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Abstract 

Single-molecule localization microscopy (SMLM) can play an important role in integrated 

structural biology approaches for example at the interface of cryo electron microscopy 

(cryo-EM), X-ray crystallography, NMR and fluorescence imaging to identify, localize and 

determine the 3D structure of cellular structures. While many tools exist for the 3D analysis 

and visualisation of crystal or cryo-EM structures little exists for 3D SMLM data which can 

provide fascinating insights but are particularly challenging to analyze in three dimensions 

especially in a dense cellular context. We developed 3DClusterViSu, a method based on 3D 

Voronoi tessellations that allows local density estimation, segmentation & quantification of 

3D SMLM data and visualization of protein clusters within a 3D tool. We show its robust 

performance on microtubules and histone proteins H2B and CENP-A with distinct spatial 

distributions. 3DClusterViSu will favor multi-scale and multi-resolution synergies to allow 

integrating molecular and cellular levels in the analysis of macromolecular complexes. 
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Structure-function studies of macromolecular complexes are increasingly moving towards 

cellular structural biology which requires developing multi-resolution and multi-scale correlative 

approaches to address the molecular and cellular organization of living cells1,2. The strength of 

such strategies is illustrated for example by correlative light and electron microscopy (CLEM) 

approaches3–7. Methods such as protein X-ray crystallography, NMR and cryo electron 

microscopy (cryo-EM) have had a strong impact over the past decades thanks to their ability of 

analysing and visualising macromolecules directly in 3D. These well-established 3D techniques 

encompass dedicated software tools to analyze and also visualize 3D structures, while no 

equivalent tools exist up to now in the field of single-molecule localization microscopy (SMLM). 

SMLM includes techniques such as stochastic optical reconstruction microscopy (STORM8) or 

photo-activated localization microscopy (PALM9) and gives access to the properties of every 

single fluorescent molecule, which allows precise determination of their lateral (X,Y) 

coordinates10,11, separation of spectrally close fluorophores12 and single-molecule FRET13, but 

also the possibility of determining the axial (Z) position of the fluorophores with sub-diffraction 

precision. Methods for 3D SMLM include bi-plane detection14 or modifications of the point 

spread function (PSF) through either astigmatism8 or double-helix PSF15, or the 4Pi optical 

setup16. Recently, it has also became possible to get some sub-diffraction 3D information from 

2D data using a photometry approach17. Despite these experimental possibilities for the 

acquisition of 3D SMLM data, methods for processing these in 3D are not as well developed. For 

2D SMLM data, means for visualization18,19, co-localization analysis19,20 and segmentation21–24 

have been reported including processing methods based on tessellations, namely on 2D Voronoi 

diagrams and Delaunay triangulations, which have advantages over other approaches because 

they allow for efficient visualization19, unambiguous local density estimation19,25, noise reduction 

and multi-scale segmentation25. Even though most of these approaches are described as 
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potentially extendable to the 3D case, to date only DBSCAN26,27 and Getis and Franklin's local 

point pattern analysis have been used for 3D segmentation of localization data28,29; other methods 

such as Bayesian clustering23 and Voronoi-based segmentations in fact remain 2D approaches as 

neither SR-Tesseler nor ClusterVisu can process 3D data12,18. 

Processing data directly in 3D rather than in 2D turns out to be crucial to avoid artefacts due to 

the enhanced complexity in 3D as compared to the 2D case, especially in a dense cellular context. 

An analysis in 2D would lead to an overlap between neighboring structures which are otherwise 

separate in 3D space. Using test data with clusters distributed randomly in a 3D space with noise, 

we show that a simple 2D clustering analysis of the data can lead to unprecise results with 

erroneous size estimations (Fig. 1). With increasing density of clusters and of background noise, 

the point distributions obtained for a 2D analysis become close to random due to the overlay of 

3D structures in a 2D image (Fig. 1B-C), while 3D segmentation of the same data is still robust 

and retrieves the clusters properly (Fig. 2C-H). This suggests that in order to avoid information 

loss and instead precisely determine properties of 3D objects which are labelled within a cell or a 

tissue, it is essential to acquire and also segment and represent the data in three dimensions, 

especially in crowded environments such as chromatin. In the following we describe the concept 

of three-dimensional Voronoi-based cluster analysis which has never been applied to 3D SMLM 

data before. We evaluate the performance of this method with synthetic and experimental data 

and provide examples of visualization and quantitative analysis of 3D SMLM data. 

