported age at voice drop. N = number of
SNPs in which the two panels have different frequencies. P1 > P2 = number of SNPs in which Pop1 has
a higher frequency of the trait-increasing allele than Pop2. Two-tailed Pval = P-value from the binomial
test.

Pop1 Pop2 N P1 > P2 Two-tailed Pval

Yakut Iranian Jew 71 54 1.25E-05

Korean Finnish 70 53 1.92E-05

Yi Jordanian 70 53 1.92E-05

Jordanian Han 71 18 3.88E-05

Mongola Finnish 71 53 3.88E-05

Korean Surui 59 45 6.53E-05

Yi Iranian 72 53 7.56E-05

Japanese Jordanian 72 53 7.56E-05

Tuscan Korean 72 19 7.56E-05

Japanese Kalash 72 53 7.56E-05

Table S24: Top 10 most significant comparisons from pairwise two-tailed binomial sign tests using the
Lazaridis et al. (2014) data, for variants associated with educational attainment. N = number of SNPs
in which the two panels have different frequencies. P1 > P2 = number of SNPs in which Pop1 has a
higher frequency of the trait-increasing allele than Pop2. Two-tailed Pval = P-value from the binomial
test.

Pop1 Pop2 N P1 > P2 Two-tailed Pval

French Turkish 453 283 1.23E-07

Icelandic Turkish 449 280 1.82E-07

BedouinA French 424 159 2.98E-07

Icelandic Daur 443 275 4.20E-07

Japanese French 453 174 9.23E-07

Daur Bergamo 443 170 1.13E-06

Daur Spanish North 432 166 1.72E-06

Icelandic BedouinA 450 276 1.75E-06

Druze French 453 177 3.80E-06

Icelandic Syrian 426 261 3.81E-06

Table S25: Top 10 most significant comparisons from pairwise two-tailed binomial sign tests using the
Lazaridis et al. (2014) data, for variants associated with height. N = number of SNPs in which the two
panels have different frequencies. P1 > P2 = number of SNPs in which Pop1 has a higher frequency of
the trait-increasing allele than Pop2. Two-tailed Pval = P-value from the binomial test.
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Pop1 Pop2 N P1 > P2 Two-tailed Pval

Papuan BantuSA 39 32 7.03E-05

Daur Yoruba 40 32 0.000182166

Papuan Biaka 40 32 0.000182166

Mende She 39 8 0.000294077

Papuan BantuKenya 40 31 0.000679548

Mende Turkmen 40 9 0.000679548

Mende Uzbek 40 9 0.000679548

Esan Korean 40 9 0.000679548

Mende Datog 40 9 0.000679548

Brahui Turkish 42 10 0.000940674

Table S26: Top 10 most significant comparisons from pairwise two-tailed binomial sign tests using the
Lazaridis et al. (2014) data, for variants associated with self-reported photic sneeze reflex. N = number
of SNPs in which the two panels have different frequencies. P1 > P2 = number of SNPs in which Pop1
has a higher frequency of the trait-increasing allele than Pop2. Two-tailed Pval = P-value from the
binomial test.

Pop1 Pop2 N P1 > P2 Two-tailed Pval

Finnish Kyrgyz 33 7 0.001318727

Bougainville Finnish 33 26 0.001318727

Yemen Bulgarian 30 24 0.001430906

Kusunda Uzbek 30 24 0.001430906

Kusunda Mordovian 27 22 0.00151372

Basque Maltese 32 7 0.002102402

English Yemen 32 7 0.002102402

Czech Atayal 32 7 0.002102402

Yi Nogai 32 25 0.002102402

Bougainville Russian 32 25 0.002102402

Table S27: Top 10 most significant comparisons from pairwise two-tailed binomial sign tests using the
Lazaridis et al. (2014) data, for variants associated with self-reported unibrow. N = number of SNPs in
which the two panels have different frequencies. P1 > P2 = number of SNPs in which Pop1 has a higher
frequency of the trait-increasing allele than Pop2. Two-tailed Pval = P-value from the binomial test.
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9 Supplementary Figures

