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ABSTRACT  

We develop a novel method DeMixT for the gene expression deconvolution of three 

compartments in cancer patient samples: tumor, immune and surrounding stromal cells.  In 

validation studies using mixed cell line and laser-capture microdissection data, DeMixT yielded 

accurate estimates for both cell proportions and compartment-specific expression profiles. 

Application to the head and neck cancer data shows DeMixT-based deconvolution provides an 

important step to link tumor transcriptome data with clinical outcomes.   

  

MAIN TEXT  

Heterogeneity of malignant tumor cells adds confounding complexity to cancer treatment. The 

evaluation of individual components of tumor samples is complicated by the tumor-stromal-

immune interaction. Anatomical studies of the tumor-immune cell contexture have demonstrated 

that it primarily consists of a tumor core, lymphocytes and the tumor microenvironment3,4. 

Further research supports the association of infiltrating immune cells with clinical outcome for 

individuals with ovarian cancer, colorectal cancer and follicular lymphoma5-7. The use of 

experimental approaches such as laser micro-dissection and cell sorting is limited by the 

associated expense and time. Therefore, understanding the heterogeneity of tumor cells motivates 

a computational approach to integrate the estimation of type-specific expression profiles in tumor 

cells, immune cells and microenvironment.  Most commonly available deconvolution methods 

assume that malignant tumor cells consist of two distinct components, epithelium-derived tumor 

and surrounding stromal cells1,2. Other deconvolution methods for more than two compartments 

require knowledge of cell-type-specific gene lists8, i.e. reference genes, with some of these 

methods focused on application in estimating subtype proportions within immune cells9-11). 

Therefore there is still a need for methods that can provide joint estimation of proportions and 

compartment-specific gene expression for more than two compartments in each tumor sample. 

We have developed a new statistical approach, DeMixT, to address this need (Fig.1a, R package 

freely downloadable at https://github.com/wwylab/DeMix).  

Previously developed ISOpure12 may also address this important problem. However ISOpure 

assumes a linear mixture of raw expression data, and represents noncancerous profiles in the 
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mixed tissue samples by a convex combination of all the available profiles from reference 

samples. One drawback of this modeling approach is that the variance for noncancerous profiles 

is not compartment-specific, therefore: 1) the variances that are needed for estimating sample- 

and compartment-specific expressions cannot be estimated; and 2) in genes where the 

noncancerous compartments actually bears a substantial variance, not accounting for it can result 

in large bias in estimated mixing proportions and mean expressions. Our proposed DeMixT 

approach explicitly models variance for each compartment in order to fulfill our comprehensive 

goal in deconvolution. 

Here, we summarize DeMixT as follows (details in Online Methods). The observed signal  is 

written as  , for each gene  and each sample , where is 

the expression for observed mixed tumor samples, ,  and  represent unobserved raw 

expression values from its constituents. We assume ,  and follow a log2-normal 

distribution with compartment-specific means and variances1,13. We call the first two components 

as N1-component and N2-component, the distributions of which need to be estimated from 

available reference samples, and  and are the corresponding proportions for sample i. We 

define the last component as T-component, whose distribution is unknown. In practice, the T-

component can be any of the three: tumor, stroma or immune cells. For inference, we calculate 

the full likelihood and search for parameter values that maximize the likelihood. Our previously 

developed heuristic search algorithm1 for a two-component model now becomes inefficient for a 

three-component model space which is much more complex: . We 

have implemented an optimization approach called iterative conditional modes14 that cyclically 

maximizes the probability of each set of variables conditional on the rest, for which we have 

observed rapid convergence14. We further developed a novel two-stage approach to extract 

reliable expression measurements and improve estimation performance of the vector of 

proportions, which would then further improve the estimation of means and variances (See 

Online Methods for details).  

