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Abstract 19 

Antiretroviral therapy (ART) suppresses viral replication in people living with HIV. Yet, infected cells 20 
persist for decades on ART and viremia returns if ART is stopped. Persistence has been attributed to viral 21 
replication in an ART sanctuary and long-lived and/or proliferating latently infected cells. Using 22 
ecological methods and existing data, we infer that >99% of infected cells are members of clonal 23 
populations after one year of ART. We reconcile our results with observations from the first months of 24 
ART, demonstrating mathematically how a “fossil record” of historic HIV replication permits observed 25 
viral evolution even while most new infected cells arise from proliferation. Together, our results imply 26 
cellular proliferation generates a majority of infected cells during ART. Therefore, reducing proliferation 27 
could decrease the size of the HIV reservoir and help achieve a functional cure. 28 

Introduction 29 

Antiretroviral therapy (ART) limits HIV replication in previously uninfected cells leading to elimination of 30 
most infected CD4+ T cells.1 Yet, some infected cells persist and are cleared from the body at an 31 
extremely slow rate despite decades of treatment.2,3 There is debate whether infection remains due to 32 
HIV replication within a small population of cells4,5 or due to persistence of memory CD4+ T cells with 33 
HIV integrated into human chromosomal DNA.3,6,7 If the latter mechanism predominates, prolonged 34 
cellular lifespan and/or frequent cellular proliferation may sustain stable numbers of infected cells.  35 
 36 
To optimize HIV cure strategies, mechanisms sustaining infection must be understood. Persistent viral 37 
replication in a “sanctuary” where ART levels are inadequate implies a need to improve ART delivery.8 If 38 
HIV persists without replication as a latent reservoir of memory CD4+ T cells, then the survival 39 
mechanisms of these cells are ideal therapeutic targets.  Infected cell longevity might be addressed by 40 
reactivating the lytic HIV replication cycle9 and strengthening the anti-HIV cytolytic immune response, 41 
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leading to premature cellular demise. Anti-proliferative therapies could limit homeostatic or antigen 42 
driven proliferation.10-12 43 
 44 
These competing hypotheses have been studied by analyzing HIV evolutionary dynamics. Due to the 45 
high mutation rate of HIV reverse transcriptase and the large viral population size,13 HIV replication in 46 
the absence of ART produces large viral diversity.13-15 Over time, new strains become dominant due to 47 
continuous positive immunologic selection pressure against the virus. Repeated “selective sweeps” 48 
cause genetic divergence, or a positive molecular evolution rate,16 often measured by continual growth 49 
in genetic distance between the consensus strain and the founder virus.17-19  50 
 51 
A recent study documented new HIV mutants during months 0-6 of ART in three participants at a rate 52 
equivalent to pre-ART time points. New mutations were noted across multiple anatomic compartments, 53 
implying widespread circulation of evolving strains.4 One possible explanation for this data is the 54 
presence of a drug sanctuary in which ART levels are insufficient to stop new infection events.  55 
Alternative proposed interpretations are experimental error related to PCR resampling, or variable 56 
cellular age structure within the phylogenetic trees.20,21  57 
 58 
In other studies of participants on more prolonged ART (at least one year), viral evolution was not 59 
observed despite sampling of multiple anatomic compartments.22-25 Identical HIV DNA sequences were 60 
noted in samples obtained years apart,14,26,27 suggesting long-lived latently infected cells as a possible 61 
mechanism of HIV persistence.3,6,7,24,25 Clonal expansions of identical HIV DNA sequences were also 62 
observed, demonstrating that cellular proliferation generates new infected cells.4,12,24,28-30 Multiple, 63 
equivalent sequences were noted in blood, gut-associated lymphoid tissue (GALT), and lymph nodes, 64 
even during the first month of ART.24,29,30  65 
 66 
The majority of these studies relied on sequencing single genes including env, gag and pol: this approach 67 
may overestimate HIV clonality because mutations in other genome segments could go unobserved.17,31 68 
In addition, these studies also measured total HIV DNA. However, a majority of HIV DNA sequences have 69 
incurred deleterious mutations and do not constitute the true replication competent HIV reservoir.32,33 70 
To address these issues, a more recent study  utilized a comprehensive, whole-genome sequencing 71 
approach to confirm the presence of abundant replication competent sequence clones.34 In a separate 72 
cohort of patients, rebounding HIV sequences arose from replication competent clonal populations.35 73 
 74 
Another approach to define HIV clonality involves sequencing of the HIV integration site within human 75 
chromosomal DNA.36-40 While HIV tends to integrate into the same genes,39,41 it is extremely unlikely that 76 
two cellular infection events would result in HIV integration within precisely the same human 77 
chromosomal locus by chance alone.37 Thus, integration site analyses abrogate the challenge of 78 
overestimating clonality due to incomplete sequencing and provide an elegant surrogate for whole 79 
genome sequencing. Previous studies of integration sites found significant numbers of repeated 80 
integration sites, providing strong evidence that these infected cells arose from cellular proliferation.42,43 81 
These studies are not absolutely conclusive for HIV persistence because integration site sequencing 82 
cannot confirm or deny replication competency of the integrated virus.39 83 
 84 
While HIV sequence clonality has been widely observed, existing studies observed equivalent sequences 85 
in a minority (<50%) of observed sequences. Here, we demonstrate that this finding can be explained by 86 
incomplete sampling. Using tools adapted from ecology and data from two integration site studies36,37 87 
and a replication competent HIV DNA study,34 we show that nearly all observed unique sequences are 88 
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likely to be members of clonal populations which derived from cellular proliferation. We predict that the 89 
HIV reservoir consists of a small number of massive clones, and a massive number of small clones. 90 
 91 
Based on these results, we used a mechanistic mathematical model to reconcile apparent evolution 92 
during the early months of ART with apparent clonality after a year or more of ART. The model includes 93 
the major proposed mechanisms for HIV persistence: a drug sanctuary, long-lived infected cells, and 94 
proliferating infected cells. The model highlights that observed HIV evolution during the first 6 months 95 
of ART can be caused by serial observations of long-lived (or proliferated) cells that were once generated 96 
by viral replication. We suggest sampling sequences during early ART may result in detection of a 97 
positive molecular evolution rate due to the “fossil record” of past infections rather than current viral 98 
replication in a drug sanctuary. Based on observed cellular rates, model output after one week of ART 99 
shows that a majority of new infected cells are generated by proliferation.  100 
 101 
While it remains impossible to rule out a completely unobserved drug sanctuary, our combined 102 
approaches suggest that cellular proliferation predominantly drives observed HIV persistence on ART. 103 
Consequently, anti-proliferative therapies embody a meaningful therapeutic approach for HIV cure.  104 

Results 105 

Defining genetic markers of HIV persistence. During untreated infection, HIV integrates its DNA copy 106 
into human chromosomal DNA in each infected CD4+ T cell.44 A majority of new infections are marked 107 
by novel mutations due to the high error rate of HIV reverse transcriptase and integration into a unique 108 
chromosomal location (Fig 1). Therefore, continual accrual of new mutations during ART would suggest 109 
that ongoing viral replication, perhaps due to inadequate drug delivery to certain micro-anatomic 110 
regions, allows HIV to persist during ART.  111 
 112 
In a subset of infected CD4+ T cells, HIV replication does not progress beyond chromosomal integration 113 
and the virus enters latency.44 If the same HIV sequences (or integration sites) are found over long time 114 
intervals, either cellular longevity or proliferation of latently infected cells allowed HIV to persist. If 115 
equivalent HIV sequences with identical chromosomal integration sites are identified in multiple cells, 116 
then these viruses were generated via cellular proliferation, rather than HIV replication (Fig 1).  117 
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 118 
Figure 1. Possible mechanisms for HIV reservoir persistence and their genetic signatures. Viral 119 
replication despite ART would lead to accrual of new mutations (color change) and novel chromosomal 120 
integration sites in newly infected cells. Alternatively, longevity of latently infected cells maintains 121 
sequences and integration sites. Finally, cellular proliferation of latently infected cells produces clonal 122 
populations of equivalent HIV sequences and integration sites.  123 
 124 
Throughout the paper, we contrast the impact of HIV replication and cellular proliferation on HIV 125 
persistence during ART by quantifying the numbers or fractions of unique sequences and equivalent 126 
sequences. Human DNA polymerase has much higher copying fidelity than HIV’s reverse transcriptase. 127 
Thus, we assume cells whose origin is viral replication will contain unique sequences while cells whose 128 
origin is cellular proliferation will contain equivalent sequences and be members of clonal populations. 129 
 130 
Fractions of equivalent total HIV DNA sequences may be extrapolated to replication competent 131 
sequences. Most integrated HIV DNA has accrued mutations that render the virus replication 132 
incompetent. Quantification of total HIV DNA copies therefore overestimates the size of the replication 133 
competent reservoir by 2-3 orders of magnitude relative to viral outgrowth assays.32 Replication 134 
incompetent, equivalent HIV sequences are commonly present in multiple cells24,29. Precisely because 135 
these sequences are terminally mutated, they are concrete evidence that some other mechanism 136 
(cellular proliferation) copies HIV DNA. The proportion of clonal sequences is similar when analysis 137 
includes only replication competent sequences, or all HIV DNA.34 As a result, while total HIV DNA may 138 
not predict quantity of replication competent viruses, estimates of clonal frequency using total HIV DNA 139 
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might be extrapolated to the smaller replication competent reservoir.33 We use total HIV DNA as it 140 
allows a greater sample size for analysis. 141 
 142 
Clonal HIV DNA sequences and clonal replication competent sequences are detectable at various time 143 
points during ART. To examine the structure of clonal total and replication competent HIV DNA, we 144 
ranked observed sequences from several studies according to their abundance: rank-abundance curves 145 
are ordered histograms denoted 𝑎(𝑟) such that 𝑎(1) is the abundance of the largest clone. These curves 146 
facilitate identification of quantities of interest like the richness 𝑅 = max	(𝑟), sample size 𝑁 = 	∑ 𝑎(𝑟). , 147 
and the number of singletons 𝑁/ =	∑ 𝐼[𝑎(𝑟) = 1. ]. Here 𝐼[⋅] is the indicator function equal to 1 when 148 
its argument is true and 0 otherwise. 149 
 150 