Figure S1: Four example scenarios in which different combinations of α parameters can produce very
similar likelihood values.
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Figure S2: Posterior distributions of α parameters for five 400-SNPs simulations of a 3-leaf tree with
small branch drift parameters (0.02) and α = 0.2 (red line) simulated in a terminal branch (B-q). The
lower, middle and upper hinges denote the 25th, 50th and 75th percentiles, respectively. The upper
whisker extends to the highest value that is within 1.5 * IQR of the upper hinge, where IQR is the
inter-quartile range. The lower whisker extends to the lowest value within 1.5 * IQR of the lower hinge.
Data beyond the whiskers are plotted as points.
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Figure S3: Posterior distributions of α parameters for five 400-SNP simulations of a 3-leaf tree with small
branch drift parameters (0.02) and α = 0.2 (red line) simulated in an interior branch (q-r). The lower,
middle and upper hinges denote the 25th, 50th and 75th percentiles, respectively. The upper whisker
extends to the highest value that is within 1.5 * IQR of the upper hinge, where IQR is the inter-quartile
range. The lower whisker extends to the lowest value within 1.5 * IQR of the lower hinge. Data beyond
the whiskers are plotted as points.
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Figure S4: Posterior distributions of α parameters for five 400-SNPs simulations of a 4-leaf admixture
graph with small branch drift parameters (0.02) and α = 0.2 (red line) simulated in a terminal branch
(C-v). The upper and lower hinges denote the 25th and 75th percentiles. The lower, middle and upper
hinges denote the 25th, 50th and 75th percentiles, respectively. The upper whisker extends to the
highest value that is within 1.5 * IQR of the upper hinge, where IQR is the inter-quartile range. The
lower whisker extends to the lowest value within 1.5 * IQR of the lower hinge. Data beyond the whiskers
are plotted as points.
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Figure S5: Posterior distributions of α parameters for five 400-SNPs simulations of a 4-leaf admixture
graph with small branch drift parameters (0.02) and α = 0.2 (red line) simulated in an interior branch
(v-q). The lower, middle and upper hinges denote the 25th, 50th and 75th percentiles, respectively. The
upper whisker extends to the highest value that is within 1.5 * IQR of the upper hinge, where IQR is
the inter-quartile range. The lower whisker extends to the lowest value within 1.5 * IQR of the lower
hinge. Data beyond the whiskers are plotted as points.
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Figure S6: Posterior distributions of α parameters for five 400-SNPs simulations of a 3-leaf tree with
large branch drift parameters (0.05) and α = 0.2 (red line) simulated in a terminal branch (B-q). The
lower, middle and upper hinges denote the 25th, 50th and 75th percentiles, respectively. The upper
whisker extends to the highest value that is within 1.5 * IQR of the upper hinge, where IQR is the
inter-quartile range. The lower whisker extends to the lowest value within 1.5 * IQR of the lower hinge.
Data beyond the whiskers are plotted as points.
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Figure S7: Posterior distributions of α parameters for five 400-SNPs simulations of a 3-leaf tree with
large branch drift parameters (0.05) and α = 0.2 (red line) simulated in an interior branch (q-r). The
lower, middle and upper hinges denote the 25th, 50th and 75th percentiles, respectively. The upper
whisker extends to the highest value that is within 1.5 * IQR of the upper hinge, where IQR is the
inter-quartile range. The lower whisker extends to the lowest value within 1.5 * IQR of the lower hinge.
Data beyond the whiskers are plotted as points.
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Figure S8: Posterior distributions of α parameters for five 400-SNPs simulations of a 4-leaf admixture
graph with large branch drift parameters (0.05) and α = 0.2 (red line) simulated in a terminal branch
(C-v). The lower, middle and upper hinges denote the 25th, 50th and 75th percentiles, respectively. The
upper whisker extends to the highest value that is within 1.5 * IQR of the upper hinge, where IQR is
the inter-quartile range. The lower whisker extends to the lowest value within 1.5 * IQR of the lower
hinge. Data beyond the whiskers are plotted as points.
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Figure S9: Posterior distributions of α parameters for five 400-SNPs simulations of a 4-leaf admixture
graph with large branch drift parameters (0.05) and α = 0.2 (red line) simulated in an interior branch
(v-q). The lower, middle and upper hinges denote the 25th, 50th and 75th percentiles, respectively. The
upper whisker extends to the highest value that is within 1.5 * IQR of the upper hinge, where IQR is
the inter-quartile range. The lower whisker extends to the lowest value within 1.5 * IQR of the lower
hinge. Data beyond the whiskers are plotted as points.
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Figure S10: Posterior distributions of α parameters for five 400-SNPs simulations of a 3-leaf tree with
small branch drift parameters (0.02) and α = 0.1 (red line) simulated in a terminal branch (B-q). The
lower, middle and upper hinges denote the 25th, 50th and 75th percentiles, respectively. The upper
whisker extends to the highest value that is within 1.5 * IQR of the upper hinge, where IQR is the
inter-quartile range. The lower whisker extends to the lowest value within 1.5 * IQR of the lower hinge.
Data beyond the whiskers are plotted as points.
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Figure S11: Posterior distributions of α parameters for five 400-SNPs simulations of a 3-leaf tree with
small branch drift parameters (0.02) and α = 0.1 (red line) simulated in an interior branch (q-r). The
lower, middle and upper hinges denote the 25th, 50th and 75th percentiles, respectively. The upper
whisker extends to the highest value that is within 1.5 * IQR of the upper hinge, where IQR is the
inter-quartile range. The lower whisker extends to the lowest value within 1.5 * IQR of the lower hinge.
Data beyond the whiskers are plotted as points.
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Figure S12: Posterior distributions of α parameters for five 400-SNPs simulations of a 4-leaf admixture
graph with small branch drift parameters (0.02) and α = 0.1 (red line) simulated in a terminal branch
(C-v). The lower, middle and upper hinges denote the 25th, 50th and 75th percentiles, respectively. The
upper whisker extends to the highest value that is within 1.5 * IQR of the upper hinge, where IQR is
the inter-quartile range. The lower whisker extends to the lowest value within 1.5 * IQR of the lower
hinge. Data beyond the whiskers are plotted as points.
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Figure S13: Posterior distributions of α parameters for five 400-SNPs simulations of a 4-leaf admixture
graph with small branch drift parameters (0.02) and α = 0.1 (red line) simulated in an interior branch
(v-q). The lower, middle and upper hinges denote the 25th, 50th and 75th percentiles, respectively. The
upper whisker extends to the highest value that is within 1.5 * IQR of the upper hinge, where IQR is
the inter-quartile range. The lower whisker extends to the lowest value within 1.5 * IQR of the lower
hinge. Data beyond the whiskers are plotted as points.
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Figure S14: Posterior distributions of α parameters for five 400-SNPs simulations of a 3-leaf tree with
large branch drift parameters (0.05) and α = 0.1 (red line) simulated in a terminal branch (B-q). The
lower, middle and upper hinges denote the 25th, 50th and 75th percentiles, respectively. The upper
whisker extends to the highest value that is within 1.5 * IQR of the upper hinge, where IQR is the
inter-quartile range. The lower whisker extends to the lowest value within 1.5 * IQR of the lower hinge.
Data beyond the whiskers are plotted as points.
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Figure S15: Posterior distributions of α parameters for five 400-SNPs simulations of a 3-leaf tree with
large branch drift parameters (0.05) and α = 0.1 (red line) simulated in an interior branch (q-r). The
lower, middle and upper hinges denote the 25th, 50th and 75th percentiles, respectively. The upper
whisker extends to the highest value that is within 1.5 * IQR of the upper hinge, where IQR is the
inter-quartile range. The lower whisker extends to the lowest value within 1.5 * IQR of the lower hinge.
Data beyond the whiskers are plotted as points.
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Figure S16: Posterior distributions of α parameters for five 400-SNPs simulations of a 4-leaf admixture
graph with large branch drift parameters (0.05) and α = 0.1 (red line) simulated in a terminal branch
(C-v). The lower, middle and upper hinges denote the 25th, 50th and 75th percentiles, respectively. The
upper whisker extends to the highest value that is within 1.5 * IQR of the upper hinge, where IQR is
the inter-quartile range. The lower whisker extends to the lowest value within 1.5 * IQR of the lower
hinge. Data beyond the whiskers are plotted as points.
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Figure S17: Posterior distributions of α parameters for five 400-SNPs simulations of a 4-leaf admixture
graph with large branch drift parameters (0.05) and α = 0.1 (red line) simulated in an interior branch
(v-q). The lower, middle and upper hinges denote the 25th, 50th and 75th percentiles, respectively. The
upper whisker extends to the highest value that is within 1.5 * IQR of the upper hinge, where IQR is
the inter-quartile range. The lower whisker extends to the lowest value within 1.5 * IQR of the lower
hinge. Data beyond the whiskers are plotted as points.
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Figure S18: Posterior distributions of α parameters for five 400-SNPs neutral simulations of a 4-leaf
admixture graph with drift parameters equal to 0.02 in each branch.

