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Abstract 

Synthetic progestins contamination is common in the aquatic ecosystem, which may 

lead to serious health problem on aquatic animals. Melengestrol acetate (MGA) has 

been detected in the aquatic environment; however, its potential effects on fish 

reproduction are largely unclear. Here, we aimed to investigate the endocrine 

disruption and impact of MGA on zebrafish reproduction. Six-month old 

reproductive zebrafish were exposed to four nominal concentrations of MGA (1, 10, 

100 and 200 ng/L) for 15 days. Treatment with MGA reduced the egg production 

with a significant decrease at 200 ng/L. The circulating concentrations of estradiol 

and testosterone in female zebrafish or 11-keto testosterone in male zebrafish were 

significantly diminished compared to the non-exposed control fish. The early 

embryonic development or hatching rates were unaffected during the MGA 

exposure. Our results indicated that MGA was a potent endocrine disruptor in fish 

and the fish reproduction could be impaired even during a short-term exposure to 

MGA.  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 6, 2017. ; https://doi.org/10.1101/146506doi: bioRxiv preprint 

https://doi.org/10.1101/146506
http://creativecommons.org/licenses/by-nc/4.0/


 

Introduction  

The normal endocrine functions of aquatic animals can be disturbed by the 

contaminants present in the aquatic environments [1, 2]. Most of the active 

compounds are detected in the environment are endocrine-disrupting chemicals, 

including natural and synthetic steroid [3-6]. Previous studies have reported the 

adverse effects of natural and synthetic steroidal estrogenson aquatic organisms, 

such as 17β-estradiol, 17α-estradiol, estrone, mestranol, ethinylestradiol [7-12]. 

However, little is known about the effects of MGA to the environmental health.  

Progestins have been widely used in veterinary medicine and hormonal therapies 

[13-15]. These chemicals have been found in sewage treatment plants, 

pharmaceutical industries and agricultural areas and are now world widely 

environmental pollution [16-18]. MGA is one of the most commonly used synthetic 

growth promoters, which is excreted in feces and urine of cattle [19]. MGA is an 

orally active progestagenic drug that has been used as a feed additive to beef cattle. 

It is primarily excreted from cattle unmodified and is very stable in soil and manure 

[19]. Several studies have reported changes in hormone concentrations, 

reproduction and morphology changes in aquatic organisms after exposure to 

trenbolone acetate or metabolites [20-26]. Studies investigating MGA effects in 

aquatic organisms are virtually unknown. Recently, natural progesterone or 

synthetic progestins have been reported that may result in endocrine disruption 

and impair reproduction in fish [12, 18, 27-32]. However, little is known about the 

potential underlying mechanisms. Even the synthetic progestins are widely used 
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and detected in the environment; few researches have reported the hazards and 

their risk to the environment and the aquatic organisms. Currently, it is not known 

whether MGA had any effect on the reproduction in fish.  

Therefore, we investigated the effect of MGA on the reproduction of zebrafish 

exposed to four nominal concentrations of MGA (1, 10, 100 and 200 ng/L). We also 

examined the sex hormone levels in zebrafish. The present study showed that MGA 

inhibited zebrafish reproduction in a dose-dependent manner after short-term 

treatment.  

 

Materials and methods 

Chemicals 

Melengestrol acetate (MGA, 17α-Acetoxy-6-methyl-16-methylene-4,6-pregnadiene-

3,20-dione, Cat. No. 33998) and DMSO (Dimethyl sulfoxide, Cat. No. D8418) were 

purchased from Sigma-Aldrich. MGA stock solution (1 mg/mL) was dissolved in 

DMSO and stored at -20 °C. All the other reagents used in this study were of 

analytical grade.  

 

Zebrafish husbandry  

Six-month-old zebrafish AB line was maintained normally (temperature, 28 °C; pH 

7.2-7.4; 14 hr on and 10 hr off light cycle).  

