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Abstract 21 

Accurately selecting relevant alleles in large sequencing experiments remains 22 

technically challenging. Bystro (https://bystro.io/) is the first online, cloud-based application that 23 

makes variant annotation and filtering accessible to all researchers for terabyte-sized whole-24 

genome experiments containing thousands of samples. Its key innovation is a general-purpose, 25 

natural-language search engine that enables users to identify and export alleles and samples of 26 

interest in milliseconds. The search engine dramatically simplifies complex filtering tasks that 27 

previously required programming experience or specialty command-line programs. Critically, 28 

Bystro’s annotation and filtering capabilities are orders of magnitude faster than previous 29 

solutions, saving weeks of processing time for large experiments. 30 

 31 

Keywords 32 

Natural-language search, genomics, bioinformatics, annotation, filtering, web, online, 33 
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 35 

Background 36 
While genome-wide association studies (GWAS) and whole-exome sequencing (WES) 37 

remain important components of human disease research, the future lies in whole-genome 38 

sequencing (WGS), as it inarguably provides more complete data. The central challenge posed 39 

by WGS is one of scale. Genetic disease studies require thousands of samples to obtain 40 

adequate power, and the resulting WGS datasets are hundreds of gigabytes in size and contain 41 

tens of millions of variants. Manipulating data at this scale is difficult. To find the alleles that 42 

contribute to traits of interest, two steps must occur. First, the variants identified in a sequencing 43 

experiment need to be described in a process called annotation, and second, the relevant 44 

alleles need to be selected based on those descriptions in a procedure called variant filtering. 45 
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Annotating and filtering large numbers of variant alleles requires specialty software. 46 

Existing annotators, such as ANNOVAR[1], SeqAnt[2], VEP[3], and GEMINI[4] have played an 47 

important research role, and are sufficient for small to medium experiments (e.g.,10s to 100s of 48 

WES samples). However, they require significant computer science training to use in offline, 49 

distributed computing environments, and have substantial restrictions in terms of performance 50 

and the maximum size of the data they will annotate online. Existing variant filtering solutions 51 

are even more limited, with most analyses requiring researchers to program custom scripts, 52 

which can result in errors that impact reproducibility[5]. Therefore, annotation and filtering are 53 

not readily accessible to most scientists, and even bioinformaticians face challenges of 54 

performance, cost and complexity. 55 

Here we introduce an application called Bystro that significantly simplifies variant 56 

annotation and filtering, while also improving performance by orders of magnitude and saving 57 

weeks of processing time on large data sets. It is the first program capable of handling 58 

sequencing experiments on the scale of thousands of whole-genome samples and tens of 59 

millions of variants online in a web browser, and integrates the first, to our knowledge, publicly-60 

available, online natural-language search engine for filtering variants and samples from these 61 

experiments. The search engine enables real-time (sub-second), nuanced variant filtering, both 62 

across all samples and per sample, using simple phrases and interactive, web-based filters. 63 

Bystro makes it possible to efficiently find alleles of interest in any sequencing experiment 64 

without computer science training, improving reproducibility while reducing annotation and 65 

filtering costs. 66 

 67 

Results 68 

To compare Bystro’s capabilities with other recent programs, we submitted 1000 69 

Genomes[6] Phase 1 and Phase 3 VCF files for annotation and filtering (Figure 1). Phase 1 70 

contains 39.4 million variants from 1,092 WGS samples, while Phase 3 includes 84.9 million 71 
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alleles from 2,504 WGS samples. We first evaluated the online capabilities of the web-based 72 

versions of Bystro, wANNOVAR[7], VEP, and GEMINI (running on the Galaxy[8] platform). 73 

Bystro was the only program able to complete either 1000 Genomes Phase 1 or Phase 3 online, 74 

and was also the only application to handle a 6x106 variant subset of Phase 3, a size 75 

representative of modest whole-genome experiments. When tested with 5x104 – 1x106 variant 76 

subsets of 1000 Genomes Phase 3, Bystro was approximately 144 – 212x faster than 77 

GEMINI/Galaxy in generating a downloadable annotation and searchable result database, and 78 

was significantly easier to use, as it did not require a separate annotation step (Figure 2). When 79 

tested on a small trio data set, Bystro was able to identify de novo variants without any 80 

additional software, and was 45x faster than GEMINI’s de_novo tool (Additional file 1: Table 81 

S1). Bystro and GEMINI/Galaxy produced similarly detailed outputs, with Bystro offering fewer, 82 

but more complete and recent sources, as well as more detailed annotations for some classes 83 

of data (Additional file 1: Table S2 ; Additional file 2). Notably GEMINI was found to work only 84 

with the hg19 human genome assembly, whereas Bystro supports hg19, hg38, and a variety of 85 

model organisms. 86 
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 87 

Figure 1 | Using Bystro online to find alleles of interest in sequencing experiments. A) 

After logging in (https://bystro.io/), users upload one of more VCF or SNP-format files - 

containing alleles from a sequencing experiment - from a computer or a connected Amazon 

S3 bucket. Datasets of over 890GB, containing thousands of samples and tens of millions of 

variants are supported. The data is rapidly annotated in the cloud, using descriptions from 

public sources (e.g. RefSeq, dbSNP, Clinvar, and others). The annotated results can be 

filtered using Bystro’s natural-language search engine, and any search results can be saved 

as new annotations. Annotated experiments and saved results can be viewed online, 

downloaded as tab-delimited text, or uploaded back to linked Amazon S3 buckets. B) An 

example of using Bystro’s natural-language search engine to filter 1000 Genomes Phase 3 

(https://bystro.io/public). To do so, users may type natural phrases, specific terms, numerical 

ranges, or apply filters on any annotated field. Queries are flexible, allowing misspelled terms 

such as “earl-onset” to accurately match. Complex tasks, such as identifying de novo 

variants can be achieved by using Boolean operators (AND, OR, NOT, +, -), exact-match 

filters, and user-defined terms. For instance, after labeling the “proband” and their “parents”, 

the user could simply search proband –parents, or combine with additional parameters for 

more refined queries, i.e. proband –parents missingness < .1 gnomad.exomes.af_nfe < .001. 
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 88 