65

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 4, 2017. ; https://doi.org/10.1101/146043doi: bioRxiv preprint 

https://doi.org/10.1101/146043
http://creativecommons.org/licenses/by-nc-nd/4.0/


●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●●●●
●

●●
●
●

●
●

●

●●

●

●
●

●

●
●

●

●
●

●●
●
●

●

●
●

●
●
●

●

●

●

●
●
●

●
●

●

●
●

●
●
●●

●

●

●
●

●

●

●

●
●

●

●

●●

●
●

●

●

●
●

●
●
●
●

●

●●

●
●●

●

●

●

●●

●

●
●●

●

●

●

●
●
●

●

●

●

●

●

●●
●
●
●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●●
●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●●

●●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●●●

●

●

●
●
●
●

●

●

●●

●

●

●

●
●

●●
●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●●
●
●
●
●

●

●
●●
●

●

●
●
●●

●

●●

●
●

●●

●

●

●

●●

●

●

●●

●
●
●●

●
●

●

●

●

●
●

●●

●

●
●
●

●

●
●
●
●

●

●●
●
●

●
●

●

●

●●●

●●●●
●

●
●

●
●
●●

●●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●●

●

●
●●

●

●

●●

●

●

●

●

●●

●

●
●

●

●
●●
●●
●

●

●

●●
●

●

●

●●

●

●
●

●

●

●
●

●

●
●●

●
●

●

●●

●

●

●

●
●
●
●

●

●

●

●●

●

●
●
●

●

●

●
●●

●
●
●
●

●

●●●

●

●

●

●

●

●●
●

●
●

●●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●
●●
●

●

●

●
●

●

●

●●
●
●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●●

●

●

●●

●

●
●

●

●

●●●

●
●●●

●

●●
●●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●●

●
●

●

●
●

●

●

●
●

●

●

●

●

●●●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●●●●

●

●
●●

●
●

●

●
●

●

●

●
●

●

●●

●●

●

●

●●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●●

●
●
●

●
●●

●

●●
●

●

●

●

●

●●●

●

●

●

●●
●
●
●

●

●

●

●

●
●

●

●

●

●

−0.2

0.0

0.2

D_r q_r u_q v_q A_u C_v t_u t_v B_t

branch

al
ph

a

Simulation #1

●●●

●●

●
●

●

●●

●

●

●
●
●●●●
●
●●
●

●

●●●

●

●

●

●

●
●●

●
●

●
●

●

●

●●
●
●
●

●●
●●●
●

●

●●
●

●
●●●

●

●●●
●

●

●

●

●

●●
●

●

●

●

●
●●
●

●●

●
●●
●●●

●

●

●

●●●

●
●
●

●
●

●

●

●
●
●
●

●

●●●●●●

●

●

●

●

●

●

●

●
●
●
●
●●●●
●●●●●

●●

●●
●
●
●

●
●●●

●

●

●

●

●●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●
●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●●●●