151 
Figure 2. Evidence for clonal HIV sequences. Raw data rearranged as rank abundance curves. A. Total 152 
HIV DNA from integration site data (Wagner et al., and Maldarelli et al.)36,37. Each panel represents a 153 
participant, and each marker a duration of ART (indicated in years in the panel legend). W and M in the 154 
panel headings distinguish the study. B. Replication competent HIV DNA (Hosmane et al.)34. Each panel 155 
represents a participant. Participants used for analyses below have more than 20 sequences observed 156 
(noted by asterisks in panel headings).  C & D. Sample size of HIV DNA (C) and replication competent HIV 157 
DNA (D). Measuring total HIV DNA increases the number of observed unique sequences (observed 158 
sequence richness). The number of total sequences at each time point is plotted against the observed 159 
sequence richness. For all HIV DNA samples and when 𝑁 > 20 for replication competent HIV DNA, the 160 
observed richness is always less than the sample size (to the right of the dotted line y=x), owing to the 161 
presence of sequence clones. E. Sample rarefaction curves for all 17 time points from the 8 study 162 
participants in A demonstrate the observed number of distinct integration sites as a function of HIV DNA 163 
sequence experimental sample size. F. Sample rarefaction curves for all 5 study participants in B 164 
demonstrate the observed number of distinct replication competent HIV DNA sequences as a function of 165 
sequence sample size. In both cases, at low sample size, distinct sequences are commonly observed with 166 
each new sample. As sample size increases, distinct sequences are increasingly less likely to be detected 167 
owing to the presence of repeatedly detected sequence clones. As more and more unique sequences are 168 
detected, the curves would flatten until all unique sequences are detected and the curve is completely 169 
flat. 170 
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 171 
Wagner et al. sampled HIV DNA in three participants at three time points 1.1-12.3 years following ART 172 
initiation.37 Maldarelli et al. sampled HIV DNA from five participants at one to three time points 0.2-14.5 173 
years following ART initiation.36 In these studies, 1-16% (mean: 7%) of sequences were members of 174 
observed sequence clones (Fig 2A),36,37 meaning that HIV DNA was identified in the same chromosomal 175 
integration site in at least two cells. The absolute number of observed sequence clones 𝑁78/ in the 17 176 
samples ranged from 1-150 (mean: 15). The remaining sequences were identified in a specific 177 
chromosomal integration site in only one cell (observed singletons).37 For total HIV DNA, at each 178 
participant time point, certain sequences predominated: the largest observed sequence clone contained 179 
2-62 sequences (mean: 11), accounting for 3-26% (mean= 9%) of total observed sequences.  180 
 181 
Hosmane et al. sequenced replication competent HIV isolates from 12 study participants on ART: 0-28% 182 
(mean: 11%) of sequences were members of observed sequence clones (Fig 2B).34 The lack of detected 183 
clones in 3 participants may reflect their low sequence sample size.  Participants with fewer than 20 184 
total sequences were therefore excluded from individual analyses described below but were included 185 
for population level evaluations. For replication competent HIV DNA in the 5 persons having sequence 186 
sample-size 𝑁 > 20, certain sequences dominated: the largest observed sequence clone contained 3-9 187 
sequences (mean: 6.8), accounting for 11-42% (mean= 28%) of total observed sequences. The number 188 
of non-singleton sequence clones 𝑁78/ in the 5 samples ranged from 1-7 (mean: 3.8).  189 
 190 
Sequence sampling depth is low relative to total population size. There was a higher number of 191 
experimentally detected sequences (𝑁) for total HIV DNA (Fig 2C) than for replication competent HIV 192 
(Fig 2D). For total HIV DNA, the number of observed unique sequences (𝑅9:;  or the observed sequence 193 
richness) was always less than 𝑁  (Fig 2C) due to clonal populations. Where 𝑁 > 20 for replication 194 
competent viruses, 𝑅9:;  was always less than 𝑁, again due to the presence of clones (Fig 2D). There was 195 
a higher 𝑅9:;  as the sequence sample size increased (Fig 2C&D), suggesting that detection of unique 196 
clones increases with deeper sampling.  197 
 198 
Thus, we can infer that further sampling would likely uncover new unique sequences. To quantify the 199 
relationship between sample size and discovery, we generated sample rarefaction curves (see Methods 200 
and Supplementary Methods) using the rank-abundance distributions (Fig 2E&F). These curves 201 
interpolate the data to demonstrate the likely discovery of new sequences as sampling increases up to 202 
the sample size of the original experiment. At low sample size, a new sequence is likely to be found with 203 
each additional sample. As sampling increases, the chance of sampling a previously documented 204 
sequence increases, and the slope of the rarefaction curve begins to flatten. As sample size approaches 205 
the true richness of the population, the curve plateaus and few new unique sequences remain to be 206 
sampled. Current sampling depth remains on the steep, initial portion of the curve.  207 
 208 
Ecological estimates of lower bounds on true HIV sequence richness from limited samples. To estimate 209 
a lower bound for true sequence richness, we used the Chao1 estimator, a nonparametric ecologic tool 210 
that uses frequency ratios of observed singletons 𝑁/  and doubletons 𝑁<  (see Methods and 211 
Supplementary Methods).45,46 For the HIV reservoir, theoretical values for true richness range from one 212 
(if all sequences were identical and originated from a single proliferative cell) to the total population size 213 
(if all sequences were distinct and originated from error-prone viral replication). We found estimated 214 
lower bounds for true sequence richness exceeded observed richness, typically by an order of 215 
magnitude in both total HIV DNA and replication competent HIV (Fig 3). These initial lower bound 216 
estimates for sequence richness are far lower than previously estimated population sizes for HIV DNA 217 
and replication competent HIV DNA sequences,2,3,6 suggesting that clones may predominate.  218 
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  219 
 220 

