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Abstract

Transcriptomic deconvolution in cancer and other heterogeneous tissues remains challenging.

Available methods lack the ability to estimate both component-specific proportions and

expression profiles for individual samples. We present DeMixT, a new tool to deconvolve

high dimensional data from mixtures of more than two components. DeMixT implements

an iterated conditional mode algorithm and a novel gene-set-based component merging

approach to improve accuracy. In a series of experimental validation studies and application

to TCGA data, DeMixT showed high accuracy. Improved deconvolution is an important

step towards linking tumor transcriptomic data with clinical outcomes. An R package,

scripts and data are available: https://github.com/wwylab/DeMixT/.

Keyword: tumor heterogeneity; RNA-seq data; tumor-stroma-immune interaction; head

and neck squamous cell carcinoma; statistical models; computational tool

Background

Heterogeneity of malignant tumor cells adds confounding complexity to cancer treatment.

The evaluation of individual components of tumorsamples is complicated by the

tumor-stroma-immune interaction. Anatomical studies of the tumor-immune cell contexture

have demonstrated that it primarily consists of a tumor core, lymphocytes and the tumor

microenvironment [8, 19]. Further research supports the association of infiltrating immune

cells with clinical outcomes for individuals with ovarian cancer, colorectal cancer and

follicular lymphoma [6,9, 26]. The use of experimental approaches such as laser-capture

microdissection (LCM) and cell sorting is limited by the associated expense and time.

Therefore, understanding the heterogeneity of tumor tissue motivates a computational

approach to integrate the estimation of type-specific expression profiles for tumor cells,

immune cells and the tumor microenvironment. Most commonly available deconvolution

methods assume that malignant tumor tissue consists of two distinct components,

epithelium-derived tumor cells and surrounding stromal cells [2, 11]. Other deconvolution

methods for more than two compartments require knowledge of cell-type-specific gene

lists [14], i.e., reference genes, with some of these methods applied to estimate subtype

proportions within immune cells [12, 18]). Therefore, there is still a need for methods that

can jointly estimate the proportions and compartment-specific gene expression for more
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than two compartments in each tumor sample.

The existing method ISOpure [20] may address this important problem. However,

ISOpure assumes a linear mixture of raw expression data and represents noncancerous

profiles in the mixed tissue samples by a convex combination of all the available profiles

from reference samples. A drawback of this modeling approach is that the variance for

noncancerous profiles is not compartment-specific, therefore: 1) the variances that are

needed for estimating sample- and compartment-specific expressions cannot be estimated;

and 2) not accounting for sample variances can result in large bias in the estimated mixing

proportions and mean expressions. As we aim to address the need for having both the

gene-specific variance parameters and two unknown mixing proportions per sample in the

3-component scenario, our previous heuristic search algorithm developed for 2

components [2] is inadequate for the computation.

We have developed a new computational tool, DeMixT, to accurately and efficiently

estimate the desired high-dimensional parameters, in a linear additive model that accounts

for variance in gene expression levels in each compartment (Figure 1a). The corresponding

R package for DeMixT is freely available for downloading at

https://github.com/wwylab/DeMixT .

Results

The DeMixT model and algorithm. Here, we summarize our convolution model as follows

(Figure 1a; see further details in Methods). The observed signal Yig is written as

Yig = π1,iN1,ig + π2,iN2,ig + (1− π1,i − π2,i)Tig for each gene g and each sample i, where

Yig is the expression for the observed mixed tumor samples, and N1,ig , N2,ig and Tig

represent unobserved raw expression values from its constituents. We assume that N1,ig ,

N2,ig and Tig, each follow a log2-normal distribution with compartment-specific means and

variances [2, 15]. The N1-component and the N2-component are the first two components,

the distributions of which need to be estimated from available reference samples, and π1,i

and π2,i are the corresponding proportions for sample i. The last component is the

T-component, the distribution of which is unknown. In practice, the T-component can be

any of the following three cell types: tumor, stromal or immune cells. For inference, we

calculate the full likelihood and search for parameter values that maximize the likelihood.

Our previously developed heuristic search algorithm [2] for a two-component model is
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inadequate for a three-component model which is exponentially more complex: 1) There are

two degrees of freedom in the mixing proportions, which is unidentifiable in a large set of

genes that are not differentially expressed between any two components; and 2) In each

iteration in the parameter search, we need to perform tedious numerical double integrations

in order to calculate the full likelihood. The DeMixT algorithm introduced two new

elements that helped ensure the estimation accuracy and efficiency (Figure 1b). We first

apply an optimization approach, iterated conditional modes (ICM) [4], which cyclically

maximizes the probability of each set of variables conditional on the rest, for which we have

observed rapid convergence [4] to a local maximum. The ICM framework further enables

parallel computing, which helps compensate for the expensive computing time used in the

repeated numerical double integrations. However this is not sufficient for accurate

parameter estimation. We observed that including genes that are not differentially expressed

between the N1 and N2 components in the 3-component deconvolution can introduce large

biases in the estimated π1 and π2 (Supplementary Figure 1), while the πT estimation is

little unaffected. We therefore introduce a novel gene-set-based component merging

approach (GSCM) (Figure 1b). Here, we first select gene set 1, where µ1,g ≈ µ2,g, and run

the 2-component model to estimate πT,i. Then we select gene set 2, where µ1,g 6≈ µ2,g, and

run the 3-component model with fixed πT from the equation above, to estimate {π1,i, π2,i}.