●
●

●

●●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●●

●

●●●
●

●

●

●

●

●

●

●●

●

●●●

●
●
●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●●

●

●

●

●●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●
●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●●●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●●

●

●

●

●

●

●●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

−0.2

0.0

0.2

D_r q_r u_q v_q A_u C_v t_u t_v B_t

branch

al
ph

a

Simulation #2

●

●

●

●

●

●

●

●

●
●●●

●

●
●
●

●

●

●

●●

●●

●●

●●
●
●
●●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●

●
●
●●
●

●

●

●

●

●
●
●
●●●●
●

●
●

●

●
●●●
●

●●

●

●●●●

●

●

●

●

●

●
●●●

●

●

●

●

●

●
●

●

●
●●

●

●

●●
●●
●●

●

●

●

●●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●
●
●

●●

●

●●

●

●

●

●

●

●

●

●●●

●
●

●

●●
●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●●
●

●

●
●

●
●

●

●●
●

●

●●

●●●
●●
●

●

●

●

●

●

●
●●

●

●
●

●

●●

●

●●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●●

●

●
●

●
●
●●

●

●

●●

●

●●

●
●

●

●

●●

●●

●●

●

●

●

●
●

●●

●●

●

●●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●
●

●

●●

●

●
●

●

●
●●
●

●

●

●

●

●

●
●●
●●

●

●

●
●

●●

●

●

●●
●●

●

●

●

●
●●

●

●

●●

−0.2

0.0

0.2

D_r q_r u_q v_q A_u C_v t_u t_v B_t

branch

al
ph

a

Simulation #3

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●
●

●

●

●

●
●
●●
●
●

●

●

●

●●

●

●●
●

●

●
●
●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●
●

●

●●●
●

●●●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●
●●

●

●

●

●●

●
●

●
●

●

●

●
●●

●

●

●●

●

●
●

●●
●
●
●

●

●

●
●

●

●●

●
●

●

●●
●
●

●
●

●

●●

●

●●●

●

●●

●
●

●●●

●

●●

●
●

●

●●
●●

●

●

●

●

●

●

●●
●●

●

●●●●●

●

●

●

●

●

●

●

●●

●●

●
●
●

●

●

●

●

●

●
●
●●●●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●
●

●

●

●●

●
●
●

●

●●
●
●
●

●

●

●
●

●
●●
●
●

●

●●

●
●
●

●

●
●

●

●

●

●
●●●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●●
●●

●

●
●

●
●

●●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●
●●

●

●
●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

−0.2

0.0

0.2

D_r q_r u_q v_q A_u C_v t_u t_v B_t

branch

al
ph

a

Simulation #4

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●●

●
●

●
●

●
●

●
●●

●●●
●
●
●

●

●

●●●●

●

●

●●●

●

●

●
●●

●

●

●

●

●

●

●●●
●●
●

●

●
●●
●

●

●

●●

●

●
●

●

●

●●
●

●●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●
●
●
●●
●

●●●●

●●
●

●●

●●

●

●

●

●

●

●
●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●●

●
●

●●

●

●

●
●

●

●

●
●●●●
●

●

●
●●●●●
●
●
●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●
●●●●●●

●

●●
●●
●●

●
●
●
●

●

●

●

●

●

●

●

●
●
●
●●●●●

●

●

●

●

●

●

●

●

●

●●

●●●
●

●

●

●

●

●
●

●●

●

●●●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●●
●
●

●●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●
●
●
●
●

●

●

●

●
●

●

●

●●●
●

●

●
●

●

●
●
●

●

●

●●
●
●●

●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●

●

●
●●

●
●

●
●●

●

●
●●

●

●

●
●

●

●
●●

●
●
●

●

●

●

●

●

●

●

●●
●

●
●
●
●

●
●

●

●

●
●
●

●●

●

●●

●●
●
●

●

●
●
●

●●

●
●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●
●●●
●

●

●

●
●

●

●
●
●
●

●●

●●●
●
●

●

−0.2

0.0

0.2

D_r q_r u_q v_q A_u C_v t_u t_v B_t

branch

al
ph

a

Simulation #5

Figure S19: Posterior distributions of α parameters for five 400-SNPs neutral simulations of a 4-leaf
admixture graph with drift parameters equal to 0.03 in each branch, but incorrectly specified to be equal
to 0.02.
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Figure S20: Posterior distributions of α parameters for five 400-SNPs neutral simulations of a 4-leaf
admixture graph with drift parameters equal to 0.04 in each branch, but incorrectly specified to be equal
to 0.02.
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Figure S21: Posterior distributions of α parameters for five 400-SNPs neutral simulations of a 4-leaf
admixture graph with drift parameters equal to 0.02 in each branch. We pretended one of the populations
(A) was not sampled, and specified the topology to be a 3-leaf tree with drift parameters equal to 0.02
in each branch. Populations B, C and D were relabeled to be A, B and C, respectively.
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Figure S22: A) A 7-leaf population tree containing the following population panels from the 1000
Genomes Project: Nigerian Esan (ESN), Sierra Leone Mende (MSL), Northern Europeans from Utah
(CEU), Southern Europeans from Tuscany (TSI), Dai Chinese (CDX), Japanese (JPT) and Peruvians
