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Abstract 8 

Neural responses to repeated presentations of an identical stimulus often show substantial trial-to-trial 9 
variability. How the mean firing rate varies in response to different stimuli or during different 10 
movements (tuning curves) has been extensively modeled in a wide variety of neural systems. However, 11 
the variability of neural responses can also have clear tuning independent of the tuning in the mean 12 
firing rate. This suggests that the variability could contain information regarding the stimulus/movement 13 
beyond what is encoded in the mean firing rate. Here we demonstrate how taking variability into 14 
account can improve neural decoding. In a typical neural coding model spike counts are assumed to be 15 
Poisson with the mean response depending on an external variable, such as a stimulus or movement. 16 
Bayesian decoding methods then use the probabilities under these Poisson tuning models (the 17 
likelihood) to estimate the probability of each stimulus given the spikes on a given trial (the posterior). 18 
However, under the Poisson model, spike count variability is always exactly equal to the mean (Fano 19 
factor = 1). Here we use two alternative models - the Conway-Maxwell-Poisson (CMP) model and 20 
Negative Binomial (NB) model - to more flexibly characterize how neural variability depends on 21 
external stimuli. These models both contain the Poisson distribution as a special case but have an 22 
additional parameter that allows the variance to be greater than the mean (Fano factor >1) or, for the 23 
CMP model, less than the mean (Fano factor <1). We find that neural responses in primary motor (M1), 24 
visual (V1), and auditory (A1) cortices have diverse tuning in both their mean firing rates and response 25 
variability. Across cortical areas, we find that Bayesian decoders using the CMP or NB models improve 26 
stimulus/movement estimation accuracy by 4-12% compared to the Poisson model. Moreover, the 27 
uncertainty of the non-Poisson decoders more accurately reflects the magnitude of estimation errors. In 28 
addition to tuning curves that reflect average neural responses, stimulus-dependent response variability 29 
may be an important aspect of the neural code. Modeling this structure could, potentially, lead to 30 
improvements in brain machine interfaces. 31 

Introduction 32 

To understand how neural responses are related to external stimuli or movements, a common approach 33 
is to characterize the average spiking activity of a neuron over repeated trials. However, neural 34 
responses show substantial trial-to-trial variability (Faisal, Selen, & Wolpert, 2008; Renart & Machens, 35 
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2014; Stein, Gossen, & Jones, 2005) – typically quantified by the Fano factor (FF): the ratio between the 36 
trial-to-trial variance and mean of the activity during a specific window of time. Although many studies 37 
assume that neural responses are Poisson distributed, with FF=1, there is strong evidence that neurons 38 
are frequently over-dispersed (FF>1) (Baddeley et al., 1997; Lehky & Sereno, 2007) or under-dispersed 39 
(FF<1) (DeWeese, Wehr, & Zador, 2003; Gur & Snodderly, 2006; Kumbhani, Nolt, & Palmer, 2007). 40 
Moreover, the variability of neural responses changes with task engagement (von Trapp, Buran, Sen, 41 
Semple, & Sanes, 2016), attention (Abolafia, Martinez-Garcia, Deco, & Sanchez-Vives, 2013), 42 
decision-making (A. K. Churchland et al., 2011), and arousal state (Lombardo, Macellaio, Liu, Palmer, 43 
& Osborne, 2018). Recent studies have also found that, even when attention and brain state do not 44 
change, variability can be stimulus-dependent (Lombardo et al., 2018; Ponce-Alvarez, Thiele, Albright, 45 
Stoner, & Deco, 2013). Altogether, trial-to-trial variability in neural responses appears to be both highly 46 
non-Poisson and also dependent on external variables. Here, using experimental data from three 47 
different brain regions, we aim to determine to what extent stimulus/behavior-dependent changes in 48 
response variability affect the ability to estimate or decode external variables. 49 

Decoding algorithms assess to what extent the activity of a population of neurons can be used to 50 
estimate an external variable. These methods are the basis for many brain-machine interface applications 51 
(Lebedev, 2014; Schwartz, Cui, Weber, & Moran, 2006), but in most cases they may not fully capture 52 
information contained in neural variability (Quian Quiroga & Panzeri, 2009). Since neural variability is 53 
often non-Poisson and stimulus-dependent, trial-to-trial variability can carry information regarding the 54 
stimulus/behavior beyond what is accounted for under the Poisson model or any model that assumes a 55 
fixed mean-variance relationship. Models that more accurately describe trial-to-trial variability 56 
separately from the mean response could improve decoding performance. Here we examine Bayesian 57 
decoders, where we first model the likelihood of spiking activity for each individual neuron given an 58 
external variable, and we then use Bayes’ rule to compute a probability distribution over the external 59 
variable given the observed population spiking activity (the posterior). Bayesian decoding algorithms 60 
that assume neural activity is Poisson take the probabilistic nature of neural responses into account and 61 
often out-perform other methods (Chen, 2013; K Zhang, Ginzburg, Mcnaughton, & Sejnowski, 1998). 62 
However, the assumption that the response mean and response variance are equal may lead Bayesian 63 
decoders making the Poisson assumption to misestimate the posterior probability of an external variable 64 
given the observed spikes. 65 