Our goal is to avoid searching in the relatively flat regions of the full likelihood (model

unidentifiable, Supplementary Figure 2) and focus on regions where the likelihood tends

to be convex. Using this approach, we not only improve the estimation accuracy, but also

further reduce the computing time as only a small part of the entire parameter space needs

to be searched.

Validation using data with known truth. We validated DeMixT in two datasets with

known truth in proportions and mean expressions: a publicly available microarray

dataset [21] generated using mixed RNA from rat brain, liver and lung tissues in varying

proportions; and an RNA-seq dataset generated using mixed RNA from three cell lines, lung

adenocarcinoma (H1092), cancer-associated fibroblasts (CAFs) and tumor infiltrating

lymphocytes (TILs).

We used GSE19830 [21] as our first dataset for benchmarking. This microarray

experiment was designed for expression profiling of samples from Rattus norvegicus with the

Affymetrix Rat Genome 230 2.0 Array, including 30 mixed samples of liver, brain and lung

tissues in 10 different mixing proportions with three replicates (Supplementary Table 1). To

run DeMixT, we used the samples with 100% purity to generate the reference profiles for the
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N1-component, N2-component and T -component, respectively. We ran the deconvolution for

the 30 mixed samples as three scenarios, respectively assuming the liver, brain and lung

tissues to be the unknown T -component tissue. To generate the second dataset in RNA-seq,

we performed a mixing experiment, in which we mixed mRNAs from the three cell lines:

lung adenocarcinoma in humans (H1092), CAFs and tumor infiltrating lymphocytes (TILs),

at different proportions to generate 32 samples, including 9 samples that correspond to

three repeats of a pure cell line sample for the three cell lines (Supplementary Table 2). The

RNA amount of each tissue in the mixture samples was calculated on the basis of real RNA

concentrations tested in the biologist’s lab. We assessed our deconvolution approach

through a number of statistics, e.g., concordance correlation coefficients (CCCs), root mean

squared errors (RMSEs), and a summary statistics for measuring the reproducibility of the

estimated π across scenarios when a different component is unknown (see Methods). We

showed that DeMixT performed well and outperformed ISOpure in terms of accuracy and

reproducibility (Figures 2a-b; see Supplementary Notes for further details,

Supplementary Figures 3-6, Table 1, Supplementary Tables 3-6).

Validation using LCM data. We then applied DeMixT to a “gold standard” validation

dataset from real tumor tissue that has known proportions, mean expressions and individual

component-specific expressions. This dataset (GSE97284) was generated at Dana Farber

Cancer Institute through LCM experiments on tumor samples from patients with prostate

cancer. It consists of 25 samples of isolated tumor tissues, 25 samples of isolated stromal

tissues and 23 admixture samples [24]. LCM was performed on formalin-fixed paraffin

embedded (FFPE) tissue samples from 23 prostate cancer patients, and microarray gene

expression data were generated using the derived and the matching dissected stromal and

tumor tissues (GSE97284 [23]). Due to the low quality of the FFPE samples, we selected a

subset of probes (see Methods), and ran DeMixT under a two-component mode. DeMixT

obtained concordant estimates of the tumor proportions when the proportion of the stromal

component was unknown and when the proportion of tumor tissue was unknown

(CCC=0.87) (Figure 3a). DeMixT also tended to provide accurate component-specific

mean expression levels (Figures 3b-c and Supplementary Figure 7) and yielded

standard deviation estimates that are close to those from the dissected tumor samples

(Supplementary Figure 8). As a result, the DeMixT individually deconvolved

expressions achieved high CCCs (mean= 0.96) for the tumor component (Figure 3d and