A Voronoi diagram for the 3D case is a space partitioning into polyhedron regions such that 

every polyhedron would be the locus of points closest to the corresponding seed30. Similarly to 

the 2D case where each event forms a seed (Fig. 2A), in 3D the seeds are defined by the single-

molecule (X,Y,Z) coordinates, while the Voronoi polyhedrons can be considered as the regions 
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of influence of the corresponding fluorophore molecules (Fig. 2B). Because the geometrical 

properties of Voronoi regions reflect the environment characteristics of a given molecule, we can 

use their short-range collective properties determined from the diagram in addition to the 

experimentally determined coordinates and intensities of the fluorophores. One of the most 

important properties, the density d in the neighborhood of the molecule i, can be determined 

simply as the inverse value of the volume V of the Voronoi cell: di = 1/Vi. To segment a SMLM 

dataset, every localization should be assigned to a cluster or to the background. The minimal 

local density of molecules inside clusters, i.e. the segmentation threshold, can be determined 

automatically by comparing the distribution of Voronoi cell sizes of the experimental distribution 

with that of the background noise model, as has been recently shown by us for the 2D case19 

(practically, the threshold is determined in a region of interest such as the nucleus and then 

applied to the entire image). Based on Monte-Carlo simulations using an a priori background 

model (see methods), this type of analysis also indicates whether the experimental distribution is 

significantly different from the noise model, i.e. if it is clustered or not. 

Using synthetic data to illustrate the 3D Voronoi tessellation concept (Fig. 2C; methods), we 

show that by randomly distributing the same number of points through the same-sized region we 

obtain a test dataset with Voronoi polyhedrons that should be compared with those of the 

clustered dataset. This allows determining three characteristic regions which lie between the 

intersections of probability density functions from the distributions of Voronoi volumes of the 

two datasets (Fig. 2D). The smallest polyhedrons correspond to high-density regions that form 

clusters, while average-sized and big polyhedrons correspond to low-density regions, i.e. the 

background, as highlighted by the color-coded display of the points (Fig. 2E) that can be 

represented as a Voronoi diagram (Fig. 2F). Next, interpolation of the local densities to a 
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regularly spaced grid generates a 3D density map that can be segmented using the above 

determined threshold (Fig. 2G) to provide clusters with deterministic shape and properties such 

as their radius and number of molecules within a given cluster (Fig. 2H, Fig. S1C). The example 

shows many very small clusters that originate from the fluctuations of the local density in the 

background (Fig. 2H, first peak) and bigger clusters that correspond to the simulated clusters 

(Fig. 2H, second peak). The equivalent radius of these clusters (28.5±1.6 nm) matches that of 

their original radius (30 nm) and the number of events inside (36±6) compares well with the 

simulated number of localizations (45±3). At densities between dbg = 0.1⋅dcl and dbg = 0.01⋅dcl 

(ratio of clustered and noise events) the Voronoi volume distributions break up into two peaks 

which correspond to the cluster and the background regions, respectively (Fig. 2I). The curve of 

the completely randomly distributed points crosses the other curves near the valley between the 

two peaks. This confirms the reliability of our automatic threshold calculation method. For a 

constant density of clustered molecules, the threshold decreases with increasing background 

density. This indicates that the cluster volume, which can be determined with confidence, 

decreases, while it also reduces the number of spurious clusters detected in dense background 

regions (Figs. S1 A-C). 