We next tested offline performance on identical servers to gauge performance in the 89 

absence of web-related file-size and networking limitations. Bystro was 113x faster than 90 

ANNOVAR and up to 790x faster than VEP, annotating all 8.5x107 variants and 2,504 samples 91 

from Phase 3 in less than 3 hours (Table 1). Furthermore, ANNOVAR was unable to finish 92 

either Phase 1 or Phase 3 annotations due to memory requirements (exceeding 60GB of RAM), 93 

and VEP annotated Phase 3 at a rate of 10 variants per second, indicating that it would need at 94 

least 98 days to complete. Critically, Bystro’s run time grew linearly with the number of 95 

submitted genotypes, suggesting that it could handle even hundreds of thousands of samples 96 

within days.  97 

While offering significantly faster performance, Bystro also provided 3.5x the number of 98 

annotation output fields as ANNOVAR and 5.6x that of VEP (Additional file 3). Notably, unlike 99 

ANNOVAR or VEP, Bystro annotated each sample relative to its genotype, reporting 100 

homozygosity, heterozygosity, missingness, sample minor allele frequency, and labeling each 101 

Figure 2 | Online performance comparison of Bystro, VEP, wANNOVAR, and GEMINI. 

Bystro, wANNOVAR, VEP, and GEMINI (running on Galaxy) we run under similar conditions. 

Total processing time was recorded for 1000 Genomes Phase 3 WGS VCF files, containing 

either the full data set (2,504 samples, 8.49x107 variant sites), or subsets (2,504 samples 

and 5x104, 3x105, 1x106, and 6x106 variants). Only Bystro successfully processed more than 

1x106 variants online: wANNOVAR (not shown) could not complete the smallest 5x104 variant 

subset; VEP could not complete more than 5x104 variants; and GEMINI/Galaxy could not 

complete more than 1x106 variants. Online, VEP outputted a restricted subset of annotation 

data compared to its offline version. GEMINI and Bystro (but not VEP) outputted whole-

genome CADD scores, while only Bystro also returned whole-genome PhyloP and 

PhastCons conservation scores. Bystro was faster than GEMINI/Galaxy by 144x-212x across 

all time points.  
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sample as homozygous, heterozygous, or missing. In contrast, ANNOVAR provided only 102 

sample minor allele frequency, while VEP reported no sample-level data. We note that VEP is 103 

capable of providing per-sample annotations (heterozygosity/homozygosity status), but we were 104 

unable to use this feature for performance reasons. A detailed comparison of the exact settings 105 

used is given (Additional file 2 ; Additional file 3).  106 

To investigate annotation accuracy, we next compared Bystro with ANNOVAR and VEP 107 

on a previously-analyzed synthetic dataset[9]. Overall, excellent concordance between all 108 

methods was noted (Additional files 4, 5, and 6). For instance, in comparison with ANNOVAR, 109 

allele position (>98%), allele identity (100%), and variant effects (>99%) were highly consistent 110 

across all classes of variation, for sites that Bystro did not exclude for quality reasons 111 

(Additional file 4).  112 

In cases where the annotators disagreed, Bystro gave the more correct interpretations. 113 

For instance, Bystro and VEP excluded reference sites (ALT: “.”), while ANNOVAR annotated 114 

such loci as “synonymous SNV”; it is of course incorrect to call reference sites variant 115 

(Additional file 4 ; Additional file 5). In cases of insertions and deletions, which are often 116 

ambgiuously represented in VCF files due to the format’s padding requirements, Bystro always 117 

provided the parsimonious left-shifted representation, while ANNOVAR and VEP occasionally 118 

right-shifted variants (Additional file 4 ; Additional file 5). This is evident at 119 

chr15:42680000CA>CAA, where both ANNOVAR and VEP called the insertion as occuring after 120 

the first “A”, with 2 bases of padding, rather than the simpler option after the first base, “C”, with 121 

1 base of padding (Additional file 1: Table S3). Similar results were found at multiallelic loci with 122 

complex indels (Additional file 1: Table S4). 123 

Similarly, in cases where Bystro and ANNOVAR or VEP disagreed on variant 124 

consequences, Bystro always appeared correct relative to the underlying transcript set. For 125 

example, in the case of the simple insertion chr19:41123094G>GG, Bystro correctly identified 126 

all three overlapping transcripts (NM_003573;NM_001042544;NM_001042545), and noted the 127 
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variant as coding (exonic) relative to all three. In contrast, ANNOVAR called the allele as 128 

disrupting a splice site, despite the fact that the nerest intron, and therefore splice site, was 129 

37bp downstream (Additional file 1: Figure S1). 130 

Additionally, Bystro’s strict VCF quality control measures substantially improved 131 

annotation accuracy.This is evident in the case of gnomAD, a VCF-format dataset that 132 

represents the largest experiment on human genetic variation. While Bystro and ANNOVAR 133 

provided identical gnomAD data for 93.7% of tested alleles, the remaining 6.3% were low-134 

quality gnomAD results that were included in ANNOVAR and excluded from Bystro (Additional 135 

file 4). For instance, in the case of chr16:2103394C>T, ANNOVAR reported rs760688660, 136 

which failed gnomAD’s random forest qc step. We note that a 6.3% false-positive rate is similar 137 

to the frequency of common variation, and significantly larger than the frequency of rare 138 

variants, making ANNOVAR’s gnomAD annotations a potentially unreliable source of data for 139 

both common and rare variant filtering. 140 
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 141 

 Next, we explored the Bystro search engine’s ability to filter the 84.9 million annotated 142 

Phase 3 variants. Bystro’s search engine was unique in its natural-language capabilities, and no 143 

other tested online program could handle the full Phase 3 dataset, or subsets as large as 6x106 144 

variants (Figure 2). First, we used Bystro’s search engine to find all alleles in exonic regions by 145 

entering the term “exonic” (933,343 alleles, 0.030 ± .001 seconds, Table 2). The search engine 146 

calculated a transition to transversion ratio of 2.96 for the query, consistent with previously 147 

observed values in coding regions. To refine results to rare, predicted deleterious alleles, we 148 

queried “cadd > 20 maf < .001 pathogenic expert review missense” (65 alleles, 0.029 ± 0.025s, 149 