Supplementary Figure 9). The expressions for the stromal component were more

variable than those for a common gene expression dataset, hence both DeMixT and ISOpure

gave slightly biased estimates of the means and standard deviations.
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Application to The Cancer Genome Atlas (TCGA) head and neck squamous cell

carcinoma (HNSCC) data. A recent study of HNSCC showed that the infiltration of

immune cells, both lymphocytes and myelocytes, is positively associated with viral infection

in virus-associated tumors [13]. We downloaded HNSCC RNA-seq data from TCGA data

portal [17] and ran DeMixT for deconvolution. We normalized the expression data with the

total count method and filtered out genes with zero count in any sample. There was a total

of 44 normal tissue and 269 tumors samples in the HNSCC dataset. We collected the

infection information of human papillomavirus (HPV) infection status for the HNSCC

samples. Samples were classified as HPV-positive (HPV+) using an empiric definition of the

detection of > 1000 mapped RNA-Seq reads, primarily aligning to viral genes E6 and E7,

which resulted in 36 HPV+ samples [17]. Since only reference samples for the stromal

component are available from TCGA (i.e., 44 normal samples and 269 tumor samples), we

devised an analytic pipeline for DeMixT to run successfully on the HNSCC samples (for

details, see Methods and Supplementary Figure 10). In brief, we first used data from

the HPV+ tumors to derive reference samples for the immune component, and then ran the

three-component DeMixT on the entire dataset to estimate the proportions for both

HPV-negative (HPV-) and HPV+ samples. For all tumor samples, we obtained the immune

(mean = 0.22, standard deviation = 0.10), the tumor (mean = 0.64, standard deviation =

0.13), and the stromal proportions (mean = 0.14, standard deviation = 0.07; see Figure

4a). The distribution of stromal proportions seems independent, whereas the tumor and

immune proportions are inversely correlated. As expected, HPV+ tumor samples had

significantly higher immune proportions than those that tested as HPV-, [7, 13] (p-value =

2e-8; Figures 4a-b and Supplementary Figure 11). To further evaluate the

performance of our deconvolved expression levels, we performed differential expression tests

for immune versus stromal tissue and immune versus tumor tissue, respectively, on 63

infiltrating immune cell-related genes (CD and HLA genes). For example, Figure 4c

illustrates that the deconvolved expressions were much higher in the immune component

than in the other two components for three important immune marker genes, CD4, CD14,

and HLA-DOB. Overall, 51 out of 63 genes were significantly more highly expressed in the

immune component than in the other two components (adjusted p-values are listed in

Supplementary Data 1; also see Figure 4d).
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Conclusions

In this work, we have presented a novel statistical method and software, DeMixT (R

package at https://github.com/wwylab/DeMixT), for dissecting a mixture of tumor,

stromal and immune cells bsed on the gene expression levels, and providing an accurate

solution. Our method allows us to simultaneously estimate both cell-type-specific

proportions and reconstitute patient-specific gene expression levels with little prior

information. Distinct from the input data of most other deconvolution methods, our input

data consist of gene expressions from 1) observed mixtures of tumor samples and 2) a set of

reference samples from p− 1 compartments (where p is the total number of compartments).

Our output data provides the mixing proportions, the means and variances of expression

levels for genes in each compartment, as well as the expression levels for each gene in each

compartment and each sample. The full gene-compartment sample-specific output allows for

the application of all pipelines previously developed for downstream analyses, such as

clustering and feature selection methods in cancer biomarker studies, still applicable to the

deconvolved gene expressions. We achieved this output by modeling compartment-specific

variance and addressing the associated inferential challenges. DeMixT addresses the

transcriptomic deconvolution in two steps. In the first step, we estimate the mixing

proportions and the gene-specific distribution parameters for each compartment, using the

ICM method, which can quickly converge. We further proposed a novel gene-set-based

component merging (GSCM) approach and integrated it with ICM for the three-component

deconvolution, in order to substantially improve model identifiability and computational

efficiency. In the second step, we reconstitute the expression profiles for each sample and

each gene in each compartment based on the parameter estimates from the first step. The

success of the second step relies largely on the success of the first. We have overcome the

otherwise significant computational burden for searching the high-dimensional parameter

space and numerical double integration, due to our explicit modeling of variance, through

parallele computing and gene set-based componment merging. On a PC with a 3.07 GHz

Intel Xeon processor with 20 parallel threads, DeMixT takes 14 minutes to complete the full

three-component deconvolution task of a dataset consisting of 50 samples and 500 genes (see

Table 2). Our method can be applied to other data types such as proteomic data. It can

be extended to p > 3.

We have used a series of experimental datasets to validate the performance of DeMixT.

These datasets were generated from a mixture of normal tissues, a mixture of human cell
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lines, and LCM of FFPE tumor samples. DeMixT succeeded in recapitulating the truth in

all datasets. We further demonstrated the tumor-stroma-immune deconvolution by DeMixT

using TCGA HNSCC data. We were able to correlate our immune proportion estimates

with the available HPV infection status in HNSCC, as is consistent with previous

observations that a high level of immune infiltration appears with viral infection in

cancer [12]. For this dataset, DeMixT is the first to provide a triangular view of

tumor-stroma-immune proportions (Figure 4a), the interesting dynamics of which may

shed new light on the prognosis of HNSCC.