Visualization of 3D data in the form of a 2D image can be difficult, especially in crowded 

environments with dense fluorophore occurrence due to the missing information in the Z-

direction. The example of microtubules (Fig. 3) shows that the scatter plot is useful only for very 

low density data, otherwise the markers overlap and hide details (Fig. 3A). When displayed as 

slices of a 3D histogram, the density of molecules is usually not sufficient to ensure good 

continuity of the images (Fig. 3B). Moreover, when molecules are displayed as Gaussian clouds 

with a width dependent on the localization precision29 the resolution of the image can be 
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impaired18. To address these issues, it is useful to display 3D density maps (calculated from the 

local densities) as slices (Fig. 3C), as projections or as isosurfaces (Fig. 2G; see also later Fig. 4 

panels B & E). Thanks to the properties of Voronoi polygons and after an interpolation step, the 

density value at any given voxel takes into account the distribution of molecules in a given 3D 

region around this voxel and thus ensures a good continuity of the image. Additionally, the 

Voronoi density maps can be conveniently viewed and analyzed with standard tools for 

processing confocal microscopy or electron microscopy maps because the local density of 

fluorophores in localization microscopy is proportional to the brightness in classical microscopy. 

Another advantage of the method is noise reduction when keeping only the points with a density 

over the threshold determined from the Monte-Carlo simulations (Figs. 3D-F). The resulting β-

tubulin dataset demonstrates a strong reduction of background noise without affecting the densely 

labelled microtubules, even when displayed as a 2D histogram image (Figs. 3E&F). 

We applied the 3D Voronoi segmentation concept to the cluster analysis of two histone proteins, 

H2B and CENP-A with distinct spatial organizations (Fig. 4). H2B is known to be located inside 

the nucleus in the form of heterogeneous nanodomains with variable density at euchromatin and 

heterochromatin regions31. The distribution of Voronoi cells of an H2B-labelled dataset lies 

outside the confidence envelope for the noise model indicating statistically significant clustering 

(Fig. 4A). Segmented density maps of H2B show bigger and denser clusters at the periphery of 

the nucleus as expected for heterochromatin (Fig. 4B), the distribution of H2B cluster sizes being 

rather broad with a median diameter of 42.4 nm (Fig. 4C) in line with previously reported 

values31. In contrast, the histone variant CENP-A that replaces the canonical histone H324 

localizes exclusively at centromeric regions32 where it plays a key role in determining 

chromosome location and segregation23,25. Our analysis of SMLM CENP-A data shows that the 
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distribution of Voronoi volumes is very different from that of the noise model and that the vast 

majority of the Voronoi cells is small compared to randomly distributed points indicating a strong 

clustering (Fig. 4D). Interestingly, we find that CENP-A forms clusters with relatively 

homogeneous sizes considering the large supra-structure of the centromeric region in the cell 

(diameter of 260 ± 54 nm, containing an average of 418 localizations within a cluster; Figs. 4D-

F). The 3D Voronoi segmentation analysis provides for the first time evidence that histone 

variant CENP-A forms defined clusters in human cells and quantifies their size and occurrence. 

Taken together, our novel cluster analysis method introduces a new concept for 3D (rather than 

2D) segmentation of SMLM data based on the elegant mathematical properties of 3D Voronoi 

diagrams that allows deriving 3D cluster radius and volume values and associated molecule 

numbers. It provides automatic threshold determination and noise filtering. In addition, to avoid 

distortion effects due to non-isotropic distribution of experimental data points we introduced 

weighting in Z-direction (see methods; taken into account also for Monte-Carlo simulations). As 

an example, it takes 6 hours to segment a large experimental dataset with a volume of ~200 µm3 

that contains 106 localizations using an i7 quad-core single processor with 32 Gb of memory. The 

calculation includes 50 rounds of Monte-Carlo simulations and interpolation to a 3D density map 

with a voxel size of 20 nm.  Finally, as compared to a 3D implementation of DBSCAN27 (see 

methods) which requires multiple trials through individual runs to optimize parameters manually 