Here we demonstrate how the Poisson assumption can result in under- or over-confidence about external 66 
variables when decoding cortical responses, and we propose a flexible approach that allows the 67 
stimulus-dependent structure in both the mean and variance to be modeled. To account for deviations 68 
from the Poisson assumption, several previous studies have considered models with fixed, non-Poisson 69 
relationships between the mean and variance (Charles, Park, Weller, Horwitz, & Pillow, 2018; DeWeese 70 
et al., 2003; Goris, Movshon, & Simoncelli, 2014). Here we use the Conway-Maxwell-Poisson (CMP) 71 
and Negative Binomial (NB) distributions to account for non-Poisson variability and, additionally, to 72 
flexibly model how variability depends on external variables (Stevenson, 2016). These models contain 73 
the Poisson distribution as a special case, but, have an additional dispersion parameter that allows over- 74 
or, in the case of CMP, over- and under-dispersed data. Both models belong to the exponential family of 75 
distributions and can be written in the generalized linear model (GLM) framework with stimulus-76 
dependent mean and dispersion (Sellers, Borle, & Shmueli, 2012). Here we examine three datasets: 1) 77 
recordings from primary motor cortex (M1) of a monkey performing a center-out reaching task, 2) 78 
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recordings from primary visual cortex (V1) of a monkey presented with drifting sine-wave gratings, and 79 
3) recordings from primary auditory cortex (A1) of rats presented with different pure-tone sounds. The 80 
neural responses in M1 (as a function of reach direction), V1 (as a function of grating direction) and A1 81 
(as a function of tone frequency) have diverse tuning in both their mean firing rates and response 82 
variability. These tuning patterns can be accurately described by CMP and NB models; moreover, in 83 
these three cortical areas, we find that Bayesian decoders using the CMP or NB models improve 84 
estimation by 4-12% compared to the Poisson model. The additional layer of information in stimulus-85 
dependent variability thus appears to improve decoding performance.  86 

Methods 87 

Neural Data 88 

Here we use 3 datasets recorded from primary motor (M1), visual (V1), and auditory (A1) cortices to 89 
determine whether modeling dispersion improves decoding accuracy.  90 

For the primary motor cortex, we used the DREAM-Stevenson_2011 dataset from CRCNS (Walker & 91 
Kording, 2013). This dataset was recorded from the arm area of primary motor cortex of an adult 92 
macaque monkey during center-out reaches. The reaches were made in a 20x20 cm workspace while the 93 
animal was grasping a two-link manipulandum. The data was recorded using a 100-electrode Utah array 94 
(400 mm spacing, 1.5 mm length) and was spike sorted manually with an offline sorter (Plexon, Inc) 95 
where 69 single units were identified with >.2 spikes per trial on average. On each trial, we analyzed 96 
spike counts during the window 150 ms before to 350 ms after the speed reached its half-max. Detailed 97 
descriptions of the surgical procedure, behavioral task, and preprocessing are available in the original 98 
report (Stevenson, 2016).  99 

For the primary visual cortex, we used the PVC-11 dataset from CRCNS (Kohn & Smith, 2016). This 100 
dataset was recorded from an anesthetized adult monkey (monkey 3) in response to presentations of 101 
drifting sine-wave gratings (with 20 trials for each of 12 directions). The data was recorded using a 96-102 
channel multielectrode array and 112 single units were identified with SNR >1.5 and firing rate >1 Hz. 103 
On each trial we analyzed spike counts between 200 and 1200 ms after stimulus onset. Detailed 104 
descriptions of the surgical procedure, stimulus presentation, and preprocessing are available in the 105 
original reports (Kelly, Smith, Kass, & Lee, 2010; Smith & Kohn, 2008). 106 