Table 1 | Bystro, VEP, ANNOVAR offline command-line performance. 
Software Dataset Samples Variants Variants/s Bystro vs 

Bystro 

1000G Phase 3 chr1 2504 1x106 8156 ± 195 - 
1000G Phase 3 chr1 2504 2x106 8484 ± 67.9 - 
1000G Phase 3 chr1 2504 4x106 8516 ± 57.2 - 
1000G Phase 3 chr1 2504 6.5x106 7779 ± 21.8 - 
1000G Phase 1 1092 3.9x107 5417 ± 76.8  
1000G Phase 3 2504 8.5x107 7904 ± 15.9 - 

VEP 
1000G Phase 1 1092 3.9x107 18.67 ± 0.58 290x 
1000G Phase 3 2504 8.5x107 10.00 ± 0.00 790x 

ANNOVAR 

1000G Phase 3 chr1 2504 1x106 74.67 ± 0.21 109x 
1000G Phase 3 chr1 2504 2x106 75.32 ± 0.06 113x 
1000G Phase 3 chr1 2504 4x106 75.15 ± 0.39 113x 
1000G Phase 3 chr1 2504 6.5x106 NA NA 
1000G Phase 1 1092 3.9x107 NA NA 
1000G Phase 3 2504 8.5x107 NA NA 

 

Bystro, VEP, and ANNOVAR were similarly configured with 8 threads on Amazon i3.2xlarge 

servers. “Dataset” refers to the VCF file used. “Variants/s” is the average of three trials. VEP 

performance was recorded after 2x105 sites in consideration of time. In runs of 1x106 or more 

annotated sites, VEP performance did not deviate from the 2x105 value. ANNOVAR could not 

complete the full Phase 1, Phase 3, or Phase 3 chromosome 1 datasets due to memory 

limitations. Thus, ANNOVAR was compared to Bystro on subsets of 1000 Genomes Phase 3 

chromosome 1. Bystro run times included time taken to compress outputs. 1000 Genomes 

Phase 1 performance reflects IO limitations. 
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Table 2). This search query could be written using partial words (“pathogen”), possessive nouns 150 

(“expert’s”), different tenses (“reviews”), and synonyms (“nonsynonymous”) without changing 151 

the results. 152 

Table 2 | Online comparison of Bystro and recent programs in filtering 8.49x107 variants 

from 1000 Genomes 

Group   Search query Time (s) Variants Tr:Tv 
1 exonic 0.030 ± 0.030 993,343 2.96 

2 (a) cadd > 20 maf < .001 pathogenic expert 
review missense 

0.029 ± 0.009 65 1.71 

2 (b) cadd > 20 maf < .001 pathogenic expert’s 
review non-synonymous 

0.036 ± 0.019 65 1.71 

2 (c) cadd > 20 maf < .001 pathogen expert-
reviewed nonsynonymous 

0.044 ± 0.025 65 1.71 

3 (a) early onset breast cancer 0.046 ± 0.029 4,335 2.51 

3 (b) early-onset breast cancer 0.037 ± 0.020 4,335 2.51 

3 (c) Early onset breast cancers 0.033 ± 0.015 4,335 2.51 

4 (a) Pathogenic nonsense Ehlers-Danlos 0.038 ± 0.027 1 NA 

4 (b) pathogenic nonsense E.D.S 0.078 ± 0.087 1 NA 

4 (c) pathogenic stopgain eds 0.040 ± 0.022 1 NA 
 

The full 1000 Genomes Phase 3 VCF file (853GB, 8.49x107 variants, 2,504 samples) was 

filtered in the publicly-available Bystro web application using the Bystro natural-language search 

engine. VEP, GEMINI, and wANNOVAR (not shown) were also tested, but were unable to 

annotate this data set or filter it. Bystro’s search engine uses a natural language parser that 

allows for unstructured queries: queries in groups 2, 3, and 4 show phrasing variations that did 

not affect results returned, as would be expected for a search engine that could handle normal 

language variation. “Tr:Tv” is the transition to transversion ratio automatically calculated for each 

query by the search engine. The transition to transversion ratio of 2.96 for the “exonic” query is 

close to the ~2.8-3.0 ratio expected in coding regions, suggesting that the search engine 

accurately identified exonic (coding) variants.  
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To test the search engine’s ability to accurately match variants from full-text disease 153 

queries, we first searched “early-onset breast cancer”, returning the expected alleles in BRCA1 154 

and BRCA2 (4,335 variants, .037 ± .020s, Table 2). Notably, the queried phrase “early-onset 155 

breast cancer” did not exist within the annotation, and instead matched closely-related RefSeq 156 

transcript names, such as “Homo sapiens breast cancer 2, early onset (BRCA2), mRNA.” We 157 

next explored Bystro’s ability to handle synonyms and acronyms. To test the hypothesis that 158 

Bystro could interpret common ontologies, we queried “pathogenic nonsense E.D.S”, where 159 

“nonsense” is a common synonym for “stopGain” (a term annotated by the Bystro annotation 160 

engine), and “E.D.S” is an acronym for “Ehlers-Danlos Syndrome”. Bystro successfully parsed 161 

this query, returning a single PLOD1 variant found in 1000 Genomes Phase 3 that introduces an 162 

early stop codon in all three of its overlapping transcripts, and which has been reported in 163 

Clinvar as “pathogenic” for “Ehlers-Danlos syndrome, type 4” (1 variant, .038s ± .027s, Table 2). 164 

Since no other tested program could load or filter the 1000 Genomes Phase 3 VCF file 165 

online, we next compared Bystro to GEMINI (running on the Galaxy platform) on subsets of 166 