without additional a priori knowledge, our method proceeds in a single run with automatic 

threshold determination from Monte-Carlo simulations using an a priori background model (into 

which re-localization events can be included if known) and it proves to be more robust with 

increasing background densities thanks to noise modelling (Figs. S1B-D; S1B includes a 

statistical analysis of the results, the estimated cluster sizes can vary slightly depending on the 
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background / cluster density). The Voronoi-based method was validated using simulated and 

experimental data, illustrating its applicability to different biological objects of interest including 

cases that are difficult to analyze such as fine chromatin structures in a dense cellular context and 

larger cellular structures such as tubulin. 3DClusterViSu will be of broad interest to the scientific 

community as it can be applied to any 3D SMLM data to analyze or re-analyze and quantify 3D 

information such as spatial organization, local density, volume and shape of labelled protein 

clusters in 3D and number of molecules within a given cluster. Strikingly, it allows for the first 

time SMLM analysis and also visualization of macromolecules directly in 3D like in the neighbor 

fields of cryo-EM and X-ray crystallography; therefore, it will be also a valuable tool for CLEM 

in integrated cellular structural biology approaches. Standalone software for 3D data processing 

with a GUI (3DClusterViSu) and a standalone Python-based 3D Voronoi visualization tool with a 

GUI are available under http://cbi-dev.igbmc.fr/cbi/voronoi3D/repository/archive.zip. 
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Figure legends 
 

Figure 1 Importance of 3D cluster analysis of localization data. 

(A) Clusters in a 3D dataset (number of clusters = 150, density of localization within clusters = 

6⋅10-4 nm-3, in the background = 8⋅10-6 nm-3) can be easily segmented using the 3D Voronoi 

diagram approach described in the current work. (B) The same dataset projected on the X-Y 

plane and processed with a 2D segmentation method19 does not allow to determine the correct 

shape, size and number of clusters. (C) Similar dataset with higher background density (6⋅10-5 

nm-3), lower cluster density (4⋅10-4 nm-3) and higher number of clusters (175) becomes 

undistinguisheble from a random distribution when projected in 2D, but still can be successfully 

processed in 3D (see later Fig. 2C-H). In the left column are the clusters determined with the 3D 

Voronoi approach described in the current work (A), with our previously reported 2D Voronoi 

approach19 (B) and using the mean local density as the threshold for binarization of 2D data25 (C). 

In the middle column are probability density functions of volumes (A) or surfaces (B, C) of 

Voronoi cells for the processed datasets (blue) in comparison with that of the background model, 

a spatially randrom distribution (magenta and green). The experimental curve inside the 

confidence envelope (C) indicates that the experimental dataset is undistinguishable from the 

background model and so no clusters can be detected with confidence. In the right column are 

histograms of the equivalent radius of the detected clusters, to be compared with the simulated 

cluster radius of 30 nm. 
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Figure 2 Concept of 3D Voronoi-based segmentation of SMLM data 

(A) Concept of two-dimensional Voronoi diagrams; the brightness of the polygons is 

proportional to the local density of points, determined as the inverse value of their surface area. 

(B) The concept of three-dimensional Voronoi tesselations highlights the strong increase in 

complexity upon transition from 2D to 3D data (stereo representations; zoomed region on the 

right; small spheres indicate the coordinates of the fluorophores; Voronoi diagram cells are 

colored according to their size, from blue (big cells) to red (small cells) and allow deriving the 

number of molecules present in a given 3D cluster with associated radius and volume values; 3D 

visualization tool available under http://cbi-

dev.igbmc.fr/cbi/voronoi3D/tree/master/visualisation). (C) Simulated 3D volume of clustered 

points in a dense background. (D) Distribution of volumes of Voronoi polyhedrons of the 

clustered dataset (blue); mean values (green) and confidence envelope (red) of a set of 

distributions for datasets with randomly placed points obtained from Monte-Carlo simulations. 