For primary auditory cortex, in contrast with M1 and V1 data that were simultaneously recorded, we 107 
combined extracellular recordings from 18 anesthetized male rats. These data were recorded from 108 
primary (A1; n=176) auditory area using 16 channel tetrodes. Spikes were detected and clustered using 109 
custom routines and later sorted with automated clustering (KlustaKwik). Neurons were responding to 110 
sound stimuli for measuring frequency response areas (FRA) with transient tones over a range of 111 
frequency (1.4-45.3 kHz; 42 frequencies with one-eighth-octave steps) and sound pressure levels (85 dB 112 
to 15 dB in 10-dB steps). On each trial, we analyzed spike counts during a 100 ms window after the 113 
stimulus onset. Each combination of frequency and sound level was presented six times in random 114 
order. Here we only use single units from area A1 with >.1 spikes per trial on average (n=158). We 115 
decode stimulus frequency after re-binning the stimuli into 21 categories, and we combine responses 116 
from three sound pressure levels (45, 55, and 65 dB) to get 36 “repetitions” per category. Note that, 117 
since trials at the same frequency contain different sound levels, there may be higher than expected 118 
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variability in neural responses. Detailed descriptions of the surgical procedure, stimulus presentations, 119 
and preprocessing are available in the original report (Lee, Osman, Volgushev, Escabí, & Read, 2016).  120 

Bayesian Decoding 121 

The goal of population decoding is to take the spike counts from all neurons on each trial and to estimate 122 
what stimulus/movement occurred during that trial. Bayesian decoding methods make use of the fact 123 
that the relationship between an external variable θ and population neural activity �θ � ��1�θ� … �C�θ�	 124 
can be modeled with Bayes rule by 
�θ|��� � 
���|θ�
�θ� (Chen, 2013). Where the posterior 125 
distribution 
�θ|��� over the external variable is determined by the product of the likelihood 
���|θ�, 126 
the probability of observing the given neural activity under a specific encoding model, and the prior 127 

�θ� that determines how likely each value of the external variable is, a priori. In most applications of 128 
Bayesian decoding, the neurons are assumed to be conditionally independent given the external variable: 129 

���|θ� � ∏ 
��i�θ�|θ�� . This assumption allows straightforward estimation of the posterior, but, in 130 
practice, modeling dependencies between neurons can improve decoding (Pachitariu, Petreska, & 131 
Sahani, 2013; Park, Archer, Latimer, & Pillow, 2013; Stevenson et al., 2012). Here we use the 132 
independence assumption and examine how the choice of likelihood affects decoding performance. 133 

Previous works have almost exclusively considered Poisson likelihood models: 134 


�n���θ�� � ��θ�n

n! ��	
θ�
 

where n denotes the observed spike count and � is a mean spike count that changes as a function of the 135 
external variable, θ. Here we use cubic basis splines, b��θ�, with equally-spaced knots to describe the 136 
tuning curves of each individual neuron: ��θ� � ∑ bk�θ��

�
�
��1  with K=5, 6, and 8 for M1, V1, and A1, 137 

respectively. When θ is a circular variable, the splines are assumed to have periodic boundary 138 
conditions. In order to estimate the coefficients, �, we assume observations are conditionally 139 
independent and impose an L1-penalty on the coefficients to reduce overfitting: 140 

� � ������
�

 ∑  log $
�n����θt��%� & ' ∑ |�
�
|�

��1   141 

where ( indexes the individual external variable on each trial. Once we have estimated the tuning curve 142 
���θ� for individual neurons in our training set, we apply Bayes’ rule to decode the stimuli/movement 143 
for each trial in the test set (8-fold cross-validation). The hyper-parameter, ', was selected with a line 144 
search for each neuron. In general, we assume that the prior 
�θ� in our decoders is flat and each 145 
stimulus is equally probable.  146 

Conway-Maxwell-Poisson Models 147 

In previous work we described how CMP models can provide more accurate descriptions of trial-to-trial 148 
variability for tuning curves (Stevenson, 2016). The CMP distribution takes the form: 149 


�n|�, *� � �n

�!�

1
,��, *�  

with normalization factor ,��, *� � ∑ 	
�

�!�
∞
��0 . For spike counts n, the distribution is a function of the 150 

intensity, �, and dispersion parameters, *, with * - 1 describing over-dispersion and * . 1 describing 151 
under-dispersed data. Since there is no known closed-form solution for the normalization factor (Minka, 152 
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Shmueli, Kadane, Borle, & Boatwright, 2003), we instead compute it numerically up to some finite sum. 153 
Note that with * � 1, ,��, *� � �	 and the CMP is exactly the Poisson distribution, and the spike counts 154 
are equi-dispersed. 155 