221 
Figure 3. The actual total number of distinct HIV sequences far exceeds the observed total number of 222 
distinct HIV sequences during ART.  Observed sequence richness underestimates the true HIV sequence 223 
richness. For both data sources, Chao1 provides an estimate of the lower bound (min) of true sequence 224 
richness (error bars are asymmetric confidence intervals, see Supplementary Methods). In all cases, 225 
Chao1 estimates are above observed values. Our modeling technique estimates a much higher upper 226 
bound (max) for true sequence richness. Nevertheless, the total HIV sequence population size (dashed 227 
lines: 109 for total HIV DNA and 107 for replication competent HIV) is 1-2 orders of magnitude above the 228 
upper bound estimates for sequence richness, suggesting substantial clonality of HIV sequences. 229 
 230 
A majority of observed HIV sequences are members of large proliferative clones. The Chao1 estimator 231 
does not include information about the total population size. However, estimates for the total number 232 
of total DNA and replication competent sequences in the entire reservoir exist.33 Using that additional 233 
information, we developed an ecologic model to extrapolate the true rank-abundance of HIV sequences 234 
for each participant time point.  235 
 236 
Based on the observation that observed data was roughly log-log-linear (Figure 2A), we chose a power-237 
law model for rank-abundance: 𝑎(𝑟) ∝ 𝑟>? . Other functional forms were explored (exponential, linear, 238 
and biphasic power law) but were worse or equivalent for data fitting (not shown). Our model requires 3 239 
parameters, the power law exponent (𝛼), the sequence population size (𝐿), and the sequence richness 240 
(𝑅). Model fitting is described in the Methods with additional detail in the Supplementary Methods. 241 
Briefly, we generated 2,500 possible models for each data set, choosing a plausible fixed population size 242 
from available data ( 𝐿 = 10B  for HIV DNA and 𝐿 = 10C  for intact, replication competent HIV 243 
DNA).2,3,6,33,47 We then recapitulated the experiment by taking 𝑁 random samples from each model 244 
distribution and comparing sampled data to experimental data to find optimal model parameters. This 245 
resampling method correctly inferred the power law exponent from simulated power law data 246 
(Supplementary Fig 1).  247 
 248 
However, for experimental data we could not precisely identify 𝑅. Recognizing this uncertainty, we 249 
developed an integral approximation to estimate the largest possible richness (least clonality) given 𝐿 250 
and the best-fit 𝛼 (derivation in Supplementary Methods and illustration in Supplementary Fig 2). Then, 251 
using the lower bound estimate from the Chao1 estimator, we were able to fully constrain the estimate 252 
of true HIV sequence richness in the reservoir. Our maximal estimates for sequence richness were 253 
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notably several orders of magnitudes higher than Chao1 estimates (Fig 3) but lower than the total 254 
sequence population size (𝐿). 255 
 256 
Our method demonstrated excellent fit to cumulative proportional abundances of observed clones for 257 
total HIV DNA (Fig 4A) and replication competent HIV DNA (Fig 5A). For total HIV DNA (Fig 4B) and 258 
replication competent HIV DNA (Fig 5B), optimal fit was noted within narrow ranges for the power law 259 
slope parameter but across a wide possible range of true sequence richness. Using the top 5 best fit 260 
models, we generated extrapolated distributions of the entire HIV sequence rank-abundance for each 261 
participant time point. We observed similar estimates for the population size of the largest clones, 262 
which account for approximately 50% of the reservoir (200-2,000 clones for HIV DNA in Fig 4C and 2-7 263 
clones for replication competent HIV DNA in Fig 5C). However, the tail of the reservoir, which consists of 264 
thousands of smaller clones, varied considerably across the parameter sets with 900-100,000 possible 265 
clones accounting for 90% of the HIV DNA and 100-2,000 possible clones accounting for 90% of 266 
replication competent HIV. This variability reflects the fact that true sequence richness is only partially 267 
identifiable using our procedure. 268 
 269 
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270 
Figure 4. Ecologic modeling suggests a majority of HIV DNA sequences are members of sequence 271 
clones. To model the true rank abundance distribution of the HIV reservoir, we used a power law model 272 
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and recapitulated experimental sampling (sample size equal to the experimental sample size) from 2,500 273 
theoretical power law distributions to fit the best model to participant data in Fig 2A. Theoretical 274 
distributions varied according to the slope of the power law and the true sequence richness but were 275 
fixed at 109 total HIV DNA sequences. A. Five best model fits to cumulative proportional abundance 276 
curves from a single representative participant (WR, 12 years on ART). Black circles represent the 277 
experimental data; the 5 colored model lines are superimposed based on virtually equivalent fit to the 278 
data. B. Heat diagram representing model fit according to power law exponent 𝛼 and true sequence 279 
richness 𝑅 with best fit noted by minimum error score (blue color, see details of calculation in results 280 
above); black shaded areas represent parameter sets excluded based on the Chao1 estimator (lower 281 
bound on sequence richness) and mathematical constraints of the power law (upper bound for sequence 282 
richness). A wide range of values for sequence richness allow excellent model fit while the power law 283 
exponent is well defined. C. Extrapolations of the best-fit cumulative distribution function to the entire 284 
pool of 109 infected cells; under the most conservative estimates, the top 200,000 ranked clones 285 
constitute the entire reservoir. D. Extrapolations of the best fit power law to the entire pool of 109 286 
infected cells; the top 1000 clones consist of >104 cells each. E. Extrapolations of the best fit cumulative 287 
distribution function to the entire pool of 109 infected cells for all participant time points in Fig 2A; we 288 
assume the maximum possible sequence richness in each case and still note a predominance of sequence 289 
clones. F. Extrapolations of the best-fit power law to the entire pool of 109 infected cell for all 290 
participants in Fig 2A; the top 1,000 clones each consist of >104 cells each. A large number of clones 291 
(~106) contain many fewer cells (<100). 292 
 293 
Even under the most conservative assumptions (maximum possible true sequence richness in Fig 3), the 294 
vast majority of sequences were predicted to be members of true sequence clones. For the participant 295 
in Fig 4C, a maximum of 200,000 clones were needed to reach 100% cumulative abundance for HIV DNA. 296 
The ratio of estimated true sequence richness to the total number of infected cells 𝑅/𝐿 with HIV DNA 297 
(~105: 109) represents an upper limit on the fraction of sequences that are true singletons: we estimate 298 
that greater than 99.9% of infected cells contain true clonal sequences (Fig 3).  299 
 300 
Similarly, the ratio of estimated true sequence richness to the total number of infected cells with 301 
replication competent HIV for the participant in Fig 5C was 105:107. Hence, at least 99% of cells contain 302 
true clonal sequences (Fig 3). Of note, this ratio is stable regardless of assumed reservoir size.  For 303 
instance, if we assume a true reservoir size of 106, then our estimate of true sequence richness is ~104. 304 
 305 
The model fitting procedure was used on all data in Fig 2. We biased against a clonally dominated 306 
reservoir to the greatest extent possible by selecting the best fitting power law exponent and then 307 
calculating the maximum possible sequence richness (Fig 3). The power law slope parameter was on 308 
average lower across participants for HIV DNA (𝛼 = 0.9 ± 0.1) than for replication competent HIV DNA 309 
(𝛼 = 1.4 ± 0.2). As a result, the predicted cumulative distribution of HIV DNA (Fig 4E) was often 310 
concave-up with log rank as compared to concave-down with log rank noted for replication competent 311 
HIV DNA (Fig 5E), suggesting that a smaller number of extremely large clones might make up a higher 312 
proportion of the replication competent HIV reservoir.  313 
 314 
For both HIV DNA (Fig 4F) and replication competent virus (Fig 5F), the top 100 clones in all participants 315 
are estimated to be massive (>105 and >104 cells respectively). However, there are also large numbers of 316 
much smaller clones with fewer than 1,000 cells (>106 and >104 clones respectively). In contrast to 317 
observed data, a majority of sequences are clonal, suggesting that proliferation is the major generative 318 
mechanism of persistent HIV-infected cells.  319 
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 320 
Figure 5.  Ecologic modeling suggests a majority of replication competent HIV sequences are members 321 
of sequence clones. To recapitulate experimental conditions in Fig 2B, we performed in silico sampling 322 
(sample size equal to the experimental sample size) from 2,500 theoretical power law distributions of 323 
replication competent HIV clone size distributions sorted by rank. Theoretical distributions varied 324 
according to the exponent of the power law model and the true sequence richness and were fixed at a 325 
reservoir size of 107 replication competent HIV DNA sequences. A. Five best model fits to cumulative 326 
proportional abundance curves from a single representative participant (S10). Black circles represent the 327 
experimental data; the 5 colored model lines are from five separate parameter sets. B. Heat map 328 
representing model fit according to power law slope 𝛼 and true sequence richness 𝑅 with best fit noted 329 
by lowest error (blue color); the black shaded area represents parameter sets excluded based on 330 
mathematical constraints of the power law (upper bound on sequence richness). A wide range of values 331 
for sequence richness (<105 sequences) allow excellent model fit while power law slope falls within a 332 
narrow range. C. Extrapolations of the best-fit cumulative distribution function to the entire pool of 107 333 
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infected cells; under the most conservative estimates, the top 105 ranked clones constitute the entire 334 
reservoir. D. Extrapolations of the best fit power law to the entire pool of 107 infected cells; the top 100 335 
clones consist of >104 cells each. E. Extrapolations of the best fit cumulative distribution function to the 336 
entire pool of 107 infected cells for all participants and time points (see original data in Fig 2B); we 337 
assume the largest possible observed sequence richness in each case and still note a predominance of 338 
sequence clones. F. Extrapolations of the best-fit power law to the entire pool of 107 infected cell for all 339 
participants in Fig 2B; the top 100 clones again consist of >104 cells each.  A large number of clones 340 
(~104) contain many fewer cells (<100). 341 
 342 
Modeling combined population data gives similar results as individual fitting. To increase sample size 343 
and eliminate bias related to excluding participants with low sample sizes, we combined results from all 344 
participant time points for HIV DNA (17 time points) and replication competent HIV (12 time points) into 345 
single rank order distribution curves. We then fit the power law models to both sets of data 346 
(Supplementary Fig 3A&B, E&F). We again noted a narrow range of possible values for the power law 347 
exponent and a large range of possible values for true sequence richness. The exponent was again 𝛼 <348 
1 for total HIV DNA and 𝛼 ≈ 1 for replication competent virus (Supplementary Fig 3A&E), leading to 349 
concave-up and linear relationships between cumulative proportional abundance and log rank, 350 
respectively (Supplementary Fig 3C&G). We estimated that at least 99.9% of cells with HIV DNA 351 
(Supplementary Fig 3C) and 99.8% of cells with replication competent HIV (Supplementary Fig 3G) 352 
contain true clonal sequences. The top 100 HIV DNA clones (Supplementary Fig 3D) and replication 353 
competent clones (Supplementary Fig 3H) contained >106 and >104 cells respectively.  354 
 355 
Using the population level data, we generated sample rarefaction curves from the extrapolated rank-356 
abundance curves. These curves show that after 10,000 sequences were sampled, the observed 357 
sequence richness would continue to increase with more sampling (Supplementary Fig 4). Even if 358 
experimental sample sizes could be increased 100-fold from the present data, sequences would 359 
continue to be dominated by those from large clones. Our statistical inference approach is therefore 360 
necessary to provide a more realistic estimate of the clonal distribution of the HIV reservoir. 361 
 362 
A mechanistic model that includes both an ART sanctuary and cellular proliferation can reconcile 363 
observations from early and late ART. Our analyses above identify the critical role of cellular 364 
proliferation in generating infected cells after a year of ART but do not capture the dynamic mechanisms 365 
underlying this observation or explain possible evidence of viral evolution during months 0-6 of ART.4 366 
We therefore developed a viral dynamic mathematical model. Our model (Fig 6A) consists of differential 367 
equations, described in detail in the Methods. Most model parameter values are obtained from the 368 
literature (Table 1). 369 
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 370 
Figure 6. A mechanistic model recapitulates HIV RNA decay and predicts rough equivalence of virus 371 
produced by the sanctuary and virus produced by a reactivating reservoir up until months 4-6 of ART. 372 
A. Model schematic: 𝐼/ cells produce virus, pre-integration latent cells 𝐼< are longer lived and eventually 373 
transition to 𝐼/,  and long-lived latently infected cells 𝐼L(M)  proliferate and die at measured rates 374 
depending on cell phenotype 𝑗 (e.g. effector memory, central memory, naive. Sanctuary cells 𝐼O allow 375 
ongoing HIV replication despite ART. Parameters and their values are discussed in the Methods and listed 376 
in Sup Table 1. B. The mathematical model recapitulates observed HIV RNA data (Palmer et al.51) over 377 
weeks and years of ART. 𝑉/ is virus derived from 𝐼/ while 𝑉O is derived from 𝐼O. C. 𝐼< and 𝐼L become the 378 
predominant cell types early during ART. 𝐼O remains very low throughout the duration of ART which is 379 
necessary to explain the lack of detectable viremia on fully suppressive ART. 380 
 381 
Briefly, we classify rapid death	𝛿/ and viral production within actively infected cells 𝐼/. Cells with longer 382 
half-life 𝐼< are activated to 𝐼/ at rate 𝜉<. 𝐼<	may represent CD4+ T cells with a prolonged pre-integration 383 
phase, but their precise biology does not affect model outcomes.48 The state 𝐼L(M)	represents latently 384 
infected reservoir cells of phenotype 𝑗, which contain a single chromosomally integrated HIV DNA 385 
provirus.44 𝐼L  reactivates to 𝐼/  at rate 𝜉L .49 The probabilities of a newly infected cell entering 386 
𝐼/, 𝐼<, 𝐼L(M),	are 𝜏/, 𝜏<, 𝜏L(M) . Because we are focused on the role of proliferation, we assume sub-387 
populations of 𝐼L,12 including effector memory (Tem), central memory (Tcm), and naïve (Tn) CD4+ T cells, 388 
which have been experimentally proven to turn over at different rates 𝛼L(M), 𝛿L(M).12,42,43  389 
 390 
ART potency 𝜖 ∈ [0,1] characterizes decrease in viral infectivity due to ART.50 Other dynamic features of 391 
infection such as death rate of infected cells, latent cell proliferation rate and reactivation rates of latent 392 
cells, are unchanged on ART. In our simulations, the basic reproductive number becomes 𝑅V(1 − 𝜖) on 393 
ART and is <1 when 𝜖 > 0.95, meaning that each cell infects fewer than one other cell and viral load 394 
declines from its previous steady state until becoming undetectable. Only short stochastic chains of new 395 
infection can occur.  396 
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 397 
To make a model inclusive of viral evolution despite ART, we allow for the possibility of a drug sanctuary 398 
state (𝐼O) that reproduces with reproductive number 𝑅V(1 − 𝜖O)~8. In the drug sanctuary, ART potency 399 
is assumed to be negligible (𝜖O = 0) such that the sanctuary reproductive number is equivalent to the 400 
value from a model without ART. Target cell limitation or a local immune response must result in a 401 
sanctuary viral set point to prevent infected cells and viral load from growing exponentially. The 402 
sanctuary size must also be limited (0.001-0.01% of the original burden of replicating HIV) to achieve 403 
realistic viral decay kinetics.51 In the absence of contradictory information, we assumed homogeneous 404 
mixing of 𝑉/ and 𝑉O in blood and lymph nodes.4