1000 Genomes Phase 3. In contrast with GEMINI’s structured SQL queries, Bystro enabled 167 

shorter and more flexible searches. For instance, to return all missense, rare variants with 168 

CADD Phred scores larger than 15, GEMINI required a 162 character SQL query, while Bystro 169 

needed only 36 characters. Bystro also demonstrated synonym support, returning identical 170 

results for “missense” and “nonsynonymous” queries. Critically, Bystro’s search engine enabled 171 

real-time (sub-second) filtering, performing approximately four orders of magnitude faster than 172 

GEMINI on Galaxy while searching and returning similar volumes of data (Table 3).  173 

To test the accuracy of Bystro’s search engine relative to the underlying annotation, we 174 

first compared Bystro’s natural-language queries with Bystro’s “Filters”, which provide a 175 

complimentary, exact-match filtering option. All results were identical between the two methods 176 

(Additional file 1: Table S5). To control for the possibility that Bystro’s “Filters” were biased, we 177 

created separate Perl filtering scripts that searched for exact matches within the underlying tab-178 
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delimited text annotation. Again, results were completely concordant (Additional file 1: Table 179 

S5). Finally, to control for the possibility that both Bystro’s “Filters” and the Perl scripts were 180 

biased due to the programmer, we compared Bystro’s natural-language queries with Excel 181 

filters on a smaller dataset that could be manually examined. The queries were found 182 

completely specific in this comparison as well (Additional file 1: Table S6; Additional file 7). 183 
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 184 

Table 3 | Online comparison of Bystro and GEMINI/Galaxy in filtering 1x106 variants 
 

#    Program Query Time (s) Variants Ts/Tv 
1 Bystro cadd > 15 alt:(a || c || t || g) .004 ± 0 28,099 2.512 
1 GEMINI SELECT * FROM variants JOIN variant_impacts ON 

variants.variant_id = variant_impacts.variant_id 
WHERE cadd_scaled > 15 

442 ± 87 22,063 NA 

2  Bystro gnomad.exomes.af < .001 cadd > 15 missense .007 ± .003 6,840 3.083 
2  GEMINI SELECT * FROM variants JOIN variant_impacts 

ON variants.variant_id = 
variant_impacts.variant_id WHERE cadd_scaled 
> 15 AND aaf_exac_all < .001 AND 
variant_impacts.impact = 'missense_variant' 

77.6 ± 18.6 5,160 NA 

3 Bystro gnomad.exomes.af < .001 cadd > 15 
nonsynonymous 

.006 ± .001 6,840 3.083 

3 GEMINI SELECT * FROM variants JOIN variant_impacts 
ON variants.variant_id = 
variant_impacts.variant_id WHERE cadd_scaled 
> 15 AND aaf_exac_all < .001 AND 
variant_impacts.impact = 
‘nonsynonymous_variant' 

NA 0 NA 

Bystro was compared to the latest hosted version of GEMINI (v0.8.1, on the Galaxy platform) in 

filtering the 1x106 variant subset of 1000 Genomes Phase 3, which was the largest tested file that 

GEMINI/Galaxy could process. GEMINI requires structured SQL queries, while Bystro allows for 

shorter, unstructured search. In query #1, Bystro searched for CADD scores only within single-

nucleotide polymorphisms (using alt:(a || c || t || g), or equivalently the regex query alt:/[actg]/), to 

normalize results with GEMINI, which provides no CADD data for insertions and deletions. In 

queries #2 and #3, Bystro’s search engine returned identical results for the synonymous terms 

“missense” and “nonsynonymous”, despite annotating such sites only as “nonsynonymous”. In 

contrast, GEMINI required the specific term ‘missense_variant’. GEMINI/Galaxy and Bystro returned 

different results because the latest version of GEMINI on Galaxy (0.8.1) uses outdated annotation 

sources. Comparisons between Bystro and GEMINI/Galaxy are further limited as GEMINI doesn’t 

provide a natural-language parser, annotation field filters, an interactive result browser, per-query 

statistics, or the ability to filter saved search results. Notably, Bystro also performed substantially 

faster, returning all results in less than 1 second. 
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 185 

Discussion 186 

The Bystro annotation and filtering capabilities are primarily exposed through a public 187 

web application (https://bystro.io/), and are also available for custom, offline installation. To 188 

ensure data safety, Bystro follows industry recommendations for password management, in-189 

transit data security, and at-rest data security. Input and output files are encrypted at rest on 190 

Amazon EFS file systems, using AES 256-bit encryption, and every request for annotation or 191 

search data is authenticated by the web server using short-lived identity tokens. To further 192 

protect user data, annotation and search services are not directly open to the Internet, but 193 

require routing and authentication through the web server. Furthermore, all web traffic is 194 

encrypted using TLS (HTTPS), and password hashing follows the National Institute of 195 

Standards and Technology (NIST) recommended PBKDF2-HMAC-SHA512 strategy. 196 

Creating an annotation online is as simple as selecting the genome and assembly used 197 

to make the variant call format (VCF)[10] or SNP[11] format files, and uploading these files from 198 

a computer or Amazon S3 bucket, which can be easily linked to the web application. Annotation 199 

occurs in the cloud, where distributed instances of the Bystro annotation engine process the 200 

data and send the results back to the web application for storage and display (Figure 1).  201 

The Bystro annotation engine is open source, and supports diverse model organisms 202 

including Homo sapiens (hg19, hg38), M. musculus (mm9, mm10), R. macaque (rheMac8), R. 203 

norvegicus (rn6), D. melanogaster (dm6), C. elegans (ce11), S. cerevisiae (sacCer3). To 204 

annotate, it rapidly matches alleles from users’ submitted files to descriptions from RefSeq[12], 205 

dbSNP[13], PhyloP[14], PhastCons[14], Combined Annotation-Dependent Depletion (CADD), 206 

Clinvar[15], and gnomAD[16]. For custom installations, Bystro supports Ensembl, RefSeq, or 207 