In practice, we take advantage of the fact that the CMP distribution is in the exponential family and 156 
frame the problem of tuning curve estimation as a generalized linear model (GLM) (Sellers et al., 2012). 157 
In particular, we estimate parameters � and / that map external covariates 0�θ� � �b��θ� … b��θ�	 and 158 
1�θ� � �c��θ� … c��θ�	 to neural responses using the link functions log���θ�� � 0�θ�� and 159 
log�*�θ�� � 1�θ�/. This framework is in effect a dual-link GLM where both the mean and the variance 160 
depend on the external variable θ (Sellers & Shmueli, 2010). 161 

We again estimate the tuning curves using spline bases and maximum a posteriori (MAP) estimation, 162 
here with L2 regularization. Importantly, this approach allows us to model neural responses that are 163 
under-dispersed, over-dispersed, or that contain both under- and over-dispersed counts in response to 164 
different stimuli or movements. As with the Poisson models, once we have the likelihood of spike 165 
responses, we use a Bayesian decoder to estimate the posterior distribution over external variable given 166 
spiking: 
�θ|��� � 
���|θ�
�θ� and assume that the neurons are conditionally independent.  167 

We also compare the Poisson with the Negative Binomial model which has been used more widely to 168 
describe over-dispersed spike counts (Scott & Pillow, 2012; Taouali, Benvenuti, Wallisch, Chavane, & 169 
Perrinet, 2016):  170 


�n|�, �� � $ �
� & 3%

� Γ�� & n�
Γ�n & 1�Γ��� 5 �

� & �6
n

 

where the NB distribution is parameterized by the mean � and dispersion parameter �, and Γ�·� denotes 171 
the gamma function. The NB model can also be written as canonical generalized linear models using the 172 
link function log�3�θ�� � 0�θ��, and, as with the CMP model, covariate-dependent dispersion can be 173 
modeled by assuming log���θ�� � 1�θ�/. With both the CMP and NB models we use L=3, 4, and 6 for 174 
the M1, V1, and A1 datasets, respectively. Altogether, these three models (Poisson, NB, and CMP) 175 
allow us to describe a range of tuning behaviors in different brain regions and to quantify to what extent 176 
modeling stimulus/movement-dependent dispersion improves decoding accuracy. 177 

Linear Decoding 178 

In addition to comparing our non-Poisson Bayesian decoders to the conventional Poisson Bayesian 179 
decoder, we also compare these models to two non-probabilistic linear decoding methods. Linear 180 
decoders estimate the external variable 8 on each trial using a linear combination of neural responses � 181 
and weight functions 9�8�. This assumption is the basis for population vector approaches 182 
(Georgopoulos, Schwartz, & Kettner, 1986), as well as, template matching (Wilson & McNaughton, 183 
1993), and optimal linear estimation (OLE) methods (Salinas & Abbott, 1994). Here we examine 184 
template matching and OLE. For template matching we estimate the tuning curves for each neuron �, 185 
9

�
�8�, by linear (ridge) regression using K cubic basis spline functions, 0�θ�: 9

�
�8� � ∑ ;�,�� 0

k
�θ�. 186 

Namely, we estimate weights <� � ;�,��1:� by 187 

<! � �0T0 & δ>��1 0#�$ 
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where �$ � ni,t�1:T is a vector constructed from the neural response of neuron � on trial (. 0 �188 
0

k�1:K,t�1:T
 is a matrix representation of the external variable formed by basis functions. As with the 189 

tuning curves for Bayesian decoding described above, we use cubic B-Spline bases with equally-spaced 190 
knots and periodic boundary conditions where appropriate (V1 and M1). δ is a regularization 191 
hyperparameter to prevent overfitting which we select by grid search over logarithmically-spaced values 192 
from .001 to 10 and minimizing the cross-validated squared error. Given the tuning curves for each 193 
neuron, we then evaluate the performance of our template matching decoder by constructing linear 194 
estimates of the external variable 8? � argmax

&
∑ ∑ ∑ ;�,�� 0

k
�θ�� ni,t� . 195 

For optimal linear estimation (OLE), rather than fitting tuning curves for each neuron independently, we 196 
estimate weights, ;, for all neurons, simultaneously. Using a similar notation as above,  197 

< � ��T� & δ>��1 �#0 

where � is now the spike count matrix for all neurons. As with template matching, estimates of the 198 
external variable are linear. However, the weight matrix here differs from the one in template matching 199 
as OLE accounts for correlations in the population responses.  200 

Parametric accuracy and error curves 201 

When estimating the decoding accuracy or error as a function of the number of neurons included in the 202 
model, we often cannot exhaustively evaluate all possible �'

(
� subpopulations. For clarity, we thus fit a 203 

parametric curve to accuracy and error estimates as a function of population size k. We define a curve 204 
that follows a generalized logistic function: 205 