 

MGA treatment  
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The fish were housed in 50-L tanks with 30 L of water. Three replicate tanks 

containing 20 males and 20 females each were used. In order to obtain tank-specific 

baseline data for potential statistical comparison after initiation of chemical 

exposure, all the fish were maintained for a 14-day pre-exposure period. After the 

pre-exposure period and all the female fish have been successful spawned for 

several times, chemical treatment was then performed. The zebrafish were treated 

with different concentration of MGA (1, 10, 100 and 200 ng/L) or equal 

concentration of vehicle solution for 15 days, and the zebrafish embryos were 

collected daily. The water of the tanks exposed to MGA was changed daily. After 15 

days of treatment with MGA, the eggs were collected and divided into two groups. 

One group was exposed to the same concentration of MGA (1, 10, 100 and 200 ng/L), 

and the other group received 0.001% (v/v) DMSO as the control.  

 

Tissue collection 

After exposing to MGA for 15 days, the adult fish were anesthetized in 0.04% 

Tricaine (Sigma-Aldrich, Cat. No. A5040). Blood samples were collected from the 

caudal vein of the fish; the gonad were dissected and immediately stored at -80 °C 

for further analysis.  

 

Hormone measurement  

Blood samples from three adult fish of the same gender were pooled, centrifuged 

(6,000 g for 10 min) at 4 °C to obtain the plasma. Plasma extraction and the 
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measurement of the sex hormone levels were performed as described previously 

[33]. 

 

Statistical analysis 

All experiments were repeated three times independently. A one-way analysis of 

variance (ANOVA) with Tukey’s multiple comparisons was used to detect significant 

differences between the control and treated groups. Data were recorded as the 

mean with SD ± SE. A p <0.05 was considered statistically significant.  

 

Results  

Fish growth and survival 

In the adult zebrafish groups, all the fish were survived after 15 days MGA treatment.  

MGA exposure had no obvious effect on the growth of adult fish, and on the hatching 

and malformation rates in the F1 embryos. All the hatching rates were over 90% 

and the malformation rates were lower than 5%.  

 

Reproduction  

As shown in Fig. 1, embryos production was consistent and similar during the pre-

exposure period among all groups. In the 15-days exposure period, female fish 

treated with 200 ng/L MGA spawned fewer eggs compared to the control group 

from day 10 to day 15. Other tested concentration of MGA showed slight inhibitory 

effect on the fish reproduction.  
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Sex hormone levels 

In the female fish, treating with 10, 100 and 200 ng/L of MGA significantly reduced 

the plasma E2 levles by 25%, 47% and 70%, respectively (Fig. 2A). Meanwhile, the 

testosterone levels were diminished by 15%, 22% and 30% in the 10, 100 and 200 

ng/L of MGA exposure groups, respectively (Fig. 2B). The plasma 11-KT levels were 

reduced by 42%, 55% and 61% after treatment with 10, 100 and 200 ng/L of MGA, 

respectively (Fig. 2C).   

 

Discussion  

The synthetic progestins have recently been reported that may result in endocrine 

disruption and inhibit reproduction in fish [18, 27, 34, 35]. However, the 

toxicological effects and mechanisms of the synthetic progestin MGA on fish have 

not been evaluated yet. In this study, we found that the zebrafish reproduction could 

be impaired when exposing to MGA at the relevant environmental concentrations. 

The 11-KT levels in male zebrafish and the E2 and testosterone levels in female 

zebrafish were significantly diminished in MGA treated groups.  

There were no significant differences in embryos hatching, survival rate and 

developmental malformation during the exposure. In fish, one of the key ecologically 

indicators of endocrine disruption is the embryos production in females [36]. MGA 

exposure caused significant decrease in the egg production, which has not been 

reported till date. Recently, similar effects of MTA and EE2 with different 

combinations of progestins on fish fecundity have been reported [37, 38]. Hence, the 

potential risks of synthetic hormone to the fish species should be highlighted. 
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Future studies are required to investigate the potential mechanisms of the hormonal 

effects on fish fecundity. 
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Figure Legends 

Figure 1. Effect of MGA exposure on the reproduction of female zebrafish. 
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Figure 2. Effect of MGA treatment on plasma concentrations of E2 (A), 

testosterone (B) in female fish and 11-ketotestosterone (C) in male fish. 
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