UCSC Known Genes transcript sets, and can be flexibly configured include annotations from 208 

any files in genePredExt, wigFix, BED, or VCF formats.  209 
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The annotation engine is aware of alternate splicing, and annotates all variants relative 210 

to each alternate transcript. When provided sample information, Bystro also annotates all 211 

variants relative to all sample genotypes. In such cases, at every site it labels each sample as 212 

homozygous, heterozygous, or missing, and also calculates the heterozygosity, homozogosity, 213 

missingness, and sample minor allele frequency. Furthermore, in contrast with current programs 214 

that require substantial VCF file pre-processing, Bystro automatically removing low-quality sites, 215 

normalizes variant representations, splits multi-allelic variants, and checks the reference allele 216 

against the genome assembly. Critically, Bystro’s algorithm guarantees parsimonious (left-217 

shifted) variant representations, even for multi-allelic sites containing complex insertions and 218 

deletions.  219 

The Bystro annotation engine is designed to scale to any size experiment, offering the 220 

speed of distributed computing solutions such as Hail[17], but with less complexity. Current well-221 

performing annotators - such as ANNOVAR and SeqAnt - load significant amounts of data into 222 

memory to improve performance. However, when these programs use multiple threads to take 223 

advantage of multicore CPUs they may exceed available memory (in some cases over 60GB), 224 

resulting in a sharp drop in performance or system crash. To solve this, Bystro annotates 225 

directly from an efficient memory-mapped database (LMDB), using only a few megabytes per 226 

thread, and because memory-mapped databases naturally lend themselves to the caching 227 

frequently accessed data, Bystro achieves most of the benefits of in-memory solutions, but 228 

without the per-thread penalties. This approach allows Bystro to take excellent advantage of 229 

multicore CPUs, while also enabling it to perform well on inexpensive, low-memory machines. 230 

Critically, when multiple files are submitted to it simultaneously, the Bystro annotation engine 231 

can automatically distribute the work throughout the cloud (or a user-configured computer 232 

cluster), gaining additional performance by processing the files on multiple computers (Figure 233 

1). Furthermore, in reflection of the large sizes of both input sequencing experiments and the 234 

corresponding annotation outputs - on the order of terabytes for modern whole-genome 235 
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experiments - Bystro accepts compressed input files, and directly writes compressed outputs. 236 

This ability to directly write compressed annotations with no uncompressed intermediate is 237 

critical given the rapid growth in sequencing experiment size. 238 

When the web application receives a completed annotation, it saves the data and 239 

creates a permanent results page. Detailed information about the annotation, such as the 240 

database version used for the annotation is stored in a log file that the user may download. 241 

Users may then explore several quality control metrics, including the transition to transversion 242 

ratio on a per-sample or per-experiment basis. They may also download the results as tab-243 

delimited text to their computer, or upload them to any connected Amazon S3 bucket. In parallel 244 

with the completion of an annotation, the Bystro search engine automatically begins indexing 245 

the results. Once finished, a search bar is revealed in the results page, allowing users to filter 246 

their variants using the search engine (Figure 1).  247 

Unlike existing filtering solutions, Bystro’s Elasticsearch-based natural-language search 248 

engine accepts unstructured, “full-text” queries, and relies on a sophisticated language parser to 249 

match annotated variants. This allows it to offer the flexibility of modern search engines like 250 

Google and Bing, while remaining specific enough for the precise identification of alleles 251 

relevant to the research question. The Bystro search engine matches terms regardless of 252 

capitalization, punctuation, or word tense, and accurately finds partial terms within long 253 

annotation values. Like the annotation engine, the search engine is also exceptionally fast, 254 

automatically distributing indexed annotations throughout the cloud, enabling users to sift 255 

through millions of variants from large whole-genome sequencing experiments in milliseconds. 256 

In order to provide flexible, but specific matches without relying on structured SQL 257 

queries, the search engine identifies the data type of every value in the annotation. Text 258 

undergoes stemming and lemmatization, which reduces the influence of grammatical variation, 259 

and is then tokenized into left-edge n-grams, which allows for flexible matching. Numerical data 260 

is stored in the smallest integer or float format that can accommodate it, allowing for rapid and 261 
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accurate range queries. For complex queries, the search engine supports Boolean operators 262 

(AND, OR), regular expressions, and Levenshtein-edit distance fuzzy matches. It also has a 263 

built-in dictionary of synonyms, for instance equating “stopgain” and “nonsense”.  264 

In some cases, text will match accurately, but not specifically; this most often happens 265 

with short, generic terms. For instance, querying “intergenic” alone may match the word 266 

“intergenic” in “long intergenic non-protein coding RNA” in refSeq’s description field, as well as 267 

“intergenic” in the refSeq’s siteType field. To help improve accuracy in such cases, Bystro 268 

provides three, closely related features: 1) “Aggregations” allows users to see the top 200 269 

values for any text field, or equivalently the min, max, mean, standard deviation (and other 270 

similar statistics) for any numerical field. This allows users to quickly and precisely understand 271 

the composition of search results, as well as to generate summary statistics. 2) “Filters” allows 272 

users to refine queries, by forcing the inclusion or exclusion of any values found in any field. For 273 

instance, rather than query “intergenic”, it may be easier and more precise to simply click on the 274 

“refSeq.siteType” filter, and select the “intergenic” value. Any number of “Filters” may be 275 

combined with any natural-language query, containing up to 1 million words. 3) Bystro allows 276 

field names within a natural-language query for added specificity. For example, rather than 277 

searching for “intergenic”, the user could type “refSeq.siteType:intergenic”, to indicate that they 278 

wished to match “intergenic” specifically in the refSeq.siteType annotation field. 279 

Bystro’s search engine also includes several features to increase flexibility beyond the 280 

contents of the annotation: 1) “Custom Synonyms” allows users to define their own terms and 281 

annotations. Among other uses, this make it is possible to label trios, which can be used to 282 

easily identify de novo variants and test allele transmission models. 2) “Search Tools” are small 283 

programs, accessible by a single mouse click, that dynamically modify any query to generate 284 

complex result summaries. Some of their functions include identifying compound heterozygotes. 285 