E�k� �  

�
$1

k & �%
) & ;

1 & ;   
with the parameters F�, ;, GH. We then fit E�k� to accuracy curves and I�k� � 1  E�k� to error curves for 206 
random subsamples of the full set of neurons by minimizing the squared-error and constraining the 207 
parameters to be positive. 208 

Greedy algorithm 209 

In addition to quantifying the decoding performance of a random set of k neurons, it is also useful to 210 
consider the best and worst performing sets of k neurons. These extremes give some indication as to 211 
what the limits of neural coding might be. To find these subsets of neurons that give upper or lower 212 
bounds of the accuracy, we use a greedy combinatorial optimization scheme similar to beam search. 213 
Namely, to maximize decoding accuracy, we start with an empty set, then we add neurons one-by-one 214 
and select the best set at each stage. To avoid local minima, we keep the top-5 performing sets at each 215 
stage and consider additions to each of them, rather than only keeping the top performing set (usually 216 
called a “greedy” search). To find the worst performing set of neurons, we simply keep the worst sets 217 
rather than the best. This approach is not guaranteed to strictly maximize/minimize the decoding 218 
accuracy over all possible �'

(
� subsets, but it provides approximate limits on performance. 219 

For comparison we also consider taking the neurons with the best/worst tuning. We identify the best 220 
tuned neurons by selecting those with the lowest tuning index: TI � �L2�M�  EθOL�

2�M�P�/EFMH where 221 
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EFMH and L2�M� are the total mean and variance of the responses and L�
2�M� is the variance for trials with 222 

stimulus/movement θ. 223 

Results 224 

Traditionally, spike count models assume Poisson distributed responses where the average neural 225 
response across multiple trials of a specific external variable equals the variance in the neural responses 226 
across trials. However, observations from different areas and brain states show that neural responses 227 
often deviate from the Poisson assumption (Baddeley et al., 1997; Gur & Snodderly, 2006; Kumbhani et 228 
al., 2007; Lehky & Sereno, 2007; Lombardo et al., 2018; Ponce-Alvarez et al., 2013). Here we 229 
demonstrate how flexible models of stimulus- and movement-dependent dispersion can improve neural 230 
population decoding. 231 

To illustrate how neural variability can alter estimates of external variables we consider Bayesian 232 
decoding (Chen, 2013; Kechen Zhang & Sejnowski, 1999) where we aim to evaluate the posterior 233 
probability of the external variable given observations of neural activity. The central insight for 234 
Bayesian decoding is that this posterior can be written (following Bayes’ rule) as the product of a 235 
likelihood (the probability of neural responses given an external variable) and a prior (probability 236 
distribution over the external variable, see Methods). Although most previous work with Bayesian 237 
decoders has assumed that the likelihood follows a Poisson distribution, assuming Poisson noise when in 238 
fact spike counts are under- or over-dispersed can thus result in under- or over-confidence in the 239 
decoding, respectively. Generally, stimulus-dependent changes in the variability will affect the shape of 240 
the posterior distributions (Fig. 1). If the dispersion varies as a function of the stimulus dimension 241 
distinctly from the mean, the maximum of the posterior can shift and change the stimulus estimate (Fig 242 
1A, right). Additionally, neurons with flat tuning curves, that would generally be considered 243 
uninformative, can provide information about the stimulus if they have stimulus-dependent variability 244 
(Fig. 1B). 245 

 246 

247 
Fig. 1: Stimulus-dependent variability alters posterior probabilities for sensory or motor 248 
variables. A) Four simulated neurons with identical mean tuning curves and different types of 249 
dispersion. From left to right, spike counts are under-dispersed, equi-dispersed, over-dispersed, and both 250 
under- and over-dispersed depending on the stimulus. Note that although the encoding distributions (top) 251 
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are similar, the decoding distributions (middle) show substantial differences. Blue, red, and yellow 252 
curves indicate the posteriors over stimuli/movement direction with observations of 14, 8, and 2 spikes 253 
on a trial, respectively. Increased spike count variability leads to increased uncertainty in the stimulus, 254 
and if the mean-variance relationship is not fixed then the maxima of the posterior may also be different 255 
(right-most neuron). B) Neurons that would typically be called “untuned”, based on their mean 256 
responses, can provide stimulus/movement information if the dispersion is stimulus/movement-257 
dependent. Fano factors profiles for all four neurons are the same as A. 258 