We first validated DeMixT in two datasets with known truth in proportions and mean 

expressions (see Online Methods): a publicly available microarray dataset15 generated using 

mixed RNA from rat brain, liver and lung tissues in varying proportions (Supplementary Table 
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1); and an RNA-seq dataset generated using mixed RNAs from three cell lines, lung 

adenocarcinoma (H1092), cancer-associated fibroblasts (CAF) and tumor infiltrating 

lymphocytes (TIL) (Supplementary Table 2). We assessed our approach through a number of 

statistics, e.g. concordance correlation coefficients, root mean square errors and a summary 

statistics for measuring reproducibility (Online Methods), we showed that DeMixT performed 

well and outperformed ISOpure in terms of accuracy and stability for estimation irrespective of 

which component is treated as unknown (Fig. 1b-c, See Supplementary Information for 

further details, Supplementary Fig. 1-4, Supplementary Tables 3-7).  

Next, we applied DeMixT to a gold-standard validation dataset from real tumor, which has 

known proportions, mean expressions and individual component-specific expressions. Laser-

capture microdissection (LCM) was performed on Formalin Fixed Paraffin Embedded (FFPE)  

tissue samples from 23 prostate cancer patients and generate microarray gene expression data 

using the derived, and the matching dissected stromal and tumor tissues (GSE97284, private link 

available to reviewers). Due to quality of FFPE samples, we selected a subset of probes (Online 

methods), and ran DeMixT under a two-component mode.  DeMixT obtained concordant 

estimates of tumor proportion for when stroma is unknown and when tumor is unknown 

(CCC=0.87) (Fig. 2a). DeMixT also tended to provide accurate component-specific mean 

expression levels (Figs. 2b, 2c and Supplementary Fig. 5) and yielded standard deviation 

estimates that are close to those from the dissected tumor samples (Supplementary Fig. 6). As a 

result, the DeMixT individually deconvolved expressions achieved high CCCs (mean= 0.96) for 

the tumor component (Figs. 2d and Supplementary Fig. 7). The expressions for the stromal 

component here are more variable than a common gene expression dataset hence both DeMixT 

and ISOpure gave slightly biased estimates on means and standard deviations.  

A recent study showed with head and neck squamous cell carcinoma (HNSCC) the infiltration of 

immune cells, both lymphocytes and myelocytes, is positively associated with viral infection in 

virus-associated tumors10. We downloaded HNSCC RNA-seq data from the TCGA data portal16 

and ran DeMixT for deconvolution. Since only reference samples for the stromal component are 

available from TCGA (i.e., 44 normal samples and 269 tumor samples), we devised an analysis 

pipeline for DeMixT to run successfully on the HNSCC samples (See online methods for details, 

Supplementary Fig. 8). Briefly we first used data from the HPV+ tumors to derive reference 
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samples for the immune component, and then ran the three-compoment DeMixT on the entire 

dataset to estimate proportions for both HPV- and HPV+ samples. For all tumor samples, we 

obtained the immune (mean = 0.22, sd = 0.10), the tumor (mean = 0.64, sd = 0.13), and the 

stromal proportions (mean = 0.14, sd = 0.07, see Supplementary Figure 9). As expected, tumor 

samples with HPV+ had significantly higher immune proportions than those tested as HPV- 10,17 

(P = 2e-8, Fig. 2e and Supplementary Fig. 9-10). To further evaluate the performance of our 

deconvolved expression levels, we performed differential expression tests for immune versus 

stromal, and immune versus tumor, respectively, on 63 infiltrating immune cell-related genes 

(CD and HLA genes).  For example, Fig. 2f illustrates the deconvolved expressions were much 

higher in the immune component than the other two for three important immune marker genes 

CD4, CD14, HLA-DOB. Overall, 51 out of 63 genes were significantly more highly expressed in 

immune than the other two components (adjusted p-values are listed in Supplementary Table 

8, also see Supplementary Fig. 11).  

 

In this work, we have presented a novel statistical method and software, DeMixT (R package at 

https://github.com/wwylab/DeMix, Docker container at 

https://cloud.docker.com/app/rj2016/repository/docker/rj2016/demix/general), for dissecting a 

mixture of tumor, stroma and immune cells on the gene expression levels, and providing an 

accurate solution. Our method allows us to simultaneously estimate both cell-type-specific 

proportions and reconstitute patient-specific gene expression levels with little prior information. 