3) “Statistical Filters” dynamically perform statistical tests on the variants returned from any 286 
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query. For instance, the “HWE” filter allows users to exclude variants out of Hardy-Weinberg 287 

Equilibrium. This is an often-needed quality control step. 288 

Most importantly, there is no limit to the number of query terms and “Filters” that can be 289 

combined, and users can save and download the results of any search query, which enables 290 

recursive filtering on a single dataset. The saved results are indexed for search, and hyperlinked 291 

to the annotations that they were generated from, forming permanent records that can be used 292 

to reproduce complex analyses. This multi-step filtering provides functionality similar to custom 293 

command-line filtering script pipelines, but is significantly faster, less error prone, and 294 

accessible to researchers without programming experience.  295 

 296 

While Bystro’s annotation and filtering performance is currently unparalleled by any other 297 

approach, other software (such as Hail[17]) could achieve similar performance by implementing 298 

distributed computing algorithms like MapReduce[18], and spreading annotation workloads 299 

across many servers. Bystro demonstrates that these workarounds are unnecessary to achieve 300 

reasonable run-times for large datasets online or offline. Additionally, while Bystro’s natural-301 

language search engine significantly reduces the difficulty of variant filtering, it does not handle 302 

language idiosyncrasies as robustly as more mature solutions like Google’s, and may return 303 

unexpected results when search queries are very short and non-specific, since such queries 304 

may have multiple correct matches. This is easily avoided by using longer phrases, by using 305 

“Custom Synonyms” to define more specific terms, by examining the composition of results 306 

using “Aggregations”, or by applying “Filters” to precisely filter results. Such considerations and 307 

options are well-documented in Bystro’s online user guide (https://bystrio.io/help). 308 

 309 

Conclusions 310 

To date, identifying alleles of interest in sequencing experiments has been time-311 

consuming and technically challenging, especially for whole-genome sequencing experiments. 312 
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Bystro increases performance by orders of magnitude and improves ease of use through three 313 

key innovations: 1) a low-memory, high-performance, multithreaded variant annotator that 314 

automatically distributes work in cloud or clustered environments; 2) an online architecture that 315 

handles significantly larger sequencing experiments than previous solutions; and 3) the first 316 

publicly-available, general-purpose, natural-language search engine for variant filtering in 317 

individual research experiments. Bystro annotates large experiments in minutes, and its search 318 

engine is capable of matching variants within whole-genome datasets in milliseconds, enabling 319 

real-time data analysis. Bystro’s features enable practically any researcher – regardless of their 320 

computational experience - to analyze large sequencing experiments (e.g. thousands of whole-321 

genome samples) within less than a day, and small ones (e.g. hundreds of whole-exome 322 

samples) in seconds. As genome sequencing continues the march toward ever-larger datasets 323 

and becomes more frequently used in diverse research settings, Bystro’s combination of 324 

performance and ease of use will prove invaluable for reproducible, rapid research. 325 

 326 

Methods 327 

 328 

Accessing Bystro 329 

For most users, we recommend the Bystro web application (https://bystro.io), as it gives 330 

full functionality, supports arbitrarily large datasets, and provides a convenient interface to the 331 

natural-language search engine. Users with computational experience can download the Bystro 332 

open-source package (https://github.com/akotlar/bystro). Using the provided installation script or 333 

Amazon AMI image, Bystro can be easily deployed on an individual computer, computational 334 

cluster, or any Amazon Web Services (AWS) EC2 instance. Bystro has very low memory and 335 

CPU requirements, but benefits from fast SSD drives. As such we recommend at AWS 336 

instances with provisioned I/O EBS drives, RAID 0 non-provisioned EBS, or i2/i3-class EC2 337 

instances. 338 
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 339 

Detailed documentation on Bystro’s use, as well as example search queries can be 340 

found at https://bystro.io/help.  341 

 342 

Bystro comparisons with ANNOVAR, wANNOVAR, VEP, and GEMINI/Galaxy 343 

 344 

Bystro Database 345 

Bystro databases were created using the open-source package 346 

(https://github.com/akotlar/bystro). The hg19 and hg38 databases contains RefSeq, dbSNP, 347 

PhyloP, PhastCons, Combined Annotation-Dependent Depletion (CADD), and Clinvar fields, as 348 

well as custom annotations (Additional file 8). A complete listing of the original source data is 349 

enumerated in the Git repository (https://github.com/akotlar/bystro/tree/master/config). Other 350 

organism databases contain a subset of these sources, based on availability. Pre-built, up-to-351 

date versions of these databases are publicly available (https://github.com/akotlar/bystro). 352 

 353 

WGS Datasets 354 

Phase 1 and Phase 3 autosome and chromosome X VCF files were downloaded from 355 

http://www.internationalgenome.org/data/. Phase 1 files were concatenated using bcftools[19] 356 

“concat” function. Phase 3 files were concatenated using a custom Perl script 357 

(https://github.com/wingolab-org/GenPro/blob/master/bin/mergeSnpFiles). The Phase 1 VCF file 358 

was 895GB (139GB compressed), and the Phase 3 data was 853GB (15.6GB compressed). 359 

The larger size of Phase 1 can be attributed to the inclusion of extra genotype information (the 360 

genotype likelihood). The full Phase 3 chromosome 1 VCF file (6.4x106 variants, 1.2GB 361 

compressed), and 5x104-4x106 variant allele subsets (8-655MB compressed) were also tested. 362 

All Phase 1 and Phase 3 data correspond to the GRCh37/hg19 human genome assembly. All 363 

data used are available (Additional file 9). 364 
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 365 

Online annotation comparisons 366 

For online comparisons, the latest online versions offered at time of writing were used. 367 

Bystro beta10 (September 2017), wANNOVAR (April 2017), VEP (April 2017), and GEMINI 368 

(Galaxy version 0.8.1, released February 2016, latest as of October 2017) were tested online 369 

with the full 1000 Genomes Phase 1 and Phase 3 VCF files, unless they were unable to upload 370 

the files due to file size restrictions (Additional file 2). Bystro was found to be the only program 371 

capable of uploading and processing the full Phase 1 and Phase 3 data sets, or subsets of 372 