(PEL). B) A 5-leaf admixture graph containing the following panels from the 1000 Genomes project:
Yoruba (YRI), Colombians (CLM), CEU, CHB and PEL. C) A 7-leaf admixture graph containing panels
(and combinations of panels) from the imputed Lazaridis et al. (2014) dataset. EastAsian = [ Cam-
bodian, Mongola, Xibo, Daur, Hezhen, Oroqen, Naxi, Yi, Japanese, Han NChina, Lahu, Miao, She,
Han, Tujia, Dai ]. NativeAmerican = [ Maya, Pima, Surui, Karitiana, Colombian ]. Oceanian = [
Papuan, Australian ]. We tested three graphs with three different combinations of European popula-
tions, with different amounts of EEF ancestry: EuropeA (low EEF) = [ Estonian, Lithuanian, Scottish,
Icelandic, Norwegian, Orcadian, Czech, English ]. EuropeB (medium EEF) = [ Hungarian, Croatian,
French, Basque, Spanish North, French South ]. EuropeC (high EEF) = [ Bulgarian, Bergamo, Tuscan,
Albanian, Greek, Spanish ].
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Figure S23: Box plots of posterior distributions for α parameters, for trait-associated variants with
significant evidence for selection in a 7-leaf population tree using the 1000 Genomes data (Figure S22.A).
Parameters with flat distributions were discarded a priori using the QB statistic. The lower, middle and
upper hinges denote the 25th, 50th and 75th percentiles, respectively. The upper whisker extends to the
highest value that is within 1.5 * IQR of the upper hinge, where IQR is the inter-quartile range. The
lower whisker extends to the lowest value within 1.5 * IQR of the lower hinge. Data beyond the whiskers
are plotted as points. EDU = educational attainment. MPB 23 = self-reported male-pattern baldness
from 23andMe. UB 23 = self-reported unibrow from 23andMe.
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Figure S24: We plotted the α values of two branches for all posterior samples of the MCMC run for
variants associated with height in the 7-leaf population tree composed of 1000 Genomes panels. For each
MCMC sample, the x-axis corresponds to the α parameter in the ancestral European branch, while the
y-axis corresponds to the α parameter in the ancestral East Asian / Native American branch.
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Figure S25: Box plots of posterior distributions for α parameters, for trait-associated variants with
significant evidence for selection in a 5-leaf admixture graph using the 1000 Genomes data (Figure S22.B).
Parameters with flat distributions were discarded a priori using the QB statistic. The lower, middle and
upper hinges denote the 25th, 50th and 75th percentiles, respectively. The upper whisker extends to the
highest value that is within 1.5 * IQR of the upper hinge, where IQR is the inter-quartile range. The
lower whisker extends to the lowest value within 1.5 * IQR of the lower hinge. Data beyond the whiskers
are plotted as points. EDU = educational attainment. MPB 23 = self-reported male-pattern baldness
from 23andMe. UB 23 = self-reported unibrow from 23andMe. SCZ = schizophrenia.
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Figure S26: This barplot shows, for each panel, the number of two-tailed binomial tests for systematic
allele frequency differences in the sign of the effect size estimate of variants associated with educational
attainment with P-values < 0.05, which involve that panel as a member of the pair. We tested all panels
and continental super-panels from the 1000 Genomes dataset.
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Figure S27: This barplot shows, for each panel, the number of two-tailed binomial tests for systematic
allele frequency differences in the sign of the effect size estimate of variants associated with height with
P-values < 0.05, which involve that panel as a member of the pair. We tested all panels and continental
super-panels from the 1000 Genomes dataset.

73

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 4, 2017. ; https://doi.org/10.1101/146043doi: bioRxiv preprint 

https://doi.org/10.1101/146043
http://creativecommons.org/licenses/by-nc-nd/4.0/


MPB_23

N
um

be
r 

of
 te

st
s 

w
ith

 P
 <

 0
.0

5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

G
W

D

A
C

B

B
E

B

P
E

L

LW
K

M
S

L

G
B

R

IB
S

A
S

W

G
IH T
S

I

K
H

V

C
E

U

S
A

S

E
A

S

A
M

R

C
LM

C
H

B

Y
R

I

S
T

U

C
H

S

E
S

N

F
IN

A
F

R

E
U

R

P
JL

M
X

L

IT
U

C
D

X

JP
T

P
U

R

Figure S28: This barplot shows, for each panel, the number of two-tailed binomial tests for systematic
allele frequency differences in the sign of the effect size estimate of variants associated with self-reported
male-pattern baldness with P-values < 0.05, which involve that panel as a member of the pair. We tested
all panels and continental super-panels from the 1000 Genomes dataset.