The three characteristic regions: small clustered polyhedrons (green), intermediate and huge 

polygons corresponding to background (yellow and gray). (E) The original points displayed in 

colors accordingly to the three regions allow to visually delimit the clusters. (F) Small Voronoi 

polyhedrons correspond to the clusters. (G) Density map binarized at the level of the determined 

threshold allows cluster analysis. (H) Histogram of the equivalent radius of the clusters. The first 

peak corresponds to the small clusters originated from fluctuations in the dense background, the 

second peak with radius of (28.5±1.6) nm reveals the simulated clusters. The dataset on (C-H) 

consists of 175 clusters with a radius of 30 nm. The density of molecules inside the clusters is 

4⋅10-4 nm-3, the density of background localizations is 6⋅10-5 nm-3. (I) Distribution behavior of 

volumes of Voronoi polyhedrons at different noise and cluster density ratios. The dataset contains 
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a fixed total number of points (7⋅104) and a fixed number of clusters (150) with fixed radius (30 

nm). 

Figure 3 Application of the 3D Voronoi diagram method for visualization and noise reduction on 

the example of β-tubulin 

(A) Plot of fluorescent molecules in the form of points (scattered plot) does not allow for correct 

visualization of dense regions (β-tubulin detected with Alexa-647-labelled secondary antibodies). 

(B-C) A slice of the 3D volume shows more information content when calculated as a Voronoi 

density map (C) compared to a 3D histogram (B) (both panels show voxel-thick slices). (D-F) 

Distribution of volumes of Voronoi polyhedrons (D) allows noise reduction. (E-F) XY 

projections of the original dataset (E) and of the dataset containing only the points with the 

density over the threshold (F). Scale bars: 1µm. The color bars indicate number of localizations 

inside pixels for the histogram images (B, E-F) or the local density measured in nm-3 for the 

density map (C). 
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Figure 4 Cluster analysis of histone proteins H2B and CENP-A by 3D Voronoi tesselation 

(A-C) Histone H2B detected with Alexa-647-labelled secondary antibodies in a HeLa cell. (A) 

The distribution of volumes of Voronoi polyhedrons indicate clustering of histone H2B (color 

code as in Fig. 1D). (B) 3D density map displayed as an isosurface at the level of the threshold in 

the 3D software Chimera26. (C) Histogram of the equivalent diameter of H2B clusters with the 

median value of 42.4 nm. (D-F) CENP-A detected with Alexa-647-labelled secondary antibodies 

in U2OS cells at late G1 phase. (D) The distribution of volumes of Voronoi polyhedrons indicate 

strong clustering of CENP-A which allows quantification of their properties. The histogram of 

the diameters of the centromeres is shown in the inset. (E) Scattered plot of molecules colored 

according to the local density (top; color code as in panels A & D); segmented density map 

displaying CENP-A clusters in the centromeric regions of the cell (bottom). (F) 3D 

representation of CENP-A clusters displayed as Voronoi tessellations in our 3D visualization tool 

(bottom: zoomed region in stereo representation; mean diameter of 260 nm containing an average 

of 418 localizations in a given 3D cluster). 
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Methods (online methods section) 

Cell culture and immunofluorescence 

For the tubulin and H2B samples, HeLa cells were cultured in a 4-compartment glass-bottom petri dish 

(CELLView, Greiner Bio-One), washed in PBS and fixed with 4% formaldehyde for 20 min in phosphate-

buffered saline solution (PBS). After permeabilization with 0.1% Triton X-100 in PBS (PBS/Tx) twice for 

10 min, the primary antibody (anti-β-tubulin monoclonal (1Tub-2A2, in house IGBMC) used as mouse 

ascites fluid diluted 500x in PBS/Tx; histone H2B monoclonal antibody (LG11-2) used as a 500x dilution 

of mouse ascites fluid in PBS/Tx) was incubated overnight at 4 °C. The sample was then washed with 

PBS/Tx three times over 30 minutes, and the secondary antibody (goat anti-mouse Alexa Fluor-647) in 

dilution 4 µg/ml in PBS/Tx was incubated for 1 to 2 hours at room temperature (RT). Subsequently, the 

cells were washed in PBS/Tx three times for 30 minutes, then briefly three times in PBS. The samples 

were mounted in a PBS buffer with addition of 10 mM of cysteamine (also known as β-

mercaptoethylamine or MEA) and 25 mM of HEPES (pH 7.5). 