 405 
 406 
Based on the observation that activated, uninfected CD4+ T cells (S), the targets for replicating HIV, 407 
decrease in numbers after initiation of ART we also simulate the model with and without the possibility 408 
of slow target cell decline within the HIV drug sanctuary. We approximate this process with an 409 
exponential decay of target cells with rate 𝜁 (per day).52,53 The decay rate is lower than concurrent decay 410 
rates measured from HIV RNA50,51,54 because abnormal T cell activation persists for more than a year 411 
after ART.53 412 
 413 
The model accurately simulates viral dynamics during ART. We fit the model to ultra-sensitive viral load 414 
measurements collected from multiple participants in Palmer et al.51 We included experimentally 415 
derived values for most parameter values (Table 1), solving only for activation rates 𝜉< and 𝜉L by fitting 416 
to viral load. Simulations reproduce three phases of viral clearance (Fig 6B) and predict trajectories of 417 
infected cell compartments (Fig 6C). Of note, the model is able to achieve fit to the data with different 418 
assumptions of starting values of the three infected cell compartments (the relative proportion of which 419 
are unknown pre-ART): in this circumstance, we arrive at different values of 𝜉< and 𝜉L without impacting 420 
overall model conclusions regarding the HIV reservoir. The size of the sanctuary (expressed as the 421 
fraction of infected cells 𝜑O) is only constrained to be below a value <10-5 to ensure accurate model fit 422 
for a static sanctuary model.  423 
 424 
Cellular proliferation sustains HIV infection during ART whether or not a small drug sanctuary exists. 425 
We next used the model to estimate the fraction of cells generated by cellular proliferation versus viral 426 
replication. We conservatively assumed that prior to ART all infected cells were generated by viral 427 
replication. Then, we tracked the number of cells whose origin was replication and the number whose 428 
origin was cellular proliferation. Without directly simulating a phylogeny, the fraction of all cells that 429 
derive from replication provides a surrogate for the expected fraction of cells that would give a signal of 430 
evolution. We also distinguish the current replication percentage, the fraction of infected cells currently 431 
being generated from viral replication, from the net replication percentage, the fraction of total infected 432 
CD4+ T cells at a given time whose origin was HIV replication. This distinction allows us to contrast the 433 
net number of surviving, historically-infected cells with the number of cells that are presently being 434 
generated via HIV infection. Because many long-lived cells were once generated by HIV infection, the 435 
net replication percentage may exceed the current replication percentage. 436 
 437 
We then simulated the model under several plausible sanctuary and reservoir conditions to assess the 438 
relative contributions of infection and cellular proliferation in sustaining infected cells. We considered 439 
different reservoir compositions based on evidence that effector memory (Tem), central memory (Tcm) 440 
and naïve (Tn) cells proliferate at different rates and that distributions of infection in these cells differ 441 
among infected patients.12,42,43 Further, because a drug sanctuary has not been observed, its true 442 
volume is unknown and may vary across persons. We therefore conducted simulations with a static 443 
sanctuary, a slowly diminishing sanctuary, and no drug sanctuary (Fig 7A). 444 
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 445 