Gene selection is important for the success of deconvolution in both 2-component and

3-component models for DeMixT, and for any other methods. In a 2-component setting, we

observed that both variances and mean differences in expression levels between the two

components for each gene can affect how accurately the mixing proportions are estimated,

while not all genes are needed for the proportion estimation. We therefore suggested

selecting genes that have moderate variances and large differences between two components

to estimate proportions. In a 3-component setting, using the gene-set-based component

merging (GSCM) approach to reduce to a pseudo-2-component problem, we are able to apply

a similar strategy. Currently our gene selection and GSCM strategy follow the principle of

focusing on a subspace of the high-dimensional parameters for model identifiability, but are

ad hoc and may need modification across datasets. Our future work will be to

systematically evaluate the impact of each set of high-dimensional parameters on the full

likelihood underlying our convolution model, and search for a unified gene selection method

for the deconvolution of datasets that range over a wide spectrum of biological phenomena.

The reference gene-based deconvolution is popular for estimating immune subtypes

within immune cells [14,18]. Our method does not require reference genes which we consider

as difficult to obtain for the tumor component; however DeMixT can take reference genes

when available. With the reference sample approach, we assume the first p-1 compartments

in the observed mixture to be similar to those in reference samples, while the remaining

compartment is unknown, and so it may end up capturing most of the heterogeneity. The

reference samples can be derived from historical patient data or from the corresponding

healthy tissues, such as data from GTEx [16] (e.g. RNA-seq data from sun-exposed skin as

reference samples for melanoma, unpublished results). Furthermore, each of the three

components may contain more than one type of cell, in particular, the immune component.

It was reported that although heterogeneous, the relative proportions of immune cell

subtypes within the immune component are consistent across patient samples [10], which
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supports our approach that models the pooled immune cell population using one

distribution. Further development of DeMixT will account for subpopulations of immune

cells in the convolution model, which will be a natural extension of the current model.

Finally, the performance of DeMixT will be optimized when the data analysis practice is

linked with the cancer-specific biological knowledge.

Methods

Model

Let Yig be the observed expression levels of the raw measured data from clinically derived

malignant tumor samples for gene g, g = 1, · · · , G and sample i, i = 1, · · · , S. G denotes the

total number of probes/genes and S denotes the number of samples. The observed

expression levels for solid tumors can be modeled as a linear combination of raw expression

levels from three components:

Yig = π1,iN1,ig + π2,iN2,ig + (1− π1,i − π2,i)Tig (1)

Here N1,ig, N2,ig and Tig are the unobserved raw expression levels from each of the three

components. We call the two components for which we require reference samples the

N1-component and the N2-component. We call the unknown component the T-component.

We let π1,i denote the proportion of the N1-component, π2,i denote the proportion of the

N2-component, and 1− π1,i − π2,i denote the proportion of the T-component. We assume

that the mixing proportions of one specific sample remain the same across all genes.

Our model allows for one component to be unknown, and therefore does not require

reference profiles from all components. A set of samples for N1,ig and N2,ig, respectively,

needs to be provided as input data. This three-component deconvolution model is applicable

to the linear combination of any three components in any type of material. It can also be

simplified to a two-component model, assuming there is just one N -component. For

application in this paper, we consider tumor (T ), stromal (N1) and immune components

(N2) in an admixed sample (Y ).

Following the convention that log2-transformed microarray gene expression data follow a

normal distribution, we assume that the raw measures N1,ig ∼ LN(µN1g, σ
2
N1g

),
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N2,ig ∼ LN(µN2g, σ
2
N2g

) and Tig ∼ LN(µTg, σ
2
Tg), where LN denotes a log2-normal

distribution and σ2
N1g

,σ2
N2g

,σ2
Tg reflect the variations under log2-transformed data [2, 15].

Consequently, our model can be expressed as the convolution of the density function for

three log2-normal distributions. Because there is no closed form of this convolution, we use

numerical integration to evaluate the complete likelihood function (see the full likelihood in

the Supplementary Materials).

The DeMixT algorithm for deconvolution

DeMixT estimates all distribution parameters and cellular proportions and reconstitutes the

expression profiles for all three components for each gene and each sample, as shown in

equation (1). The estimation procedure (summarized in Figure 1b) has two main steps as

follows.

1. Obtain a set of parameters {π1,i, π2,i}Si=1, {µT , σT }Gg=1 to maximize the complete

likelihood function, for which {µN1,g
, σN1,g

, µN2,g
, σN2,g

}Gg=1 were already estimated

from the available unmatched samples of the N1 and N2 component tissues. This step

is described in further details below in parameter estimation and the GSCM approach.