SCZ

N
um

be
r 

of
 te

st
s 

w
ith

 P
 <

 0
.0

5

0
2

4
6

8
10

G
W

D

A
C

B

B
E

B

P
E

L

LW
K

M
S

L

G
B

R

IB
S

A
S

W

G
IH T
S

I

K
H

V

C
E

U

S
A

S

E
A

S

A
M

R

C
LM

C
H

B

Y
R

I

S
T

U

C
H

S

E
S

N

F
IN

A
F

R

E
U

R

P
JL

M
X

L

IT
U

C
D

X

JP
T

P
U

R

Figure S29: This barplot shows, for each panel, the number of two-tailed binomial tests for systematic
allele frequency differences in the sign of the effect size estimate of variants associated with schizophrenia
with P-values < 0.05, which involve that panel as a member of the pair. We tested all panels and
continental super-panels from the 1000 Genomes dataset.
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Figure S30: This barplot shows, for each panel, the number of two-tailed binomial tests for systematic
allele frequency differences in the sign of the effect size estimate of variants associated with self-reported
unibrow with P-values < 0.05, which involve that panel as a member of the pair. We tested all panels
and continental super-panels from the 1000 Genomes dataset.
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Figure S31: We simulated different proportions of missing trait-associated SNPs (x-axis). We then
assessed - for each proportion - how often we could recreate the inequality relationship observed between
the polygenic scores for CHB and CEU built using the trait-associated SNPs of the three traits with
strongest evidence for polygenic adaptation: height, educational attainment and self-reported unibrow.
The observed inequality relationship for educational attainment and unibrow is PolyCHB > PolyCEU ,
where PolyX is the polygenic score for panel X. The observed inequality relationship for height is the
reverse: PolyCEU > PolyCHB . We used 10,000 simulations for each missing data scenario.
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Figure S32: We simulated different proportions of incorrectly assigned signs for the effect size estimates
of trait-associated SNPs. We then assessed - for each proportion - how often we could recreate the
inequality relationship observed between the polygenic scores for CHB and CEU built using the trait-
associated SNPs of the three traits with strongest evidence for polygenic adaptation: height, educational
attainment and self-reported unibrow. The observed inequality relationship for educational attainment
and unibrow is PolyCHB > PolyCEU , where PolyX is the polygenic score for panel X. The observed
inequality relationship for height is the reverse: PolyCEU > PolyCHB . We used 10,000 simulations for
each sign misassignment scenario.
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Figure S33: We plotted the absolute value of the effect sizes of trait-associated SNPs for height, ed-
ucational attainment and self-reported unibrow, as a function of the difference in frequency observed
between CHB and CEU. The panel frequencies are polarized with respect to the trait-increasing allele.
We then overlaid a contour plot over each scatter-plot.
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Figure S34: Box plots of posterior distribution for α parameters, for trait-associated variants with
significant evidence for selection in a 7-leaf population graph, using the Lazaridis et al. (2014) dataset
and including the set of European populations with low EEF ancestry (”EuropeA”). Parameters with
flat distributions were discarded a priori using the QB statistic. The lower, middle and upper hinges
denote the 25th, 50th and 75th percentiles, respectively. The upper whisker extends to the highest value
that is within 1.5 * IQR of the upper hinge, where IQR is the inter-quartile range. The lower whisker
extends to the lowest value within 1.5 * IQR of the lower hinge. Data beyond the whiskers are plotted
as points. EDU = educational attainment. PS 23 = self-reported photic sneeze reflex from 23andMe.
UB 23 = self-reported unibrow from 23andMe.
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Figure S35: Box plots of posterior distribution for α parameters, for trait-associated variants with
significant evidence for selection in a 7-leaf population graph, using the Lazaridis et al. (2014) dataset
and including the set of European populations with medium EEF ancestry (“EuropeB”). Parameters
with flat distributions were discarded a priori using the QB statistic. The lower, middle and upper hinges
denote the 25th, 50th and 75th percentiles, respectively. The upper whisker extends to the highest value
that is within 1.5 * IQR of the upper hinge, where IQR is the inter-quartile range. The lower whisker
extends to the lowest value within 1.5 * IQR of the lower hinge. Data beyond the whiskers are plotted as
points. AVD 23 = self-reported age at voice drop. EDU = educational attainment. PS 23 = self-reported
photic sneeze reflex from 23andMe. UB 23 = self-reported unibrow from 23andMe.
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Figure S36: Box plots of posterior distribution for α parameters, for trait-associated variants with
significant evidence for selection in a 7-leaf population graph, using the Lazaridis et al. (2014) dataset
and including the set of European populations with high EEF ancestry (“EuropeC”). Parameters with
flat distributions were discarded a priori using the QB statistic. The lower, middle and upper hinges
denote the 25th, 50th and 75th percentiles, respectively. The upper whisker extends to the highest value
that is within 1.5 * IQR of the upper hinge, where IQR is the inter-quartile range. The lower whisker
extends to the lowest value within 1.5 * IQR of the lower hinge. Data beyond the whiskers are plotted
as points. EDU = educational attainment. PS 23 = self-reported photic sneeze reflex from 23andMe.
UB 23 = self-reported unibrow from 23andMe.
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Figure S37: Pheno-graphs for trait-associated variants that show significant evidence for polygenic adap-
tation in the 7-leaf admixture graph built using the Lazaridis et al. (2014) dataset and including the set
of European populations with medium EEF ancestry (“EuropeB”).
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Figure S38: Pheno-graphs for trait-associated variants that show significant evidence for polygenic adap-
tation in the 7-leaf admixture graph built using the Lazaridis et al. (2014) dataset and including the set
of European populations with high EEF ancestry (“EuropeC”).
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Figure S39: This barplot shows, for each panel, the number of two-tailed binomial tests for systematic
allele frequency differences in the sign of the effect size estimate of variants associated with self-reported
age at voice drop with P-values < 0.05, which involve that panel as a member of the pair. We tested all
panels from the Lazaridis et al. (2014) dataset.
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Figure S40: This barplot shows, for each panel, the number of two-tailed binomial tests for systematic
allele frequency differences in the sign of the effect size estimate of variants associated with educational
attainment with P-values < 0.05, which involve that panel as a member of the pair. We tested all panels
from the Lazaridis et al. (2014) dataset.
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Figure S41: This barplot shows, for each panel, the number of two-tailed binomial tests for systematic
allele frequency differences in the sign of the effect size estimate of variants associated with height with
P-values < 0.05, which involve that panel as a member of the pair. We tested all panels from the
Lazaridis et al. (2014) dataset.
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Figure S42: This barplot shows, for each panel, the number of two-tailed binomial tests for systematic
allele frequency differences in the sign of the effect size estimate of variants associated with self-reported
photic sneeze reflex with P-values < 0.05, which involve that panel as a member of the pair. We tested
all panels from the Lazaridis et al. (2014) dataset.
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Figure S43: This barplot shows, for each panel, the number of two-tailed binomial tests for systematic
allele frequency differences in the sign of the effect size estimate of variants associated with self-reported
unibrow with P-values < 0.05, which involve that panel as a member of the pair. We tested all panels
from the Lazaridis et al. (2014) dataset.