446 
Figure 7. The vast majority of infected cells are generated via proliferation within 6 months of ART 447 
initiation. Model simulations contrast the number of cells generated by viral replication with those 448 
generated by cellular proliferation. The fraction of cells generated by replication at any time point is 449 
referred to as the current replication percentage. The fraction of cells that remain alive whose ultimate 450 
origin was viral replication is referred to as the net replication percentage. Different assumptions 451 
regarding sanctuary (𝐼O) and latent cell populations (𝐼L) were simulated corresponding to columns. A. 452 
Moving left to right, we assume a static drug sanctuary, a slowly declining drug sanctuary and no drug 453 
sanctuary. Pie charts on the right indicate the reservoir composition by T cell phenotypes and correspond 454 
with colored lines in B-D. B. Under all assumptions, once ART is initiated, most new infected cells arise 455 
due to cellular proliferation as opposed to HIV replication after 12 months of ART. C. New latently 456 
infected reservoir cells (𝐼L) are generated almost entirely by proliferation soon after ART is initiated 457 
under all conditions. D. The observed proportion of infected cells originally generated by HIV infection 458 
rather than cellular proliferation will overestimate the actual ongoing proportion during the first 6 459 
months of ART assuming a small or large sanctuary volume. This trend is more notable when the 460 
reservoir contains a higher proportion of slowly proliferating naïve T cells. 461 
 462 
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Regardless of assumed pre-treatment reservoir composition and sanctuary size, the contribution of 463 
replication to generation of new infected cells is negligible after one year of ART. The contribution of 464 
new replication diminishes rapidly with time on ART regardless of whether a sanctuary is assumed (Fig 465 
7B). The fraction of long lived latently infected cells (𝐼L) generated by viral replication (Fig 7C, note log 466 
scale) is negligible within days of ART initiation. This finding captures the extent of the impact of 467 
proliferation even when a sanctuary is assumed. 468 
 469 
Observable HIV DNA sequence evolution during early ART can represent a fossil record of prior 470 
replication events. In all simulations, the net fraction of cells generated from viral replication rather 471 
than cellular proliferation at 6 months of ART (5-25% in Fig 7D) is higher than the current percentage 472 
generated by replication (Fig 7B). A higher fraction of slowly proliferating Tn cells exacerbates the 473 
difference between historical and contemporaneous generation of infected cells (Fig 7D, green line). 474 
Because the net fraction is what will be observed experimentally, the model reveals why ongoing 475 
evolution might be observed even while the dominant mechanism sustaining the reservoir is cellular 476 
proliferation. In keeping with the first section of our paper, after 12 months of ART, the net and current 477 
percentage of infected cells generated by HIV replication become negligible for all simulated parameter 478 
sets. Importantly, the lag between net and current viral replication generation emerges whether or not 479 
a small drug sanctuary is included in the model. 480 
 481 
We refer to the phenomenon that long-lived cells may contain signatures of past viral replication as the 482 
“fossil record”.  To emphasize the concept, the fossil record finding is qualitatively illustrated in Fig 8 483 
using a population of 30 infected cells. At 3 time points following the initiation of ART, we compare the 484 
net and current percentage of cells generated by viral replication. At day 60, 30% of cells remain that 485 
were originally generated by viral replication. This means 30% of observed sequences might produce a 486 
signal of evolution. However, at that time an overwhelming majority of new infected cells are being 487 
generated by proliferation.  488 
 489 
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490 
Figure 8. Qualitative illustration of the fossil record phenomenon. In an example population of 30 491 
infected cells, the proportion of infected cells that were once generated by HIV replication (the net 492 
replication percentage, or “fossil record” of HIV replication) remains >30% for the first 2 months of ART. 493 
However, in this time, the proportion of cells newly generated by HIV replication (shaded box) becomes 494 
negligible. The net fraction is observed experimentally, so our simulations indicate a contemporaneous 495 
representation of the HIV reservoir cannot be observed until the “fossil record” is completely washed out, 496 
sometime between 6 months and a year of ART. 497 
 498 
Different factors drive net (observed) and current replication percentage during early ART. We next 499 
performed sensitivity analyses to identify parameters that impact the timing of transition from HIV 500 
replication to cellular proliferation as a source for new and observed infected cells. Under all parameter 501 
assumptions, the majority of new infected cells arose from proliferation after a year of chronic ART (Fig 502 
9A). Only the sanctuary decay rate (𝜁) had an important impact on generation of new infected cells. Our 503 
analysis included a sanctuary in which target cell availability did not decay at all. In that scenario, 5-10% 504 
of new infected cells were generated by HIV replication after a year of ART (Fig 9A), which is not 505 
consistent with lack of viral evolution observed at this timepoint. Rapid disappearance of HIV replication 506 
as a source of new infected cells was identified regardless of initial reservoir volume, drug sanctuary 507 
volume, ART efficacy, and reservoir composition (fraction of Tem, Tcm, and Tn).  508 
 509 
The net replication percentage was completely unaffected by the decay rate of target cells within the 510 
drug sanctuary.  Only an increase in the percentage of slowly proliferating reservoir cells (Tn) predicted 511 
an increase in the net replication percentage (Fig 9A). The drivers of current infected cell and net 512 
infected cell origin therefore differed completely, highlighting the major differences between observed 513 
sequence data and contemporaneous mechanisms generating new infected cells.  514 
 515 
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516 
Figure 9. Transition from replication to proliferation as the dominant mechanism of HIV persistence 517 
during ART occurs under a wide range of parameter assumptions. A-C. See Methods for complete 518 
simulated parameter ranges. A. Local sensitivity analysis (green: current infection, red: net infection) 519 
revealed no meaningful difference in percentage of new infected cells generated by viral replication after 520 
a year of ART despite variability in initial reservoir volume 𝐼L(0), sanctuary fraction 𝜑O , and ART 521 
effectiveness in and out of the sanctuary (𝜖O  and 𝜖). Only an extremely low, or zero, sanctuary decay rate 522 
𝜁 predicted that a meaningful percentage (25%) of infected cells would be newly generated by HIV 523 
replication at one year, despite the fact that signals of evolution are not typically observed at this 524 
timepoint. Including a high percentage of slowly proliferating naïve CD4+ T cells (Tn) in the reservoir 525 
alters the percentage of net, but not current, replication percentage. B. 50 examples from 1,000 global 526 
sensitivity analysis simulations. HIV replication accounted for fewer than 25% of current and net infected 527 
cells after a year of ART in a majority of simulations. C. The parameters most correlated with current and 528 
net replication percentage at 1 year of ART are different. Current replication percentage inversely 529 
correlates with sanctuary decay rate while net (observed) replication percentage positively correlates 530 
with reservoir composition (the fraction of naïve latently infected cells). Correlations are measured with a 531 
Spearman correlation coefficient. 532 
 533 
To confirm these results, we simulated 104 possible patients in a global sensitivity analysis in which all 534 
parameter values were simultaneously varied. A rapid transition to proliferation as the source of new 535 
infected cells occurred during year one of ART in a majority of simulated patients, and the same 536 
variables correlated significantly with net and current replication percentage, respectively (Fig 9B&C). 537 
Overall, this analysis does not rule out the possibility of a drug sanctuary but does confirm that its 538 
relative impact compared to cellular proliferation is likely to be minimal. 539 