Phase 3 larger than 1x106 variants. 373 

 374 

To conduct Bystro online annotations, a new user was registered within the public Bystro 375 

web application (https://bystro.io/). Phase 1 and Phase 3 files were submitted in triplicate, one 376 

replicate at a time, using the default database configuration (Additional file 2). Indexing was 377 

automatically performed by Bystro upon completion of each annotation. The Phase 3 annotation 378 

is publicly available to be tested (https://bistro.io/public). 379 

 380 

The public Bystro server was configured on an Amazon i3.2xlarge EC2 instance. The 381 

server supported 8 simultaneous users. Throughout the duration of each experiment, multiple 382 

users had concurrent access to this server, increasing experiment variance, and limiting 383 

observed performance. 384 

 385 

Online Variant Effect Predictor (VEP) submissions were done using the VEP web 386 

application (http://www.ensembl.org/info/docs/tools/vep/index.html). VEP has a 50MB 387 

(compressed) file size limit. Due to gateway timeout issues and this file size limit, data sets 388 

larger than 5x104 variants failed to complete (Additional file 2). 389 

 390 
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Online ANNOVAR submissions were handled using the wANNOVAR web application. 391 

wANNOVAR could not accept the smallest tested file, the 5x104 variant subset of Phase 3 392 

chromosome 1 (8MB compressed) due to file size restrictions (Additional file 2). 393 

Galaxy submission was made using the public Galaxy servers. Galaxy provides 394 

ANNOVAR, but its version of this software failed to complete any annotations, with the error 395 

“unknown option: vcfinput”. Annotations on Galaxy were therefore performed using GEMINI, 396 

which provides annotations similar to Bystro’s. Galaxy has a total storage allocation of 250GB 397 

(after requisite decompression), and both Phase 1 and Phase 3 exceed this size. Galaxy was 398 

therefore tested with the full 6.4x106 variant Phase 3 chromosome 1 VCF file. Galaxy’s FTP 399 

server was able to upload the file; however, Galaxy was unable to load the data into GEMINI, 400 

terminating after running for 36 hours, with the message “This job was terminated because it ran 401 

longer than the maximum allowed job run time” (Additional file 2). Subsets of Phase 3 402 

chromosome 1 containing 5x104, 3x105, and 1x106 variants were therefore tested. Three 403 

repetitions of the 5x104 variant submission were made. In consideration of the duration of 404 

execution, two repetitions were made of the 3x105 and 1x106 variants submissions. Since 405 

Galaxy does not record completion time, QuickTime was used to record each submission. 406 

 407 

Bystro, VEP, and GEMINI online annotation times included the time to generate both a user-408 

readable tab-delimited text annotation and a searchable database. GEMINI required an extra 409 

step to do so, using the query SELECT * FROM variants JOIN variant_impacts ON 410 

variants.name = variant_impacts.name. 411 

Variant filtering comparisons 412 

After Bystro completed each annotation, it automatically indexed the results for search. 413 

The time taken to index this data was recorded. Once this was completed, the Bystro web 414 

application’s search bar was used to filter the annotated sequencing experiments. The query 415 

time, as well as the number of results and the transition to transversion ratio for each query, 416 
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were automatically generated by the search engine and recorded. Query time did not take into 417 

account network latency between the search server and the web server. All queries were run six 418 

times and averaged. The public search engine, which processed all queries, was hosted on a 419 

single Amazon i3.2xlarge EC2 instance. 420 

 421 

Since VEP, wANNOVAR, and Galaxy/GEMINI could not complete Phase 1 or Phase 3 422 

annotations, variant filtering on these data sets could not be attempted. For small experiments 423 

VEP and GEMINI can filter based on exact matches, while wANNOVAR provides only pre-424 

configured phenotype and disease model filters. VEP could annotate and filter at most only 425 

5x104 variants and was therefore excluded from query comparisons. 426 

Galaxy/GEMINI was tested with subsets of 1000 Genomes Phase 3 of 1x106 variants 427 

(the largest tested data set that Galaxy could handle), with the described settings (Additional file 428 

2). In all GEMINI queries a JOIN operation on the variant_impacts table was used to return all 429 

variant consequences, and all affected transcripts, as Bystro does by default. Similarly, Bystro’s 430 

CADD query was restricted to single nucleotide polymorphisms (using alt:(A || C || T || G)), as its 431 

behavior diverges from GEMINI’s at insertions and deletions: Bystro returns all possible CADD 432 

Phred scores at such sites, whereas GEMINI returns a missing value. Bystro returns all values 433 

to give users added flexibility: its search engine can accurately search within arrays (lists) of 434 

data. Furthermore, as GEMINI on Galaxy only provided the Ensembl transcript set, for all query 435 

comparisons with GEMINI, Bystro was configured to use Ensembl 90, which was the latest 436 

version available at time of revision. It is important to note that the latest version of GEMINI on 437 

Galaxy (0.8.1) dates to February 2016, and its databases are several years older: CADD (v1.0, 438 

2014), Ensembl (v75, February 2014), ExAc (v0.3, October 2014), whereas Bystro uses up-to-439 

date resources. As a result of searching more up to date Ensembl (v90), population allele 440 

frequency (gnomAD 2.0.1, the successor to ExAc 1.0), and CADD (v1.3) data, Bystro’s queries 441 

returned more data. 442 
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Since Galaxy does not report run times, QuickTime software was used to record each 443 

run, and the query time was calculated as the difference between the time the search 444 

submission entered the Galaxy queue, to the time that it was marked completed. 445 

Galaxy/GEMINI queries were each run more than 6 times. Because run times varied by more 446 

than 17x, the fastest consecutive 6 runs were averaged to minimize the influence of Galaxy 447 

server load. 448 

 449 

All comparisons with the Bystro search engine are limited, because no other existing 450 

method provides natural-language parsing, and either rely on built-in scripts or require the user 451 

to learn a specific language (SQL). 452 

 453 

Filtering accuracy comparison 454 

 The latest version of Bystro (beta 10, September 2017) was used. For the 1000 455 