2. Reconstitute the expression profiles by searching each set of {n1,ig, n2,ig} that

maximizes the joint density of N1,ig, N2,ig and Tig

arg max
n1,ig,n2,ig

φ(
yig − π̂1,in1,ig − π̂2,in2,ig

1− π̂1,i − π̂2,i
∣∣µ̂Tg , σ̂Tg )φ(n1,ig

∣∣µ̂N1g , σ̂N1g )φ(n2,ig

∣∣µ̂N2g , σ̂N2g )

(2)

where φ(.|µ, σ2) is a log2-normal distribution density with location parameter µ and

scale parameter σ.

In step 2, we combined the golden section search method with successive parabolic

interpolations to find the maximum of the joint density function with respect to n1,ig and

n2,ig that are positively bounded and constrained by π̂1,in1,ig + π̂2,in2,ig ≤ yig. The value of

tig is solved as yig − π̂1,in1,ig − π̂2,in2,ig.
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Parameter estimation using iterated conditional modes (ICM)

In step 1, the unknown parameters to be estimated can be divided into two groups:

gene-wise parameters, {µT , σT }Gg=1, and sample-wise parameters, {π1, π2}Si=1. These two

groups of parameters are conditionally independent (Figure 1b).

For each pair of gene-wise parameters, we have

{π1, π2}i |= {π1, π2}j | {µT , σT }1, · · · , {µT , σT }G, for all i 6= j ∈ {1, · · · , S},

and similarly for each pair of sample-wise parameters, we have

{µT , σT }i |= {µT , σT }j | {π1, π2}1, · · · , {π1, π2}S , for all i 6= j ∈ {1, · · · , G}.

These relationships allow us to implement an optimization method, ICM, to iteratively

derive the conditional modes of each pair of gene-wise or sample-wise parameters,

conditional on the others [4]. Here, π1, π2 are constrained between 0 and 1, and µT , σT are

positively bounded. We combined a golden section search and successive parabolic

interpolations to find a good local maximum [5] in each step. As shown by Besag [4], for

ICM, the complete likelihood never decreases at any iteration and the convergence to the

local maximum is guaranteed. Our ICM implementation is described in Figure 5.

The GSCM approach to improve model identifiability

Due to the high dimension of the parameter search space, and often flat likelihood surfaces

in certain regions of the true parameters (e.g., µ1 ≈ µ2) that will be encountered by ICM

(Supplementary Figure 2), we have developed a GSCM approach (illustrated in Figure

1b) to focus on the hilly part of the likelihood space. This reduces the parameter search

space and improves the accuracy and computational efficiency. Here, we describe our

general strategy. As there are large variations in the number of genes that are differentially

expressed across datasets, the actual cutoffs may be adjusted for a given dataset.

Stage 1 We first combine the N1 and N2 components and assume a two-component

mixture instead of three. This allows us to quickly estimate πT .

a: We select a gene set containing genes with small standard deviations (< 0.1 or 0.5) for

both the N1 and N2 components. Among these genes, we further select genes with

LN1g ≈ LN2g (mean difference < 0.25 or 0.5), where the LN is the sample mean for the
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log2-transformed data. Within this set, we further select genes with the largest sample

standard deviations of Yg (top 250), suggesting differential expression between T and N .

b: We run DeMixT in the two-component setting to estimate µTg, σ
2
Tg and πT .

Stage 2 We then fix the values of {πT }i as derived from Stage 1, and further estimate

{π1}i and {π2}i in the three-component setting.

a: We select genes with the greatest difference in the mean expression levels between the

N1 and N2 components as well as those with the largest sample standard deviations of Yg

(top 250).

b: We run DeMixT in the three-component setting over the selected genes to estimate

π1 and π2 given πT .

c: We estimate the gene-wise parameters for all genes given the fixed π’s. Finally, given

all parameters, per gene per sample expression level, n1,ig, n2,ig and tig are reconstituted.

Simulation study for the GSCM approach

To demonstrate the utility of GSCM for parameter estimation, we simulated a dataset with

expression levels from 500 genes and 90 samples, 20 of pure N1-type, 20 of pure N2-type

and 50 mixed samples. For the 50 mixed samples, we generated their proportions for all

three components (π1, π2, πT ) ∼ Dir(1, 1, 1), where Dir is a Dirichlet distribution. For each

mixed sample, we simulated expression levels of 500 genes for the N1 and T-component from

a log2-normal distribution with µN1g
and µTg from N[0,+∞](7, 1.5

2), and with equal variance.