For the CENP-A samples, U2OS cells were synchronized using Thymidine-Nocodazole synchronization. 

Briefly, the cells were plated and 24 hours later the medium was replaced with prewarmed complete 

DMEM supplemented with 2.5 mM Thymidine for 18 hours. The cells were washed with DMEM and 

100 ng/ml Nocodazole was added for 12-14 hours. Floating cells were collected and spin down washed 

twice with prewarmed DMEM and resuspended in prewarmed DMEM. Cell were collected after 8 hours, 

washed twice in PBS and fixed in 2% paraformaldehyde for 15 min at RT, washed twice in PBS, 

permeabilized with PBS/Tx for 15 min, washed twice in PBS, washed five times in PBS+0.5% BSA 

(PBB), blocked with 10% serum in PBB for 1 hour, washed five times in PBB, incubated with primary 

antibodies (EMD Millipore 07-574) in 400x dilution for 1h, washed five times in PBB, incubated with 

secondary antibodies in 400x dilution for 1h, washed five times with PBB and three times with PBS. The 

sample was mounted in an imaging buffer1 that contained 20% of Vectashield (Vector Laboratories), 70% 
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of 2,2`-thiodiethanol (also known as thiodiglycol or TDE) and 10% of PBS 10x (the measured refractive 

index of this mounting medium is 1.49). The mounting was performed by incubating the sample in PBS 

solutions with gradually increased concentrations of TDE (10%, 25% and 50%), for 10 min each. 

Super-resolution imaging 

The super-resolution imaging of the β-tubulin and the H2B samples was performed on a Leica SR GSD 

3D system in Wetzlar, Germany. The system was equipped with the HC PL APO 160x/1.43 Oil CORR 

GSD objective and the Andor iXon Ultra 897 EMCCD camera with a field of view of 18x18 μm in the 

high-power mode. Continuous wave fiber laser (MPBC Inc., 642 nm 500 mW) and a diode laser (405 nm 

30 mW) were utilized for excitation. The objective was linked to the sample with help of a suppressed 

motion (SuMo) sample stage, which reduces lateral and axial drift. The astigmatism was induced with the 

cylindrical lens and calibrated using gold beads and the automatic built-in procedures. 

The super-resolution imaging of the CENP-A samples was performed on our in-house Leica SR GSD 

system. We used the HCX PL APO 100x/1.47 Oil CORR TIRF PIFOC objective with a 1.6x 

magnification lens that provides an equivalent pixel size of 100 nm on the camera. The camera, the lasers 

and the stage were the same as on the Leica SR GSD 3D system. The astigmatism was induced with a 

MicAO 3DSR adaptive optics system installed between the microscope stage and the camera (the value of 

the astigmatism was set to 0.2 µm root mean square). The deformation of the PSF was calibrated by 

defocusing the objective with a step of 50 nm and imaging Tetraspeck fluorescent beads with diameter of 

200 nm. 

The samples were first illuminated with the 100% power of the 642 nm laser to quickly send the 

fluorophores into the dark state. The acquisition was started manually after observing first single-

fluorophore events (“blinking”). The time of exposition of a frame was 6.9 ms (H2B), 10 ms (β-tubulin) or 

25 ms (CENP-A); the electron multiplying gain of the camera was 300; the laser power during the 

acquisition was 28% (H2B) or 100% (β-tubulin and CENP-A). After a few minutes, as the number of 
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blinking evens dropped, the sample started to be illuminated additionally by a 405 nm laser with gradual 

increase of its intensity in order to keep a nearly constant rate of single-molecular returns into the ground 

state. The acquisition was stopped after almost complete bleaching of the fluorophore. 