Discussion 540 

To eliminate HIV infected cells during prolonged ART, it is necessary to understand the mechanisms by 541 
which they persist. In this paper, we used existing data and two methods – inference of HIV clone 542 
distributions and mechanistic mathematical modeling – to determine that a majority of infected cell 543 
persistence is due to cellular proliferation rather than HIV replication. These conclusions suggest 544 
strategies that enhance ART delivery to anatomic drug sanctuaries are less likely to be effective at 545 
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reducing infected cell burden relative to reservoir reduction strategies. In particular, antiproliferative 546 
therapies provide an ideal response to the observed dominance of proliferation. 547 
 548 
In the first part of the paper, we used existing data to infer the true clonal distributions within the entire 549 
reservoir of HIV sequences in infected participants on long term ART. While the raw data indicate 550 
substantial fractions of observed singleton sequences, when the total reservoir size is considered, these 551 
observed singletons are revealed to be predominately members of clonal populations. In fact, the HIV 552 
reservoir appears to be defined by a rank-abundance distribution of clone sizes that can be roughly 553 
approximated as a power-law relationship. This distribution implies that a small number of massive 554 
clones, and a massive number of small clones, comprise a large percentage of sequences.   555 
 556 
A power-law distribution can be created when a heterogeneous population grows multiplicatively with a 557 
widely variable growth rate.55 This suggests that the distribution of clone sizes in the reservoir is likely to 558 
have a mechanistic basis. It is plausible, though unproven, that such variable growth arises from rapid 559 
bursts of CD4+ T cell proliferation due to cognate antigen recognition. HIV integration into tumor 560 
suppression genes could also account for some observed clonal dominance.36,37 Smaller clones may arise 561 
from homeostatic proliferation, or less frequent exposure to smaller amounts of cognate antigen. 562 
 563 
Another consequence of our inference is that we can more precisely define the mechanism sustaining 564 
equivalent sequences observed in longitudinal samples separated by many years. While we cannot rule 565 
out cellular longevity as a cause of HIV persistence in certain cells, the observation of multiple clonal 566 
sequences could not arise from purely long-lived latently infected cells. In fact, our analysis suggests that 567 
most observed singlet sequences arise from resampling clonal populations that have undergone many 568 
rounds of proliferation. 569 
 570 
The first analysis does not include time-dynamics in the reservoir. Consequently, in the second part of 571 
the paper we develop a mechanistic model to reconcile observations from early and late ART. This 572 
model is the first to include the three main mechanistic hypotheses for reservoir persistence: an ART 573 
sanctuary, long-lived latent cells, and proliferation of latent cells. The model recapitulates known HIV 574 
RNA decay kinetics while tracking cells that originate from ongoing replication and cellular proliferation.   575 
 576 
The model helps to explain how a “fossil record” of evolution would be observed early during ART, 577 
whether or not a small drug sanctuary exists. The model tracks both the fraction of cells that were 578 
generated by viral replication at a given time (current replication percentage) and the fraction that were 579 
generated by viral replication at any time point but are “fossilized” in a long-lived latently infected state 580 
(net, or observed, replication percentage). The net replication percentage remains non-negligible in the 581 
first months of ART even while the current replication percentage drops rapidly. Thus, an observed 582 
sequence that was once created by viral replication (and thus might give a signal of divergence from the 583 
founder virus) can represent a historic replication event rather than current replication. Because time of 584 
detection does not correlate linearly with sequence age, inference of evolution early during ART is 585 
problematic.20,21 However, the fossil record is transient: within a year of effective ART, observed 586 
phylogenetic data is more likely to represent true reservoir dynamics. Our model agrees with 587 
observations reflecting a lack of contemporaneous HIV evolution after this time.14,22-27,29,30,36,37  588 
 589 
Our sensitivity analysis shows that the major variable correlating with higher observed replication 590 
percentages (a larger proportion of slowly proliferating CD4+ T cells in the reservoir) is not the same 591 
variable that correlates with higher new replication percentages (a slower decrease in sanctuary size). 592 
Replication percentage correlates with the amount of ongoing evolution in viral populations. Without 593 
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requiring any phylogenetic simulation, this simple model provides an explanation for evolution during 594 
the first months of ART and no observed HIV evolution in participants with a year of ART.14,22-27,29,30,36,37  595 
If we assume a large drug sanctuary and do not allow it to contract as a result of target cell decline, a 596 
persistent low-level sanctuary would emerge that stabilizes at 6 months and generates ongoing 597 
evolution at later ART timepoints. Notably, this has not been observed in clinical studies. 598 
 599 
Our modeling results inform experiments in two ways. Using rarefaction, we suggest reasonable sample 600 
sizes to verify our hypotheses experimentally (see Supplementary Fig 4). We demonstrate that observed 601 
values of sequence richness and clone size, are substantial underestimates. Current studies only sample 602 
the “tip of the iceberg” of the HIV reservoir. Hundreds of thousands of infected cells from a single time 603 
point would be required to capture true reservoir diversity. This sampling depth could only be feasibly 604 
achieved as part of an autopsy study. 605 
  606 
By using dynamical modeling, we also demonstrate that the wash-out period for the fossil record of HIV 607 
replication may be up to a year post ART. Thus, we suggest that future reservoir studies are conducted 608 
after this time point to avoid observation of historic evolution rather than contemporaneous dynamics.  609 
 610 
The work presented here carries several important caveats. Current integration site data is still 611 
uncommon and, while robust, is limited to a handful of participants in only a few studies. Modeling rank 612 
abundance curves makes a large assumption about the continuity of the data. The power law model 613 
represents but one approach, and future work should attempt to uncover why that distribution appears 614 
to provide good fit to the data.  Extrapolating abundance curves has been criticized: we note that our 615 
attempt to design a simple parametric model was based on the additional information of reservoir size 616 
and our goal to define an upper limit on reservoir richness;56 we also emphasize that the tail of our 617 
distributions is impossible to precisely characterize with our methods. Our approach is calibrated against 618 
sequence data from blood. However, the dynamics of HIV within lymph tissue may have different 619 
distributions. While historically, blood samples have been taken as a surrogate for HIV infected cells, we 620 
cannot rule out the possibility that the drug sanctuary that does not exchange virus or infected cells with 621 
blood. This sanctuary would be unobservable until probed anatomically. It seems unlikely that such a 622 
sanctuary could be sustained because some trafficking of CD4+ T cells from other compartments seems 623 
necessary to avoid terminal target cell limitation. However, future studies should address possible one-624 
way trafficking or local proliferation of target cells.  625 
 626 
In conclusion, we demonstrate that the majority of HIV infected cells arise from proliferation after the 627 
first year of ART. We have also provided an explanation for incongruent observations of evolution 628 
before and after a year of ART. Because proliferation appears to be the dominant force sustaining the 629 
HIV reservoir,34 we suggest limiting proliferation as a prime therapeutic target.10,11,57  630 

Methods 631 

Rank abundance of HIV integration sites. We used an ecological framework to study the abundance of 632 
clonal HIV. To do so, we applied methods to integration site and replication competent HIV sequence 633 
data. Cellular DNA found with HIV integrated into different integration sites in the human genome were 634 
defined as distinct “clones”. The number of times a cell was found with the same integration site added 635 
to the “abundance” of that clone. By ordering (ranking) the clones from largest to smallest by 636 
abundance, we developed a rank abundance curve, 𝑎(𝑟) , for each participant time point. No 637 
assumptions were made about the stability or dynamics of the reservoir rank abundance over time. 638 
 639 
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In our analysis of data from Wagner et al.,37 we combine measurements taken closely in time and use 640 
the median time point as done in that published paper. In our analysis of Maldarelli et al.,36 we grouped 641 
by integration site, or nearest measured integration site when integration site was not noted. It is 642 
important to note that the methods used by Wagner et al. and Maldarelli et al. are slightly different. The 643 
ISLA method used by Wagner et al. is lower throughput than the next generation shotgun sequencing 644 
method used by Maldarelli et al. The absolute number of viruses identified by each group therefore 645 
differs. However, the percentage of observed singletons is similar between the two studies.  646 
 647 
We manually counted the abundance of replication competent HIV sequences using phylogenetic trees 648 
in Hosmane et al.34 649 
 650 
Calculation of rarefaction curves. We used rarefaction curves to estimate the expected number of 651 
distinct sequences that would still be present in a subsample of 𝑘 sequences from the observed data 652 
with sample size of 𝑁: 653 
 654 
⟨𝑛`⟩ = 𝑅9:; − bc`d

>/ ∑ bc>e(.)` dfghi
.j/ ,        (1) 655 

 656 
where the parentheses indicate binomial coefficients, e.g. bc`d =

c!
`!(c>`)!

 . Later, we extrapolated 657 

rarefaction curves using the modeled distributions for the total reservoir size 𝐿. Because the number of 658 
samples we allowed was orders of magnitude smaller than the number of cells in the reservoir, 𝑘 ≪ 𝐿, 659 
we used Stirling’s approximation to simplify the binomial coefficients. The expected number of 660 
sequences after 𝑘 samples is then  661 
 662 

⟨𝑛m`⟩ = 𝑅 − ∑ n1 − e(.)
o
pf

.j/
`

,             (2) 663 
 664 
an expression which avoids computation of large factorials (derivation in the Supplementary Methods). 665 
 666 
Nonparametric estimation of species richness. We employed the Chao1 estimator to set a lower bound 667 
on the sequence or integration site richness.58 A derivation of the estimator is included in the 668 
Supplementary Methods. Chao1 is not a mechanistic model and requires no free parameters. Inference 669 
relies on only the number of observed singleton (𝑁/) and observed doubleton (𝑁<) sequences such that  670 
 671 
𝑅qre9/ = 𝑅9:; + ct(ct>/)

<(cuv/)
.         (3) 672 

 673 
We display an asymmetric confidence interval in Fig 3 (see Chao et al.58 or Supplementary Methods for 674 
the calculation). We also note it is possible the data are undersampled to the extent that a one-sided 675 
confidence interval may be more appropriate. Thus, for our biological conclusions we take the Chao1 676 
point estimate as a lower bound, and constrain the upper bound using the parametric model (Eq 4). 677 
Other richness estimators (jackknife 1 and 2) were tested but provided similar and consistently lower 678 
estimates of richness than the Chao1 estimator. These were not included in our results because the 679 
Chao1 was interpreted as a lower bound on true sequence richness. 680 
 681 
Parametric models to extrapolate sequence abundance curves. Estimates of the size of the HIV 682 
reservoir (both replication competent and total) were gathered from the published literature.33 We then 683 
developed a parametric model to quantify the true rank abundance distribution of the complete HIV 684 
reservoir. Examination of the data indicated a possible log-log-linear relationship, so we chose a discrete 685 
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integer power law model so that the probability of a rank is described by 𝑝(𝑟) = 𝜓(𝑅)𝑟>? where the 686 
coefficient 𝜓(𝑅) = ∑ 𝑟>?f