For the N2-component, we generated µN2g from µN2g + dg, where dg ∼ N[−0.1,0.1](0, 1.5
2)

for 475 genes (µ̂N1g ≈ µ̂N2g ) and dg ∼ N[0.1,3](0, 1.5
2) ∪N[−3,−0.1](0, 1.5

2) for 25 genes

(µ̂N1g 6≈ µ̂N2g). Then we mixed the N1, N2 and T-component expression levels linearly at

the generated proportions according to our convolution model. We created a full matrix

consisting of 20 N1-type reference samples (generated separately from the N1 distribution),

20 N2-type reference samples (generated separately from the N2 distribution) and 50 mixed

samples at each simulation and repeated the simulation 100 times for each of the three

variance values σ ∈ {0.1, 0.3, 0.5} to finally obtain 300 simulation repeats. We first ran

DeMixT with GSCM, where we used 475 genes with simulated µ̂N1g ≈ µ̂N2g to run the

two-component deconvolution (N versus T ) and used the remaining 25 genes to run the

three-component deconvolution with estimated π̂T . We also ran DeMixT without GSCM

12/23

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 14, 2017. ; https://doi.org/10.1101/146795doi: bioRxiv preprint 

https://doi.org/10.1101/146795


using all 500 genes. RMSEs between estimated and true proportions for all mixed samples

were calculated for each of the two runs: with and without GSCM.

Data analysis

All analyses were performed using the open-source environment R

(http://cran.r-project.org). Documentation (knitr-html) of all scripts is provided at the

GitHub repository.

Summary statistics for performance evaluation

Concordance correlation coefficient (CCC). To evaluate the performance of our method, we

use the CCC and RMSE. The CCC ρxy is a measure of agreement between two variables, x

and y, and is defined as ρxy =
2ρσxσy

σ2
x+σ

2
y+(µx−µy)2

, where µ and σ2 are the corresponding mean

and variance for each variable, and ρ is the correlation coefficient between the two variables.

We calculate the CCC to compare the estimated and true proportions to evaluate the

proportion estimation. We also calculate the CCC to compare the deconvolved and observed

expression values (log2-transformed).

Measure of reproducibility. To assess the reproducibility of the estimated π across

scenarios when the different components are unknown (i.e., three scenarios for a

three-component model with one unknown component), we define a statistic

R = 1
S

∑S
i ( 1

K−1
∑K
k (εki − 1

K

∑K
k ε

k
i )2)

1
2 , where εki = π̂ki − πi, π̂ki is the estimated value for

the k-th scenario and πi is the truth for sample i. S denotes the sample size and K is the

number of scenarios. This measures the variations in the estimation errors across different

scenarios. We consider a method with a smaller R as more reproducible and therefore more

desirable.

Mixed tissue microarray dataset

We downloaded dataset GSE19830 [21] from the GEO browser. We used the R package

{affy} to summarize the raw probe intensities with quantile normalization but without

background correction as recommended in previous studies [14]. We evaluated the

performance of DeMixT with regard to tissue proportions and deconvolved expression levels

on the set of genes that were selected based on the GSCM approach. Specifically, we
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selected genes with sample standard deviation < 0.1 in N1 and N2 components, among

which we used those with LN1g − LN2g < 0.25 for running the 2-compoment model, and

used the top 250 genes with largest LN1g − LN2g and largest sample standard deviation in

Y for running the 3-component model. Then we ran ISOpure for the purpose of comparison.

Mixed cell line RNA-seq dataset

This dataset was generated in house by mixing RNAs from three cell lines at fixed

proportions. We mapped raw reads generated from paired-end Illumina sequencing to the

human reference genome build 37.2 from NCBI through TopHat (default parameters and

supplying the -G option with the GTF annotation file downloaded from the NCBI genome

browser). The mapped reads obtained from the TopHat output were cleaned by SAMtools

to remove improperly mapped and duplicated reads. We then used Picard tools to sort the

cleaned SAM files according to their reference sequence names and create an index for the

reads. The gene-level expression was quantified by applying the R packages

GenomicFeatures and GenomicRanges. We generated a reference table from the human

reference genome hg19 and then used the function findOverlaps to count the number of

reads mapped to each exon for all the samples. This count dataset was pre-processed by

total count normalization, and genes that contained zero counts were removed. The

pre-processed count data were used as input for DeMixT and ISOpure.

We performed the same GSCM step as in the analysis of mixed tissue microarray data.

Laser-capture microdissection (LCM) prostate cancer FFPE microarray

dataset

This dataset was generated at the Dana Farber Cancer Institute (GSE97284 [24]). Radical

prostatectomy specimens were annotated in detail by pathologists, and regions of interest

were identified that corresponded to benign epithelium, prostatic intraepithelial neoplasia

(abnormal tissue that is possibly precancerous), and tumor, each with its surrounding

stroma. These regions were laser-capture microdissected using the ArcturusXT system (Life

Technologies). Additional areas of admixed tumor and adjacent stromal tissue were taken.