Genomes query accuracy checks, the same underlying Ensembl-based Bystro annotation and 456 

search index was used as in the Bystro/GEMINI filtering comparison. Direct comparison to 457 

GEMINI were not made, in reflection of the age of the latest GEMINI Galaxy version (v0.8.1, 458 

with database sources dating to 2014). All Bystro queries from that comparison were saved, 459 

downloaded, and compared with Bystro “Filters”, which are exact-match alternatives to Bystro’s 460 

natural-language queries, as well as custom Perl filtering scripts that also require exact 461 

matches. A second query accuracy step was conducted, on the Yen et al 2017[9] VCF file. This 462 

file was annotated using the standard RefSeq Bystro database. The same queries used in the 463 

Bystro/GEMINI comparison were re-created on this smaller annotation, saved, downloaded, and 464 

compared with Bystro “Filters” and Excel filters. Excel filters were created in Excel 2016 (Mac), 465 

and required exact matches. All Excel-filtered and all Bystro query results were manually 466 

inspected for concordance (Additional file 7). All scripts generated and used in the comparison 467 

may be found at https://github.com/akotlar/bystro-paper. 468 
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 469 

Offline annotation comparisons 470 

To generate offline performance data, the latest versions of each program available at 471 

time of writing were used. Bystro beta10 (September 2017), VEP 86 (March 2017), and 472 

ANNOVAR (March 2017) were each run on separate, dedicated Amazon i3.2xlarge EC2 473 

instances (Additional file 3). All programs’ databases were updated to the latest versions 474 

available as of March 2017 (VEP, ANNOVAR), or September 2017 (Bystro). All programs were 475 

configured to use the RefSeq transcript set. 476 

 477 

Each instance contained 4 CPU cores (8 threads), 60GB RAM, and a 1920GB NVMe 478 

SSD. Each instance was identically configured. All programs were configured to as closely 479 

match Bystro’s output as possible, although Bystro output more total annotation fields 480 

(Additional file 3). Each data set tested was run 3 times. The annotation time for each run was 481 

recorded, and averaged to generate the mean variant per second (variant/s) performance. 482 

Submissions were recorded using the terminal recorder asciinema, and both memory and cpu 483 

usage were recorded using the free and top commands set to a 30 second timeout. 484 

 485 

VEP was configured to use 8 threads and to run in “offline” mode to maximize 486 

performance, as recommended[3]. In each of three recorded trials, VEP was set to annotate 487 

from RefSeq and CADD, and to check the reference assembly (Additional file 3). Based on 488 

VEP’s observed performance, adding PhastCons annotations was not attempted. VEP’s 489 

performance was measured by reading the program’s log, which records variant/second 490 

performance every 5x103 annotated sites. In consideration of time, VEP was stopped after at 491 

least 2x105 variants were completed, and the 2x105 variants performance was recorded. 492 

 493 
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ANNOVAR was configured to annotate RefSeq, CADD, PhastCons 100way, PhyloP 494 

100way, Clinvar, avSNP, and ExAc version 0.3 (Additional file 3). ANNOVAR’s avSNP database 495 

was used in place of dbSNP, as recommended. We configured ANNOVAR to report allele 496 

frequencies from ExAc, because it does not do so from either avSNP or dbSNP databases. 497 

When annotating Phase 1, Phase 3, or Phase 3 chromosome 1, ANNOVAR crashed by 498 

exceeding the available 60GB of memory. It was therefore tested with the subsets of Phase 3 499 

chromosome 1 that contained 1x106 – 4x106 variants. 500 

 501 

Bystro was configured to annotate descriptions from RefSeq, dbSNP 147, CADD, 502 

PhastCons 100way, PhyloP 100way, Clinvar, and to check the reference for each submitted 503 

genomic position (Additional file 3). 504 

 505 

Annotation accuracy comparison 506 

 The latest version of Bystro (beta 10, September 2017), ANNOVAR (July 2017), and 507 

VEP (version 90) at the time of revision submission were used. All programs’ databases were 508 

updated to the latest version available. RefSeq-based databases were downloaded using each 509 

program’s database builder. All programs were compared on the Yen et al 2017 VCF file [9] for 510 

position, variant call, and variant effects, based on each programs’ respective RefSeq database. 511 

The Yen et al VCF file fileformat header line was modified to “VCFv4.1” to allow programs to 512 

recognize it as a valid VCF file. This modified file is available: https://github.com/akotlar/bystro-513 

paper. For the SnpEff comparison, annotations were adapted from Additional File 1 of Yen et al 514 

2017[9]. ANNOVAR was additionally configured with gnomAD genomes, gnomAD exomes, and 515 

CADD 1.3, and compared to Bystro on the corresponding values. 516 

 517 

Additional Files 518 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 21, 2017. ; https://doi.org/10.1101/146514doi: bioRxiv preprint 

https://doi.org/10.1101/146514
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27 

Additional file 1: This file contains 1) a feature comparison of tested programs, 2) investigation 519 

of annotation concordance between tested programs, 3) investigation of Bystro query accuracy 520 

(.docx, 1.4MB) 521 

Additional file 2: Description of online comparison settings (.xlsx, 859KB) 522 

Additional file 3: Description of online comparison settings (.xlsx, 40KB) 523 

Additional file 4: Bystro vs ANNOVAR annotation comparison details (.xslx, 87KB) 524 

Additional file 5: Bystro vs VEP annotation comparison details (.xslx, 701KB) 525 

Additional file 6: Bystro vs SnpEff annotation comparison details (.xslx, 63KB) 526 

Additional file 7: Bystro queries vs Excel filters concordance details (.xslx, 166KB) 527 

Additional file 8: Species supported at time of writing, and their configurations (.xslx, 36KB) 528 

Additional file 9: URLs of 1000 Genomes Phase 1, 1000 Genomes Phase 3, and Yen et al 2017 529 

VCF files used (.xslx, 47KB) 530 
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