.j/  is the normalization constant for the power law. Then, to describe the true 687 
rank abundance 𝑎(𝑟)  we chose the reservoir size depending on the model context (replication 688 
competent 𝐿 = 10C or total HIV DNA 𝐿 = 10B). To ensure integer number of cells, we rounded this 689 
distribution, and forced the total number of cells to equal the reservoir size. That is, 690 
 691 
𝑎(𝑟; 𝛼, 𝑅, 𝐿) = |[𝐿𝜓(𝑅)𝑟>?]|	         (4) 692 
 693 
where |[]| indicates rounding to the nearest integer. Thus, our model depended on two free 694 
parameters, a power law exponent 𝛼 , and the reservoir richness 𝑅 . Other functional forms were 695 
explored but simplicity and accurate reproduction of the data were optimal with the power law. 696 
 697 
Fitting the rank-abundance model to experimental data. Using the experimental data we found the 698 
best-fit model using the following procedure. We fixed the reservoir size 𝐿 depending on the model 699 
context (replication competent or total HIV DNA). We chose a value for 𝑅  and 𝛼  from ranges 𝑅 ∈700 
[10L, 10C] and 𝛼 ∈ [0,2] to specify the model. Then, we sampled the extrapolated distribution 10 times 701 
using multinomial sampling with the same number of samples as the experimental data being fit, 702 
ℳ(𝑁9:;, 𝑝(𝑟)). This procedure assumes that sampling cells does not change the distribution of the 703 
reservoir, which is reasonable given the reservoir size. Each sampled data set was compared to the 704 
experimental data by computing the residual sum of squares (rss) error of the cumulative proportional 705 
abundance (cpa) curves. For each model then, the reported error is the average rss over the 10 706 
resamplings. Because the rss error is not symmetric across the domain of the cpa, this approach 707 
becomes similar to minimizing the Kolmogorov-Smirnov (KS) statistic: the maximum deviation between 708 
two cumulative distributions. For each experimental data set, 2500 model parameter sets were 709 
generated, and fitting results are visualized as heat maps (see Figs 4A, 5A for example). Because the 710 
procedure becomes computationally expensive as 𝑅 > 10C , we did not explore values above this 711 
threshold. In theory, it is possible to have a distribution with all clones having a single member 𝑅 =712 
𝐿, 𝛼 = 0. For the total DNA reservoir, this value would result in 𝑅 = 10B. However, this model was never 713 
optimal. In fact, as richness increased beyond 𝑅 ≈ 10| , the model was no longer sensitive to 𝑅. Thus, it 714 
appeared that finding the best fit 𝛼 was sufficient to specify the model if proper bounds on richness 715 
were included.  716 
 717 
We excluded models where 𝑅 < 𝑅qre9/, but we also sought to identify an upper bound for 𝑅. Indeed, 718 
certain model parameter combinations are mathematically impossible. For example, for a given power 719 
law exponent, the richness is constrained below a certain value for a given reservoir size. This 720 
observation has been considered previously in ecology under the terminology of ‘feasible sets’.59 To 721 
determine the largest possible richness that still has the best fit, we chose the roughly constant value of 722 
𝛼 that emerged when 𝑅 was large enough to be unidentifiable. Then, we noted that for large 𝑅 it is a 723 
reasonable approximation to allow ∑ 𝑎(𝑟)	f

.j/ = ∫ 𝑎(𝑟)	𝑑𝑟f
/ . 𝑅 is thus approximately bounded, and we 724 

solved for the maximal value or the upper bound on the richness given the best fit 𝛼 and the chosen 𝐿. A 725 
discussion and numerical validation of this approximation is presented in the Supplementary Methods 726 
and Supplementary Fig 2. The upper bound provides the sequence abundance most permissive of true 727 
singleton sequences – the reservoir with the most evidence of HIV replication as opposed to 728 
proliferation. In extrapolated reservoirs, we used the maximum richness model to ensure we were 729 
biasing the results as strongly as possible against our own hypothesis.  730 
 731 
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Model fitting validation with simulated data. A discussion and demonstration of model validation is 732 
included in the Supplementary Methods and Supplementary Fig 1. The exercise shows that simply 733 
fitting a power law to the experimental data (using log-log-linear regression) without the extra sampling 734 
step necessarily underestimates the power-law exponent, demonstrating the utility of our approach. 735 
Moreover, it shows that a published maximum likelihood approach60 is not as accurate for these data as 736 
our resampling approach (code hosted at http://tuvalu.santafe.edu/~aaronc/powerlaws/ last accessed 737 
July 2018) . We simulated a reservoir with known power law exponent Supplementary Fig 1A and tested 738 
for recovery of this known value. The fitting validation proceeded identically to the data fitting, 2500 739 
distributions were generated (225 examples are shown in Supplementary Fig 1D), the simulated data 740 
was sampled Supplementary Fig 1B, and reranked Supplementary Fig 1C. Fitting results Supplementary 741 
Fig 1E&F are shown analogous to Figs 4&5,A&B. Finally, the most correct parameter estimation of three 742 
methods tried came from our modeling approach Supplementary Fig 1G. 743 
 744 
Mechanistic model for the persistence of the HIV reservoir. The canonical model for HIV dynamics 745 
describes the time-evolution of the concentrations of susceptible 𝑆 and infected 𝐼 CD4+ T cells and HIV 746 
virus 𝑉.50,54,61 Our model grows from the canonical model, simplifying with several approximations and 747 
extending the biological detail to simulate HIV dynamics on ART, including a long-lived latent reservoir 748 
and a potential drug sanctuary. Perelson et al. first noticed and quantified a ‘biphasic’ clearance of HIV 749 
virus upon initiation of ART and showed that viral half-lives of 1.5 and 14 days correspond with the half-750 
lives of two infected cell compartments.50,54 With longer observation times and single-copy viral assays, 751 
Palmer et al. found four-phases of viral clearance after initiation of ART.51 Because of uncertainty in 752 
distinguishing the third and fourth phase in that study, we focus on the first three decay rates and 753 
corresponding cellular compartments, attributing a mixture of the third and fourth phase decay to the 754 
clearance of the productively infectious latent reservoir (half-life 44 months) as measured by Siliciano et 755 
al. and recently corroborated by Crooks et al.2,3 and the clearance of HIV DNA.47 We developed a 756 
mechanistic mathematical model that has three types of infected cells 𝐼/, 𝐼<, 𝐼L  that are meant to 757 
simulate productively infected cells, pre-integration infected cells, and latently infected cells, 758 
respectively. We classify rapid death	𝛿/ and viral production within actively infected cells 𝐼/. Cells with 759 
longer half-life that may represent pre-integration infected cells 𝐼< are activated to 𝐼/ at rate 𝜉<. 𝐼<	may 760 
represent CD4+ T cells with a prolonged pre-integration phase, but their precise biology does not affect 761 
model outcomes.48  762 
 763 
The state 𝐼L(M)	represents latently infected reservoir cells of phenotype 𝑗 , which contain a single 764 
chromosomally integrated HIV DNA provirus.44 𝐼L reactivates to 𝐼/ at rate 𝜉L which at present is assumed 765 
to be constant across cell phenotypes.49 The probabilities of a newly infected cell entering 𝐼/, 𝐼<, 𝐼L(M),	are 766 
𝜏/, 𝜏<, 𝜏L(M). Because we are focused on the role of proliferation, we assume sub-populations of 𝐼L,12 767 
including effector memory (Tem), central memory (Tcm), and naïve (Tn) CD4+ T cells, which proliferate and 768 
die at different rates 𝛼L(M), 𝛿L(M). 12,42,43 Parameter values and initial conditions for the model are 769 
collected in Table 1. 770 
 771 
Including a decreasing sanctuary in the model. A recent hypothesis about reservoir persistence 772 
suggests there may be a small, anatomic sanctuary (1 in 105 infected cells) in which ART is not 773 
therapeutic.4 Thus, we included the state variable 𝐼O that is maintained at a constant set-point level prior 774 
to ART, where all new infected cells arise from ongoing replication. We opted for this simplification 775 
because it biased against our conclusions. The amount of virus produced by the sanctuary 𝑉O  is 776 
extremely low relative to non-sanctuary regions because ART results in levels undetectable by sensitive 777 
assays.51  778 
 779 
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Many studies have demonstrated that HIV accelerates immunosenescene through abnormal activation 780 
of CD4+ T cells.62-64 ART results in a marked reduction of T cell activation and apoptosis, a potential 781 
signature of HIV susceptible cells.65 By examining the decline of activation markers for CD4+ T cells, we 782 
approximated the decay kinetics of activated T cells upon ART, inferring approximate decay kinetics of 783 
the target cells in our model.52,53,66 A range of initial values exists (from ∼5−20% activation) depending 784 
on stage of HIV infection, yet after a year of ART, a large percentage of patients return to almost normal, 785 
or slightly elevated CD4+ T cell activation levels (2-3%).52 Because we assume that target cell depletion is 786 
minimal at viral load set-point, we can approximate that the susceptible cell concentration decreases 787 
over time as the immune activation decreases, i.e., 𝑆 = 𝑆(0)𝑒>�� . This single exponential decay is 788 
simplified (it may be biphasic but the data are not granular enough to discriminate this dynamic 789 
subtlety). From existing data, the decay constant should be in the range 𝜁~[0.002, 0.01] day-1.52,66 We 790 
extend this decay into the sanctuary, allowing the number of susceptible cells over the whole body to 791 
decrease so that we have 𝐼O = 𝐼/(0)𝜑O𝑒>��  where 𝜑O  is the fraction of infected cells that are in a 792 
sanctuary. Model simulations are also performed without this assumption of target cell contraction. 793 
 794 
Last, we use the quasi-static approximation that virus is proportional to the number of actively infected 795 
cells in all compartments 𝑉 = 𝑛(𝐼/+	𝐼O) where 𝑛 = π/γ, the ratio of the viral production rate to the 796 
viral clearance rate (Table 1). The model is thus 797 
 798 
𝐼/̇ = 𝜏/β�𝑆𝑉 −	𝛿/𝐼/ +	𝜉<𝐼< + 	∑ 𝜉L𝐼L(M)M 	  799 
𝐼<̇ = 𝜏<β�𝑆𝑉	+	(𝛼< −	𝛿< − 𝜉<)𝐼<            (5) 800 
𝐼L̇(M) = 𝜏L(M)β�𝑆𝑉	+	(𝛼L(M) −	𝛿L(M) − 𝜉L)𝐼L(M) , 801 
 802 
where we use the over-dot to denote the time derivative. 803 
 804 
Comparing proliferation and viral replication: ‘net’ and ‘current’ percentages. By solving the ODE 805 
model (Eq 6), we have the time solution for each infected cell state. From these, we can compute the 806 
total number of newly infected cells generated in a given time interval Δ𝑡 by ongoing replication. That 807 
value is 𝐼.��(𝑡) = (𝛽�𝑆𝑉 + 𝜙O𝛽𝑆𝑉O)Δ𝑡 . The total number of newly infected cells generated by 808 
proliferation of a previously infected cell can be computed similarly in a time interval as 𝐼�.9(𝑡) =809 
∑ 𝛼7(M)𝐼7(M)7(M) Δ𝑡. Therefore, the percentage of infected cells generated by current replication is written 810 
 811 
Φ��..���(𝑡) = 100 ⋅ ����(�)