RNA was extracted by AllPrep (Qiagen) and quantified by RiboGreen assay (Life

Technology). RNA labeling was performed using the SensationPlus FFPE method

(Affymetrix) and hybridized to Affymetrix Gene Array STA 1.0.
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FFPE samples are known to generate overall lower quality expression data than those

from fresh frozen samples. We observed a small proportion of probesets that presented large

differences in mean expression levels between the dissected tissues: tumor (T ) and stroma

(N) in this dataset (Supplementary Table 7). Only 53 probesets presented a mean

difference (|T −N |) > 1, as compared to 10, 397 probesets in GSE19830. We therefore chose

the top 80 genes with the largest mean differences and ran both DeMixT and ISOpure

under two settings: tumor unknown and stroma unknown.

TCGA HNSCC data

We downloaded RNA-seq data for HNSCC from TCGA data portal

(https://portal.gdc.cancer.gov/). There was a total of 44 normal and 269 tumors samples for

HNSCC. We collected the information of HPV infection for the HNSCC samples. Samples

were classified as HPV+ using an empiric definition of detection of > 1000 mapped

RNA-seq reads, primarily aligning to viral genes E6 and E7, which resulted in 36 HPV+

samples [17]. We then devised a workflow to estimate the immune cell proportions

(Supplementary Figure 8). Our workflow included three steps. The downloaded normal

samples provided reference profiles for the stromal component in each step. We first

downloaded stromal and immune scores from single-sample gene set enrichment analysis for

all of our tumor samples [25] and selected 9 tumor samples with low immune scores (< −2)

and high stromal scores (> 0), which suggested that these samples were likely low in

immune infiltration. We then ran DeMixT under the two-component mode on these

samples, generating the deconvolved expression profiles for the tumor and stromal

components. We used these profiles as reference samples for running DeMixT under the

three-component mode in the 36 HPV + samples, generating deconvolved expression profiles

for the immune component. In these two steps, we used deconvolved profiles that have

smaller estimated standard variations as the reference profiles for the next step. We then

ran DeMixT under the three-component mode on all 269 samples with reference profiles

from normal samples and the deconvolved immune component. We calculated p-values

(Benjamini-Hochberg corrected [3]) for the differential test of deconvolved expressions for

the immune component versus the stromal component, and for the immune component

versus the tumor component, respectively, on a set of 63 immune marker genes.

We performed gene selection in the GSCM approach (as described above), with a slightly

larger threshold to account for the large sample size: sample standard deviation < 0.5 and
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the top 500 genes for three-component deconvolution to estimate the π’s.
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Figures

Figure 1. The model and algorithm of DeMixT. (a) DeMixT performs a three-

component deconvolution to output tissue-specific proportions and isolated expression matri-

ces of tumor (T-component), stromal (N1-component) and immune cells (N2-component).

Heatmaps of expression levels correspond to the original admixed samples, the deconvolved

tumor component, stromal component and immune component. (b) The DeMixT -based

parameter estimation is achieved by using the iterated conditional modes (ICM) algorithm

and a gene-set-based component merging (GSCM) approach. The top graph describes the

conditional dependencies between the unknown parameters, which can be assigned to two

groups: genome-wise parameters (on the top row, with red superscript), and sample-wise

parameters (on the bottom row, with blue superscript). They are connected by edges, which

suggest conditional dependencies. The nodes on the top row that are not connected are

independent of each other when conditional on those on the bottom row, and vice versa. Be-

cause of the conditional independencies, we implemented parallel computing to substantially

increase the computational efficiency. The bottom graph illustrates the GSCM approach,

which first runs a two-component deconvolution on gene set G1 (red), where µ̂N1g ≈ µ̂N2g in

order to estimate πT , and then runs a three-component deconvolution on gene set G2 (blue),

where µ̂N1g 6≈ µ̂N2g and πT is given by the prior step, in order to estimate π1 and π2.

Figure 2. Validation results using microarray and RNA-seq data from tissue

and cell line mixture experiments. (a) A scatter plot of estimated tissue proportions vs.

the truth when the liver (cross), brain (triangle), or lung (rectangle) tissue is assumed to be

the unknown tissue in the microarray experiments mixing the three; estimates from ISOpure

are also presented. (b) Scatter plot of estimated tissue proportions vs. the truth when either

lung tumor (cross) or fibroblast (rectangle) cell lines are assumed to be the unknown tissue

in the RNA-seq experiments mixing lung tumor, fibroblast and lymphocyte cell lines.
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Figure 3. Analyses of real data using DeMixT through validation using LCM

data in prostate cancer. (a) Scatter plot of estimated tumor proportions versus 1-

estimated stromal proportions; estimates from DeMixT (blue) are compared with those from

ISOpure (black). (b)-(c) Smoothed scatter MA plots between observed and deconvolved

mean expression values from DeMixT for the tumor and stromal components, respectively

(yellow for low values and orange for high values). The lowess smoothed curves for DeMixT

are shown in black and those for ISOpure in blue. (d) Scatter plot of concordance correlation

coefficient (CCC) between individual deconvolved expression profiles (t̂bi ) and observed values

(tobsi ) for 23 LCM matching prostate cancer samples. Superscript a: stromal component is

represented by reference samples; b: tumor component is represented by reference samples.