Our input data is distinct from those of other deconvolution methods: gene expressions from 1) 

observed mixture tumor samples and 2) a set of reference samples from p-1 compartments (p is 

the total number of compartments). Our output data is unique as we further provide gene- and 

compartment-specific expression levels for each tumor sample, essentially allowing for all 

previously developed downstream analyses pipelines, such as clustering and feature selection in 

cancer biomarker studies, still applicable to the deconvolved gene expressions. We achieved this 

unique output by modeling compartment-specific variance and addressing the associated 

inference challenges. Our method is extendable to more than three components.  

The reference gene-based deconvolution is popular for estimating immune subtypes within 

immune cells8,11. We do not require reference genes which we consider as difficult to find for the 
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tumor component, although DeMixT can take reference genes when available. With the reference 

sample approach, we assume available normal samples to be representative of the non-tumor 

component in the mixture samples. This assumption is often violated, although we found such 

violation may not affect the deconvolution results of DeMixT.  The reference samples can be 

derived from historical patient data or from other healthy individuals, such as data from GTEx18 

(unpublished results). Furthermore, each of the three components may contain more than one 

type of cells, in particular, the immune component.  It was reported that although heterogeneous, 

the relative proportions of immune subtypes within the immune compartment is consistent across 

patient samples19, supporting us to model the pooled immune cell population using one 

distribution. Finally, the performance of DeMixT will be optimized when the data analysis 

practice is linked with the cancer-specific biological knowledge. 

In conclusion, DeMixT helps to resolve the bottleneck arising from sample heterogeneity in 

cancer genomic studies. 
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Figure legends 

Fig. 1. Description of DeMixT and validation results using microarray and RNA-seq data from 

tissue and cell line mixture experiments. (a) An illustration of three-component deconvolution to 

output tissue-specific proportion, and isolated expression matrices of tumor, stromal and immune 

cells. Heat map of expression levels uncovers the difference in gene expression patterns between 

original tumor samples, deconvolved tumor components, stromal components and immune 

components. (b) A scatter plot of estimated tissue proportions against the truths when the liver 

(cross), brain (triangle), or lung (rectangle) tissue is assumed to be the unknown tissue in the 

microarray experiments mixing rat liver, brain, and lung tissues; estimates from ISOpure are also 

presented. (c) Scatter plot of estimated tissue proportions against the truth when either lung 

tumor (cross) or fibroblast (rectangle) cell lines are assumed to be the unknown tissue in the 

RNA-seq experiments mixing lung tumor, fibroblast and lymphocyte cell lines.  

Fig. 2. Analyses of real data using DeMixT. Validation using LCM data in prostate cancer (a-c) 

and application to TCGA data in head and neck cancer (d-e). (a) Scatter plot of estimated tumor 

proportions versus 1- estimated stromal proportions; estimates from DeMixT (blue) are 

compared with those from ISOpure (black).  (b)-(c) Smoothed scatter MA plots between 

observed and deconvolved mean expression values from DeMixT for the tumor and stromal 

components, respectively (yellow for low values and orange for high values). The lowess 

smoothed curves for DeMixT is shown in black and ISOpure in blue. (d) Scatter plot of 

concordance correlation (CCC) between individual deconvolved expression profiles (tihat)and 

observed values (tiobs) for 23 LCM matching prostate samples. We use superscript a to denote 

the scenario when the stromal component are reference samples; b to denote the scenario when 

the tumor component are reference samples.. The color gradient of each points corresponds to 

the estimated tumor proportion..  (e) Boxplots of estimated immune proportions for HNSCC 

samples in the test set display differences between HPV-positive (red) and HPV-negative (white) 

samples. (f) Box plots of log2-transformed deconvolved expression profiles for three important 

immune genes (CD4, CD14, HLA-DOB) in the test set of HNSCC samples. Red stands for the 

immune component; green stands for the stromal component; and blue stands for the tumor 

component. P-values of differential tests are given in the top right corner for each gene: the first 

p-value is for immune vs. stromal; and the second p-value is for immune vs. tumor. 
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