Data processing 

The localization and fitting of single-molecule events were performed in real time during acquisitions in 

Leica LAS AF software with the “direct fit” fitting method. The localization tables were then exported for 

further processing in the SharpViSu software workflow2 and with customized Matlab procedures. To 

reduce the number of localizations of the same fluorophore and improve localization precision the data 

were processed by averaging the coordinates of consecutive events within a radius of 50 nm around each 

localization. The drift was detected and corrected in three dimensions using cross-correlation-based 

approach. Briefly, the dataset was divided into several consecutive subsets, from each of them a histogram 

image with pixelation of 20 nm was build; next, the shift between these images was detected with subpixel 

precision and then interpolated linearly throughout intermediate frames. The shift value was then 

subtracted from the coordinates of every frame. The lateral drift was detected using the projection on the 

XY plane, and the axial drift was detected using the average shift, calculated from the XZ and YZ 

projections. The procedure was repeated iteratively several times assuring absence of detectable residual 

drift2. Regions of interest (ROI) for Voronoi analysis were selected manually allowing faster computations 

and more homogeneous distributions compared to the entire field of view. 

The following analysis was performed in Matlab using customized code. Voronoi diagrams (vertices of 

polyhedrons and connectivity order) were retrieved with ‘voronoin’ function. Volumes of the cells were 

determined from the vertices with the function ‘convhulln’3, the local density in each data point was 

defined as the inverse value of the volume of the corresponding Voronoi polyhedron. To account for non-

isotropic distribution of experimental data points in Z-direction we introduced a correction factor for the 

calculated local density. Indeed, the intensity of the PSF diminishes while going out of focus and so does 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 7, 2017. ; https://doi.org/10.1101/146456doi: bioRxiv preprint 

https://doi.org/10.1101/146456
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

 

the number of localization if one performs a 3D SMLM experiment using a PSF shape modifying method. 

Consequently, the local densities will be stronger in the center of the 3D volume compared to top and 

bottom regions in Z direction. To account for this distortion, we approximated the decreasing number of 

events in the axial direction as a Gaussian function with the fixed standard deviation σ = 300 nm, which 

corresponds to the axial resolution of the objective Rz = 1.5⋅λ⋅n/NA2, where λ is the wavelength of the 

detected light, n is the refractive index of the sample and NA is the numerical aperture of the objective 

(Fig. S2). The densities associated with the experimental localizations were then multiplied by a factor 

proportional to the inverse value of the Gaussian function at the Z-position of the fluorophore. To have a 

smooth appearance that can be used for visualization or segmentation the values of the corrected local 

densities were interpolated to a regular grid (voxels) using the ‘griddata’ function and the ‘natural’ 

interpolation method4 that is also based on Voronoi diagrams. The spacing of the grid corresponds to the 

desired voxel size (20 nm in our case). 

For processing of experimental data acquired with astigmatism, the points for Monte-Carlo simulations 

were generated to have completely spatially random X, Y coordinates (the ‘rand’ function), and Z 

coordinates picked from a normal distribution with standard deviation σ = 300 nm (the ‘normrnd’ 

function). The points were distributed over the manually defined field of view (FOV). The distributions 

were generated for 50 different random sets of points, the boundaries of the confidence envelope were 

determined as <n> ± 1.96⋅σ for each bin of the histogram, where <n> is the average number of cells 

within the range of the bin and σ is the standard deviation of n, calculated from the 50 random datasets. 

The abscissas of the first and the second intersections between the curves of the experimental and the 

mean value of the randomized distributions were determined from the two points around the intersections 

in the linear approximation. 

The simulated cluster data in Figs. 2C-I was generated as randomly distributed points inside spheres with 

the radius of 30 nm. The positions of clusters and of background points were distributed randomly in the 

FOV, with the following constraints: 1) distance from the centers of the clusters to the borders ≥ 75 nm; 2) 
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distance between the centers of the clusters ≥ 150 nm. The borders of the clusters were smoothened such 

that the density of molecules at the distance r from the center of the cluster was modulated with the 

function p(r) = ½(1+erf(4⋅(r0-r)/r0)), where r0 = 30 nm and erf(x) is the error function. 