Color gradient of each point corresponds to the estimated tumor proportion.

Figure 4. Analyses of real data using DeMixT through application to TCGA

RNA-seq data in HNSCC. (a) Triangle plot of estimated proportions (%) of the immune

component (left), tumor component (right) and stromal component (bottom) in HNSCC

data; ”+” and ”-” corresponds to the HPV status. (b) Boxplots of estimated immune

proportions for HNSCC samples in the test set display differences between HPV+ (red) and

HPV- (white) samples. (c) Boxplots of log2-transformed deconvolved expression profiles for

three important immune genes (CD4, CD14, HLA-DOB) in the test set of HNSCC samples.

Red: immune component; green: stromal component; blue: tumor component. P-values of

differential tests are at top right corner for each gene: the first p-value is for immune vs.

stromal component; second p-value is for immune vs. tumor component. (d) Scatter plot of

negative log-transformed p-values for comparing deconvolved expression profiles between

immune component and the other two components of 63 immune cell-related genes. The

x-axis: immune component vs. stromal component; y-axis: immune component vs. tumor

component. Genes in red are significant in both comparisons. Green horizontal and vertical

lines: cutoff value for statistical significance.

Figure 5. Outline of the ICM implementation in DeMixT. The h() represents the full

likelihood based on a single integral for a two-component model; and f() represents the full

likelihood based on a double integral for a three-component model.

Tables
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Additional file 1 — Supplementary Materials

Supplementary notes, Supplementary tables and figures.
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Table 1. Measures of reproducibility for estimated proportions across different scenarios in

the GSE19830 dataset and the mixed cell line RNA-seq dataset.

Estimated Tissue DeMixT ISOpure

Brain 0.03 0.10

Lung 0.03 0.08

Liver 0.03 0.07

H1092 0.05 0.40

CAF 0.06 0.41

TIL 0.02 0.02

H1092, lung tumor adenocarcinoma; CAF, cancer-associated fibroblast; TIL, tumor infiltrating lymphocytes

Table 2. Computing time for DeMixT. DeMixT was run on a simulated dataset consisting

of 50 samples and 500 genes using 2 or 20 threads. Of all genes, 400 belong to gene set

1 (G1) and the remaining 100 belong to gene set 2 (G2), as defined in our gene-set-based

component merging approach (see Figure 1b).

w/o CM w/ CM

Total Two-component step: G1 Three-component step: G2 Total

2 threads 16.1 h 37 min 48 min 85min

20 threads 2.5 h 6 min 8 min 14min
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Algorithm 1 Performing ICM for two-component

1: Parameter:

Sample-wise {⇡1,i}i : S
Gene-wise {µTg,�Tg}g : 2⇥G

2: Initialize:

{µTg,�Tg}Gg=1 = µ0,�0

3: for iteration t = 1, · · · , T do,

4: a. update {⇡1,i}Si=1

5: for each sample i = 1, · · · , S do parallel

6: update ⇡

(t)
1,i = argmax

GQ
g=1

h(yig |⇡1,i, {µ(t�1)
T ,�

(t�1)
T }Gg=1)

7: end for

8: b. update {µTg,�Tg}Gg=1

9: for each gene g = 1, · · · , G do parallel

10: update {µ(t)
Tg,�

(t)
Tg} = argmax

SQ
i=1

h(yig

���{⇡(t)
1 }Si=1, {µTg,�Tg})

11: end for

12: end for

Algorithm 2 Performing ICM for three-component

1: Parameter:

Sample-wise {⇡1,i,⇡2,i}i : 2⇥ S

Gene-wise {µTg,�Tg}g : 2⇥G

2: Initialize:

{µTg,�Tg}Gg=1 = µ0,�0

3: for iteration t = 1, · · · , T do,

4: a. update {⇡1,i,⇡2,i}Si=1

5: for each sample i = 1, · · · , S do parallel

6: update {⇡(t)
1,i ,⇡

(t)
2,i} = argmax

GQ
g=1

f(yig |{⇡1,i,⇡2,i}, {µ(t�1)
T ,�

(t�1)
T }Gg=1)

7: end for

8: b. update {µTg,�Tg}Gg=1

9: for each gene g = 1, · · · , G do parallel

10: update {µ(t)
Tg,�

(t)
Tg} = argmax

SQ
i=1

f(yig

���{⇡(t)
1 ,⇡

(t)
2 }Si=1, {µTg,�Tg})

11: end for

12: end for

1
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