Figure S44: Side-by-side comparison of a pheno-graph built using the posterior estimates of the alpha
parameters using variants associated with height (left), and a pheno-graph built using the qb statistics
using the same variants (right). The color scale is arbitrary and specific to each graph.

86

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 4, 2017. ; https://doi.org/10.1101/146043doi: bioRxiv preprint 

https://doi.org/10.1101/146043
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S45: A. We produced 100 simulations of polygenic adaptation in an internal branch of a graph
(v-q), each with 400 SNPs and α = 0.1. All branches had drift lengths equal to 0.02 B. We tested
various cutoffs for QB and plotted the average number of candidate branches that passed the cutoff, over
all simulations. The blue line is the X2

1 cutoff corresponding to P = 0.05/k, where k is the number of
branches in the graph, under the null hypothesis of no selection. C. For each of the same cutoffs, we
also plotted the proportion of simulations in which the true selected branch was among the candidate
branches. D. Instead of testing constant values for the QB cutoff, we chose the cutoff to be the maximum
branch statistic in each simulation, divided by i, and tested various values of i. We plotted the average
number of candidate branches that passed the cutoff, over all simulations. E. For the same cutoff method
as in panel D, we plotted the proportion of simulations in which the true selected branch was among the
candidate branches. For simulations and applications to real data, we chose a heuristic value (i=3, red
line).
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Figure S46: A. We produced 100 simulations of polygenic adaptation in a terminal branch of a graph
(C-v), each with 400 SNPs and α = 0.1. All branches had drift lengths equal to 0.02 B. We tested
various cutoffs for QB and plotted the average number of candidate branches that passed the cutoff, over
all simulations. The blue line is the X2

1 cutoff corresponding to P = 0.05/k, where k is the number of
branches in the graph, under the null hypothesis of no selection. C. For each of the same cutoffs, we
also plotted the proportion of simulations in which the true selected branch was among the candidate
branches. D. Instead of testing constant values for the QB cutoff, we chose the cutoff to be the maximum
branch statistic in each simulation, divided by i, and tested various values of i. We plotted the average
number of candidate branches that passed the cutoff, over all simulations. E. For the same cutoff method
as in panel D, we plotted the proportion of simulations in which the true selected branch was among the
candidate branches. For simulations and applications to real data, we chose a heuristic value (i=3, red
line).
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Figure S47: A. We produced 100 simulations of polygenic adaptation in an internal branch of a graph
(v-q), each with 400 SNPs and α = 0.1. All branches had drift lengths equal to 0.05 B. We tested
various cutoffs for QB and plotted the average number of candidate branches that passed the cutoff, over
all simulations. The blue line is the X2