Even though the distribution of Voronoi cell areas of the 2D-projected dataset in Fig. 1C lies within the 

confidence envelope for the background model indicating no clustering, we segmented this dataset 

keeping only the regions with the local density stronger than the mean density calculated from the 2D 

Voronoi diagram5. The resulting clusters, as expected, have random size much smaller than the original 

radius of 30 nm (Fig. 1C, left and right panels). 

We have also implemented the averaging of the local densities using the first-rank5 neighbors in 3D. This 

option helps to remove spurious clusters in the background but it also leads to reduction of the volume of 

the detected clusters because the density of the near-border regions within clusters is averaged with the 

low-dense background (Fig. S3). By contrast, simple removal of small clusters as done by default (Fig. 

2H) does not affect the shape of big clusters. Although not done here, it is possible to separate closely 

located clusters through methods such as watershed transformation, which are compatible with our 

clustering method and can be performed after binarization of the density map. Similarly, if experimentally 

evidenced, the background noise model could be adjusted to include re-localization events arising from 

molecules blinking several times. 

For the CENP-A data, after the segmentation, centromeres touching each other and small clusters in the 

background were removed from the analysis. To determine the size of the CENP-A clusters, 5 different 

ROIs with 200 well separate centromeres in total were analyzed. The equivalent radius (diameter) of 

clusters was calculated as the radius (diameter) of the sphere with the same volume as the clusters. 

Quantified properties of clusters (number of events, equivalent radius or diameter) are represented as 

mean ± standard deviation of the corresponding values. The density map can be readily exported to TIFF 

or MRC formats for further processing or visualization. 
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The standalone software for visualization of 3D Voronoi tessellations was written in Python using the 

Mayavi data visualization library6 along with NumPy7 and SciPy8. SMLM datasets are loaded as a 3D 

CSV point list file. The user can then navigate through the 3D Voronoi cells determined by the input 

points. The cells are colored according to their size, from blue (big cells) to red (small cells). The user can 

set a cell size threshold to see only smaller cells where events are aggregated, use a clipping box to see 

inside the cells and toggle the drawing of the event points. The size of the cells is computed in parallel 

using QHull's "ConvexHull" function3 from SciPy. Cells delimited by vertices outside of the event range 

are merely ignored. The Mayavi interface allows the user to change a lot of drawing parameters on-the-

fly. Colors, opacity, orientations, lightning, clipping shape etc. are all tunable through the built-in 

parameter adjustment wizard. 

As an example, it takes 6 hours to segment a large experimental dataset with a volume of ~200 µm3 that 

contains 106 localizations using an i7 quad-core single processor with 32 Gb of memory. This is much 

faster in a single run than what could be done for example with the current 3D implementation of 

DBSCAN9 in VividSTORM10 where one single run takes 8 hours for 67 000 points (which is a rather 

small data set). In contrast, our Voronoi-based segmentation uses an automatically determined threshold 

value and takes in total 6 hours for 1 000 000 points (15 times as many) processed in one single run, i.e. it 

is more robust, non-dependent on user-set parameters and runs faster (in total range of 30-100 times faster 

depending on the number of trials needed and the complexity of the data). 3D DBSCAN was implemented 

in Matlab to test DBSCAN at different background noise densities (Fig. S1B-D). The volume of a cluster 

was calculated as the volume of the convex hull of the points comprising the corresponding cluster. 

Code availability 

Matlab implementations of the 3D Voronoi segmentation method and the Python-based 3D Voronoi 

visualization software tools are available under: 

http://cbi-dev.igbmc.fr/cbi/voronoi3D/repository/archive.zip 

http://cbi-dev.igbmc.fr/cbi/voronoi3D 
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