In experimental data from primary motor (M1), visual (V1), and auditory (A1) cortex (see Methods), we 259 
find that in addition to traditional tuning of the mean, many neurons also have tuning in dispersion (Fano 260 
factors). The correlation between mean firing rate and Fano factor tuning curves spans the whole range 261 
from -1 to 1 (Fig. 2) with average correlations in M1: 0R 0.5, V1: 0.2R0.4, and A1: 0R0.3 SD. The 262 
Fano factors themselves also vary over a wide range in each of these areas (M1: 1.6R 0.6, V1: 2.8R1.3, 263 
and A1: 1.5R0.5, meanRSD). Rather than a uniform population of neurons with approximate Poisson 264 
firing (Fano factor near 1), we find a wide diversity of stimulus and movement-dependent patterns in the 265 
Fano factors. Although these diverse patterns of stimulus-dependent variability are not well described by 266 
the Poisson model, they are well described by the non-Poisson, CMP model with variable dispersion 267 
(fits in Fig. 2B, see Methods). 268 

269 
Fig. 2: Diversity in tuning curve dispersion. A) Fano factors and correlation between Fano factor and 270 
mean spike count tuning curve for M1, V1, and A1. Note that the Fano factors are not well described as 271 
constant close to 1 (as would be the case for Poisson firing) or even well correlated with the spike count 272 
(as would be the case for a fixed, increasing mean-variance relationship). B) Two example neurons from 273 
each area are shown, corresponding to the arrows in A. Curves show fits from CMP models with 274 
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stimulus/movement-dependent dispersion; dots and error bars denote observed means and 95% 275 
confidence intervals (estimated by Bayesian bootstrapping, see (Rubin, 2007)).  276 

For each neuron in the three cortical areas we aligned the firing rate tuning curves from each neuron by 277 
their preferred stimulus/movement direction (Fig. 3, top). As expected, neurons in all areas show 278 
increased activity around the preferred stimulus/movement. Note that the tuning curves often contain 279 
multiple maxima, particularly in V1. Similarly, we align Fano factor profiles based on the preferred 280 
stimulus/movement in firing rate tuning curves (Fig. 3, bottom). For many neurons, the Fano profiles do 281 
not show the same alignment as the firing rate responses. This observation suggests that although both 282 
the mean and Fano factor tuning curves are stimulus-dependent, their dependencies are not necessarily 283 
matched to each other. The correlation (circular for M1 and V1) between the preferred 284 
stimulus/movement and the stimulus/movement with the maximum Fano factor tends to be low 285 
(M1:0.24R0.05, V1:-0.03R0.02, and A1:0.11R0.01 meanRSE, bootstrapping across neurons). These 286 
low correlations seem to suggest that stimulus/movement-dependent variability is flexible, and not 287 
simply the result of a fixed, monotonically increasing mean-variance relationship. 288 

 289 
Fig 3: Average response and Fano factor are not necessarily aligned to the same preferred 290 
stimuli/movement. Top, response tuning curves of individual neurons aligned with their maximum 291 
firing rate. Bottom, Fano factor tunings of individual neurons aligned with the preferred stimulus from 292 
firing rate tuning curves. 293 

To explore how these patterns of dispersion affect decoding, we compare the decoding accuracy and 294 
prediction error under different models in these three different cortical areas (Fig. 4). For all models and 295 
recording areas, decoding accuracy increases and prediction error decreases as more neurons are 296 
included in the Bayesian decoders (with Poisson, Negative Binomial, and Conway-Maxwell-Poisson 297 
likelihoods), as well as, linear decoders (using template matching and Optimal Linear Estimation). The 298 
Bayesian decoders with Negative Binomial and Conway-Maxwell-Poisson noise models generally out-299 
perform the Bayesian decoders that assume Poisson noise. These models both have the flexibility to 300 
describe stimulus/movement-dependent variability in addition to mean tuning. Taking the best 301 
performing model between the CMP and NB models, the non-Poisson models are 3.5R0.5% (M1), 302 
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3.8R0.3% (V1), and 11.8R1.7% (A1) better than the Poisson models when using the full population of 303 
neurons (meanRSE bootstrapping across trials). These improvements also imply that the same 304 
performance level can be achieved with fewer neurons. For example, to reach an accuracy of 75% in the 305 
V1 dataset the Poisson model uses 34 randomly selected neurons while the CMP only uses 27 neurons. 306 
For reference, we also evaluated the performance of two non-probabilistic, linear decoding methods: 307 
template matching and optimal linear estimation. Template matching tends to perform worse than the 308 
other methods, but OLE achieves relatively high accuracy and low prediction error. However, OLE 309 
typically does not reach the performance of the Bayesian decoders until there are many neurons in the 310 
model. Note that, although the neurons in M1 and V1 datasets were simultaneously recorded, the A1 311 
contains neurons combined from different animals and different sessions. 312 