1 cutoff corresponding to P = 0.05/k, where k is the number of
branches in the graph, under the null hypothesis of no selection. C. For each of the same cutoffs, we
also plotted the proportion of simulations in which the true selected branch was among the candidate
branches. D. Instead of testing constant values for the QB cutoff, we chose the cutoff to be the maximum
branch statistic in each simulation, divided by i, and tested various values of i. We plotted the average
number of candidate branches that passed the cutoff, over all simulations. E. For the same cutoff method
as in panel D, we plotted the proportion of simulations in which the true selected branch was among the
candidate branches. For simulations and applications to real data, we chose a heuristic value (i=3, red
line).
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Figure S48: A. We produced 100 simulations of polygenic adaptation in a terminal branch of a graph
(C-v), each with 400 SNPs and α = 0.1. All branches had drift lengths equal to 0.05 B. We tested
various cutoffs for QB and plotted the average number of candidate branches that passed the cutoff, over
all simulations. The blue line is the X2

1 cutoff corresponding to P = 0.05/k, where k is the number of
branches in the graph, under the null hypothesis of no selection. C. For each of the same cutoffs, we
also plotted the proportion of simulations in which the true selected branch was among the candidate
branches. D. Instead of testing constant values for the QB cutoff, we chose the cutoff to be the maximum
branch statistic in each simulation, divided by i, and tested various values of i. We plotted the average
number of candidate branches that passed the cutoff, over all simulations. E. For the same cutoff method
as in panel D, we plotted the proportion of simulations in which the true selected branch was among the
candidate branches. For simulations and applications to real data, we chose a heuristic value (i=3, red
line).
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Figure S49: A. We produced 100 simulations of polygenic adaptation in an internal branch of a graph
(v-q), each with 400 SNPs and α = 0.2. All branches had drift lengths equal to 0.02 B. We tested
various cutoffs for QB and plotted the average number of candidate branches that passed the cutoff, over
all simulations. The blue line is the X2

1 cutoff corresponding to P = 0.05/k, where k is the number of
branches in the graph, under the null hypothesis of no selection. C. For each of the same cutoffs, we
also plotted the proportion of simulations in which the true selected branch was among the candidate
branches. D. Instead of testing constant values for the QB cutoff, we chose the cutoff to be the maximum
branch statistic in each simulation, divided by i, and tested various values of i. We plotted the average
number of candidate branches that passed the cutoff, over all simulations. E. For the same cutoff method
as in panel D, we plotted the proportion of simulations in which the true selected branch was among the
candidate branches. For simulations and applications to real data, we chose a heuristic value (i=3, red
line).
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Figure S50: A. We produced 100 simulations of polygenic adaptation in a terminal branch of a graph
(C-v), each with 400 SNPs and α = 0.2. All branches had drift lengths equal to 0.02 B. We tested
various cutoffs for QB and plotted the average number of candidate branches that passed the cutoff, over
all simulations. The blue line is the X2

1 cutoff corresponding to P = 0.05/k, where k is the number of
branches in the graph, under the null hypothesis of no selection. C. For each of the same cutoffs, we
also plotted the proportion of simulations in which the true selected branch was among the candidate
branches. D. Instead of testing constant values for the QB cutoff, we chose the cutoff to be the maximum
branch statistic in each simulation, divided by i, and tested various values of i. We plotted the average
number of candidate branches that passed the cutoff, over all simulations. E. For the same cutoff method
as in panel D, we plotted the proportion of simulations in which the true selected branch was among the
candidate branches. For simulations and applications to real data, we chose a heuristic value (i=3, red
line).
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Figure S51: A. We produced 100 simulations of polygenic adaptation in an internal branch of a graph
(v-q), each with 400 SNPs and α = 0.2. All branches had drift lengths equal to 0.05 B. We tested
various cutoffs for QB and plotted the average number of candidate branches that passed the cutoff, over
all simulations. The blue line is the X2

1 cutoff corresponding to P = 0.05/k, where k is the number of
branches in the graph, under the null hypothesis of no selection. C. For each of the same cutoffs, we
also plotted the proportion of simulations in which the true selected branch was among the candidate
branches. D. Instead of testing constant values for the QB cutoff, we chose the cutoff to be the maximum
branch statistic in each simulation, divided by i, and tested various values of i. We plotted the average
number of candidate branches that passed the cutoff, over all simulations. E. For the same cutoff method
as in panel D, we plotted the proportion of simulations in which the true selected branch was among the
candidate branches. For simulations and applications to real data, we chose a heuristic value (i=3, red
line).
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Figure S52: A. We produced 100 simulations of polygenic adaptation in a terminal branch of a graph
(C-v), each with 400 SNPs and α = 0.2. All branches had drift lengths equal to 0.05 B. We tested
various cutoffs for QB and plotted the average number of candidate branches that passed the cutoff, over
all simulations. The blue line is the X2

1 cutoff corresponding to P = 0.05/k, where k is the number of
branches in the graph, under the null hypothesis of no selection. C. For each of the same cutoffs, we
also plotted the proportion of simulations in which the true selected branch was among the candidate
branches. D. Instead of testing constant values for the QB cutoff, we chose the cutoff to be the maximum
branch statistic in each simulation, divided by i, and tested various values of i. We plotted the average
number of candidate branches that passed the cutoff, over all simulations. E. For the same cutoff method
as in panel D, we plotted the proportion of simulations in which the true selected branch was among the
candidate branches. For simulations and applications to real data, we chose a heuristic value (i=3, red
line).
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