����(�)v���g(�)
.           (6) 812 

 813 
We can further subset this newly generated fraction by examining the percentage of newly infected cells 814 
that enter the long-lived latent state 𝐼L	by defining 𝐼.��(L)(𝑡) = 𝜏L(𝛽�𝑆𝑉 + 𝜙O𝛽𝑆𝑉O)Δ𝑡 and 𝐼�.9(L)(𝑡) =815 
∑ 𝛼L(M)𝐼L(M)M Δ𝑡 so that 816 
 817 

Φ��..���(L)(𝑡) = 100 ⋅ ����(�)(�)
����(�)(�)v���g(�)(�)

.       (7) 818 

 819 
The net (or observed) replication percentage, is the fraction of cells that remain that were once 820 
generated by viral replication. To compute this quantity, we use an additional set of ODEs that we refer 821 
to as “tracking equations” because they do not change the dynamics of the system, and only are used to 822 
track specific variables. To denote the net value as opposed to new value we use a subscript Σ. The net 823 
cells generated by viral replication in state 𝑖 of phenotype 𝑗 is governed by the differential equation 824 
 825 
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𝐼7̇(M)
(�).�� = 𝜏7(M)β�𝑆𝑉 −	 (𝛿7(M) − 𝜉7(M))𝐼7(M)

(�).��.          (8) 826 
 827 
Likewise, the net cells generated by proliferation in state 𝑖 of phenotype 𝑗 is governed by the differential 828 
equation 829 
 830 
𝐼7̇(M)

(�)�.9 = 𝛼7(M)𝐼7(M) − 	(𝛿7(M) − 𝜉7(M))𝐼7(M)
(�)�.9.          (9) 831 

 832 

We note that because we only allow these two mechanisms, 𝐼7̇(M) = 𝐼7̇(M)
(�).�� + 𝐼7̇(M)

(�)�.9
 and 833 

𝐼7(M)(𝑡) = 𝐼7(M)
(�).��(𝑡) + 𝐼7(M)

(�)�.9 . By solving the tracking equations separately, we can then find the net 834 
replication percentage by summing over cell types and phenotypes to ultimately write 835 
 836 

Φ�(𝑡) = 100 ⋅
∑ ��(�)

(�)���(�)�(�)

∑ ��(�)
(�)���(�)�(�) v��(�)

(�)��g(�)
.           (10) 837 

 838 
In all simulations, we assumed that 100% of infected cells at the initiation of ART were generated by 839 
viral replication, that is Φ�(0) = 100. This assumption biases results in favor of replication. However, 840 
we choose it because, to the best of our knowledge, studies of proliferation during chronic untreated 841 
HIV have not been performed. 842 
 843 
Sensitivity analysis. Using estimated parameter bounds [lower, upper], we completed a local and global 844 
sensitivity analysis. These ranges were chosen to cover a wide range of possible assumptions. We 845 
allowed 𝐼L(0) = [0.02,2]  cells µL-1, 𝜑O = [10>|, 10>�]  unitless, 𝜁 = [0,0.2]  day-1, 𝜖 = [0.9,0.99] 846 
unitless, 𝜖O = [0,0.9] unitless, 𝐼L(�)(0) = [0,0.5] × 𝐼L(0) cells µL-1. For the local analysis, we used all 847 
values as in Table 1 and modified one parameter at a time over each listed range above. The global 848 
analysis was performed by using 104 Latin Hypercube samplings of the complete 6-dimensional 849 
parameter space.67 The key outcome, the replication percentage (net and current) at 1 year of ART, was 850 
correlated to each parameter using the Spearman correlation coefficient—defined by the ratio of the 851 
covariance between the outcome and the variable divided by the standard deviations of each when the 852 
variables were rank-ordered by value.  853 
 854 
Data and code availability. Computational code for all calculations and simulations was performed in 855 
Python and Matlab and can be found at https://github.com/dbrvs/reservoir_persistence. Sequence 856 
data was obtained from the Retrovirus Integration Database (RID).68 857 
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Tables 1048 

Table 1: Model parameters 1049 
Parameter Value Meaning Units Source 
𝑅V 8 Basic reproductive number of HIV [] 69 
βV 2 × 10>� Viral infectivity, used in 𝛽� = 𝛽V(1 − 𝜖) [μL copy-1 day-1] 61,70,71 
𝜖 0.95 ART efficacy outside the sanctuary [] 71,72 
π 103 Viral production rate, used in 𝑛 = 𝜋/𝛾 [μL copy-1 day-1] 61,70,71 
γ 23 Viral clearance rate, used in 𝑛 = 𝜋/𝛾 [day-1] 73 
𝛼O 150 Susceptible cell production rate [μL copy-1 day-1] 54,70,71 
𝛿O 0.2 Susceptible cell death rate [day-1] 61,70,71 
𝛿/ 0.8 Productively infected cell (𝐼/) clearance rate [day-1] 71,74 
𝛿< 0.02 Pre-integration cell (𝐼<) death rate [day-1] 48,50 
𝛼< 0.047 Pre-integration cell proliferation rate [day-1] 42 
𝜉< 0.08 Pre-integration cell activation rate [day-1] Fit 
𝛼L(M) [0.047,0.015, 

0.002] 
Proliferation rate of latently infected cells 
 𝑗 ∈ [Tem, Tcm, Tn] phenotypes, respectively 

[day-1] 42 

𝜉L 0.0003 Latent cell activation rate (for all 𝑗) [day-1] Fit 
𝛿L(M)  Calculated from latent clearance rate as  

𝜃o = 𝛼L(M) − 𝛿L(M) − 𝜉L where 𝜃o = −5.2 × 10>� 
[day-1] 2,3 

𝜏7(M) [1, 10-2, 10-4𝜚M] Probability of infection of each compartment, taken from y-
intercepts in Ref. 50 

[] 51 

𝜚M  [0.2,0.75,0.05] Fraction of latent infected cells of each phenotype  
(e.g. from patient #5 in Ref. 12) 

[cells μL-1] 12 

𝑉(0) 102 Initial viral load (from typical set-point value 105 copies/mL) [copy μL-1] 69 
𝐼/(0) 2 Initial concentration of productively infected cells, 

calculated from 𝐼/(0) = 𝑉(0)/𝑛 
[cells μL-1] 75 

𝐼<(0) 0.2 Initial concentration of pre-integration infected cells [cells μL-1] 75 
𝐼L(M)(0) 0.2𝜚M  Initial concentration of each latent phenotype, calculated 

from ~106 latently infected cells in ~5L of blood 
[cells μL-1] 2,12 

𝐼O(0) 180 Initial concentration of sanctuary cells, calculated from 
equilibrium model 𝐼O(0) =

?£
¤t
− ¤£

�¥¦(/>�£)
, e.g. Ref. 56 SI 

[cells μL-1] Calc  

𝜁 0.007 Decay rate of T cell activation [day-1] 52 
𝜖O 0 ART efficacy in the sanctuary, minimum value [] Min 
𝜑O 10-5 Fraction of cells in sanctuary [] 4 
 1050 
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