 313 

314 
Fig. 4: Modeling dispersion improves the accuracy of population decoding. Decoding accuracy (A) 315 
and error (B) for different population sizes in primary motor (M1), visual (V1), and auditory (A1) areas 316 
for five models: template matching (red), optimal linear estimation (green), Poisson (blue), negative 317 
binomial (yellow), and Conway-Maxwell-Poisson (purple) Bayesian decoders. Jittered data points 318 
denote the performance of random subsets of neurons, and curves denote parametric fits. The insets 319 
show the performance for the largest subset size (N-5), and error bars denote standard deviation across 320 
subsets.  321 

Although we use the mode of the posterior in Bayesian decoders as our point estimate of the 322 
stimulus/movement, the posterior also reflects the uncertainty about the identity of the 323 
stimulus/movement under the different models. When aligned with the true stimulus/direction the three 324 
different Bayesian decoders have distinct posterior distributions (Fig. 5A). To quantify the uncertainty in 325 
the posteriors, we look at the standard deviation (SD - circular SD for direction stimuli in M1 and V1). 326 
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The (circular) SD of the posterior increases with increasing absolute prediction error suggesting that 327 
trials with bigger errors have higher uncertainty (Fig. 5B). Additionally, we observe that the two non-328 
Poisson models (NB and CMP) have wider posteriors compared to the Poisson models, for all trials. We 329 
also examined how accurately the posterior covers the true stimulus/movement. Namely, we examine 330 
how the coverage (the fraction of trials on which the true stimulus falls within a confidence region) 331 
varies as we change the confidence-level (the area of the confidence region when selecting the highest 332 
probabilities first) (Fig. 5C). For instance, if we set the confidence-level to 0.95, we would expect the 333 
true stimulus/movement to fall within confidence region 95% of the time if the model is accurate. Here 334 
we find that all models tend to be over-confident, with the Poisson model being the most over-confident. 335 
For example, in the A1 dataset a 95% confidence level covers the true stimulus for only 46% of trials in 336 
the Poisson model, while covering 59% and 62% of the stimuli in the CMP and NB models.  337 

 338 
Fig. 5: Bayesian models assuming Poisson variability tend to be over-confident. A) Decoded 339 
posterior distributions for all trials sorted by prediction error. In three primary areas (M1, V1, and A1) 340 
we aligned posterior with true stimulus (red line). Black shades show higher probability in posterior. For 341 
Negative Binomial and CMP, the posterior covers the true stimulus in more trials. B) Standard deviation 342 
of the posterior increases for all models as (absolute) prediction error increases. Additionally, the non-343 
Poisson models tend to have higher uncertainty (SD) compared to the Poisson model, for all trials. Solid 344 
lines denote a moving median over 50 (M1), 250 (V1), and 150 (A1) trials and error bands denote inter-345 
quartile range. C) Comparing the coverage of the three different models: the fraction of trials where the 346 
true stimulus is contained by a confidence region of a given size, i.e. the confidence level, we find that 347 
all three models are over-confident. However, the posteriors of the non-Poisson models cover the true 348 
stimulus more accurately. 349 

Decoding performance improves when more neurons are included in the model. However, in addition to 350 
characterizing the performance of randomly selected populations of neurons, we can also examine which 351 
neurons contribute most or least to decoding performance and optimize performance by using only a 352 
select subset of neurons. To identify approximate upper-bounds for the decoding performance of a 353 
population of a given size we search for subsets of best performing neurons using a greedy algorithm: 354 
beam search (see Methods). For all three datasets, beam search identifies subsets of neurons that 355 
increase decoding accuracy well above that of random populations neurons of the same size and also 356 
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populations of the same size with the best tuning. For all three datasets a greedy search can reach to 357 
certain level of accuracy with much lower number of neurons. Moreover, in all datasets, dispersion 358 
models perform similar or better than Poisson in reaching high accuracies with fewer neurons. 359 

 360 

Fig. 6: Best- and worst-case decoding performance. Decoding accuracy of the best/worst performing 361 
subpopulations of neurons (found with beam search) and the most/least tuned subpopulations. For 362 
Poisson (blue), NB (yellow), and CMP (purple) Bayes decoders the best/worst case performance tends 363 
to be similar and well above/below the performance of random subpopulations of the same size (see Fig 364 
4). Greedy best and worst results are the average of the top-5 sets that were found. 365 

Discussion 366 

Neural responses to repetitions of an identical external variable can have substantial trial-to-trial 367 
variability. Depending on the brain area and experimental setting, spike counts can show both over- or 368 
under-dispersion – variances bigger or smaller than mean, respectively. Here we model 369 
stimulus/movement-dependent changes in spike count variability and characterize to what extent this 370 
structure can be used for more accurate neural decoding. Our results show that probabilistic models that 371 
account for stimulus-dependent under- or over-dispersion in the data (Conway-Maxwell-Poisson and 372 
Negative Binomial) can improve decoding performance in M1, V1, and A1 compared to traditional 373 
Poisson-based Bayesian decoders. These results are consistent with recent work showing that Negative 374 
Binomial models can improve decoding in area MT (Taouali et al., 2016). Additionally, we find that 375 
decoders with flexible models of dispersion more accurately reflect decoding uncertainty compared to 376 
the Poisson models. 377 

Many studies have noted that neural variability is non-Poisson and have proposed other mean-variance 378 
relationships (Amarasingham, 2006; Charles et al., 2018; Goris et al., 2014). However, in addition to 379 
being non-Poisson, results also suggest that the relationship between the mean and variance of neural 380 
responses is state and stimulus-dependent (Lee et al., 2016; Lombardo et al., 2018; Ponce-Alvarez et al., 381 
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2013) and may not be fixed. Here we aimed to determine how stimulus/movement-dependent mean and 382 
variance relationships change Bayesian decoding. In particular, to model these relationships, we use the 383 
Conway-Maxwell-Poisson and Negative Binomial models that can both be framed as generalized linear 384 
models (GLMs). By making their dispersion parameters stimulus/movement-dependent, these GLMs are 385 
flexible enough to model the wide range of mean-variance relationships observed in experimental data. 386 
In the three datasets examined here, the majority of neurons are over-dispersed and the CMP and NB 387 
models perform similarly. However, the CMP may be preferable when the data is under-dispersed, since 388 
the NB only allows for over-dispersion. At the same time, fitting the CMP model is less tractable, since 389 
evaluating the CMP log-likelihood requires calculating a computationally intensive normalization. 390 
Recent work has also introduced even more flexible count models (Gao, Buesing, Shenoy, & 391 
Cunningham, 2015), that could further improve performance. Additionally, it is important to note that 392 
here we used rate-based decoders and model spike counts on relatively long timescales, with bin sizes 393 
>100 ms in all datasets. The Fano factor depends heavily on bin size (Baddeley et al., 1997; Warzecha & 394 
Egelhaaf, 1999), and modelling the more detailed temporal structure of neural responses can improve 395 
decoding in many neural systems (Butts et al., 2007; Lee et al., 2016; Osman, Lee, Escabí, & Read, 396 
2018). 397 

Although modeling stimulus-dependent, non-Poisson variability can improve decoding accuracy in 398 
practice, these results may also have implications for theories of population coding. Assuming Poisson 399 
variability allowed previous theoretical studies to make strong predictions about how the shape and 400 
spacing of the tuning curves in a population of neurons could be optimized to collectively represent 401 
sensory or motor variables (Alexandre Pouget, Deneve, Ducom, & Latham, 1999; Kechen Zhang & 402 
Sejnowski, 1999). In some cases, decoding with the Poisson assumption can be equivalent to decoding 403 
using linear combinations of neural activity (Ma, Beck, Latham, & Pouget, 2006), which could 404 
hypothetically provide a simple computational basis for Bayesian behavior (A Pouget, Dayan, & Zemel, 405 
2003). Previous studies have characterized the overall impact of variability on sensory coding (Butts & 406 
Goldman, 2006), but the diverse patterns of neural variability that we observe in data seem to suggest 407 
that probabilistic representations of stimuli and movements could be affected by structured patterns in 408 
trial-to-trial variability more broadly. 409 

Altogether, our findings suggest that task and stimulus-dependent variability may be an important aspect 410 
of the neural code. Non-Poisson counts models such as the CMP and NB here could be used to explore 411 
the count variability and co-variability that have been linked to stimulus-onset (M. M. Churchland et al., 412 
2010) or to attention and learning (Mitchell, Sundberg, & Reynolds, 2009). Since the CMP and NB 413 
models can be formulated as GLMs, other covariates, such as local field potentials (Niknam, Akbarian, 414 
Noudoost, & Nategh, 2017), plastic neural interactions (Ghanbari et al., 2018), or even latent variables 415 
(Chase, Schwartz, & Kass, 2010; Kulkarni & Paninski, 2007; Lawhern, Wu, Hatsopoulos, & Paninski, 416 
2010), can easily be included in the models. Ultimately, the CMP and NB models provide a framework 417 
to describe the stimulus-dependence of both the mean and variance of neural responses. Here we show 418 
how modeling this dependence can improve decoding.  419 
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