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Abstract 17 

Microbial diversity on earth is extraordinary, and soils alone harbor thousands of species per gram of soil. Understanding 18 

how this diversity is sorted and selected into habitat niches is a major focus of ecology and biotechnology, but remains 19 

only vaguely understood. A systems-biology approach was used to mine information from databases to show how it can 20 

be used to answer questions related to the core microbiome of habitat-microbe relationships. By making use of the bur-21 

geoning growth of information from databases, our tool “COREMIC” meets a great need in the search for understanding 22 

niche partitioning and habitat-function relationships. The work is unique, furthermore, because it provides a user-friendly 23 

statistically robust web-tool (http://coremic2.appspot.com), developed using Google App Engine, to help in the process 24 

of database mining to identify the “core microbiome” associated with a given habitat. A case study is presented using 25 

data from 31 switchgrass rhizosphere community habitats across a diverse set of soil and sampling environments. The 26 

methodology utilizes an outgroup of 28 non-switchgrass (other grasses and forbs) to identify a core switchgrass 27 

microbiome. Even across a diverse set of soils (5 environments), and conservative statistical criteria (presence in more 28 

than 90% samples and FDR q-val < 0.05% for Fisher’s exact test) a core set of bacteria associated with switchgrass was 29 
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observed. These included, among others, closely related taxa from Lysobacter spp., Mesorhizobium spp, and 30 

Chitinophagaceae. These bacteria have been shown to have functions related to the production of bacterial and fungal 31 

antibiotics and plant growth promotion. COREMIC can be used as a hypothesis generating or confirmatory tool that 32 

shows great potential for identifying taxa that may be important to the functioning of a habitat (e.g. host plant). The case 33 

study, in conclusion, shows that COREMIC can identify key habitat-specific microbes across diverse samples, using cur-34 

rently available databases and a unique freely available software. 35 

 36 

Keywords: microbiome; root-zone; rhizosphere; web-tool; software; app; meta-analysis; database; data mining 37 

 38 

1. Introduction 39 

Microbial diversity on earth is extraordinary, and soils alone harbor thousands of species per gram (Hughes et al., 2001). 40 

Understanding how this diversity is sorted and selected into habitat niches is a major focus of ecology and biotechnology, 41 

but remains only vaguely understood. The advent of next-generation sequencing technologies now allow for the potential 42 

to make great leaps in the study of microbe-habitat relationships of highly diverse microbial communities and environ-43 

ments. The identity and functions of this overwhelming multitude of microbes are in the beginning stages of being de-44 

scribed, and are already providing insights into microbial impacts on plant and animal health (Berg, 2009; Evans and 45 

Schwarz, 2011; Clemente et al., 2012). Making use of the overwhelming amount of information on microbial taxa and 46 

habitats has enormous potential for use to further understand microbial-habitat relationships. Thus, the advent of new 47 

methods and approaches to utilize this data and describe microbiomes will benefit microbial ecology and biotechnology.  48 

Though variations exist, a core microbiome can be defined, conceptually, using Venn diagrams, where over-lapping 49 

circles and non-overlapping areas of circles represent shared and non-shared members of a habitat, respectively (Shade 50 

and Handelsman, 2012). Typically, microbiomes identified in this manner are not statistically evaluated, or by nature, 51 

seek to answer specific hypothesis that are specific to an experiment. For example, studies often identify microbes asso-52 

ciated with different plant growth stages, species, cultivars, and locations but rarely, if at all, mine databases or perform 53 

meta-analysis to statistically identify microbiomes across studies and experimental conditions (Chaudhary et al., 2012; 54 

Liang et al., 2012; Mao et al., 2013; Mao et al., 2014; Hargreaves et al., 2015; Rodrigues et al., 2015; Jesus et al., 2016; 55 

Rodrigues et al., 2017). Describing differences due to treatment or habitat conditions are informative in their own right, 56 

however, extending this framework to include an easy to use, and statistically robust tool to help in the mining of data 57 

from underutilized and burgeoning databases (e.g. the National Center for Biotechnology Information (NCBI), Riboso-58 
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mal Database Project) can help transform the ecological study of microbes in their natural environment. Using the vast 59 

and growing databases of organism and habitat metadata will allow for both the testing and development of hypotheses 60 

associated with habitat-microbe relationships that were not formerly possible. 61 

To address the challenges described above, we developed COREMIC - a novel, easy to use, and freely available web 62 

tool to identify the “core microbiome”, of any well-defined habitat (e.g. plant root-zone) or niche (Shade and 63 

Handelsman, 2012). This straightforward approach is a novel and powerful way to complement existing analysis (e.g. 64 

indicator species analysis (ISA) (Dufrene and Legendre, 1997)) by allowing for the use of data that is now overflowing 65 

among freely available databases. It seeks to determine the core set of microbes (core microbiome) that are explicitly 66 

associated with a host system or habitat. The ability to identify core microbiomes at this scale has great potential to de-67 

scribe host-microbe interactions and habitat preferences of microbes.  68 

A meta-analysis based case study was performed, combining diverse sequencing datasets derived from NCBI, to test 69 

for the occurrence of a core microbiome in the rhizosphere (root-zone) of switchgrass. Switchgrass is a US-native, peren-70 

nial grass studied by many researchers, and thus has a growing database to mine for genetic information. Its widespread 71 

study is likely a result of its bioenergy potential, and the capacity of the grass to grow on marginal lands not dedicated to 72 

crops. Studies have identified different bacteria found in the root-zones of switchgrass (Jesus et al., 2010; Mao et al., 73 

2011; Chaudhary et al., 2012; Liang et al., 2012; Mao et al., 2013; Bahulikar et al., 2014; Mao et al., 2014; Werling et al., 74 

2014; Hargreaves et al., 2015; Jesus et al., 2016; Rodrigues et al., 2017), however, there has been no integrative study of 75 

different datasets identifying the core microbiome in switchgrass rhizospheres. It is thus proposed to identify host-habitat 76 

relationships as a proof of concept for a core microbiome. In this paper we utilize a plant host to define a habitat, but the-77 

oretically any habitat and associated organisms could make use of COREMIC and its approach to identify a core 78 

microbiome. 79 

 80 

2. Material and methods 81 

2.1. Datasets used in the study 82 

A diverse set of data composed of 61 samples from two different published datasets and collected from multiple locations 83 

(Jesus et al., 2016; Rodrigues et al., 2017) were used for this study. Data were obtained from the NCBI and selected 84 

based on the availability of the raw (16S rRNA) sequence data of root-zone bacteria from switchgrass and that for an out-85 

group of reference (native and/or other grasses) plants.  86 
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The dataset “Jesus 2016”(Jesus et al., 2016), PRJEB6704, compared the rhizosphere soil microbial communities asso-87 

ciated with restored prairie with three grass crops, namely corn, switchgrass, and mixed prairie grasses. The grasses were 88 

grown in fields of Michigan and Wisconsin and were harvested after two and ten years. The V6-V8 region of the 16S 89 

rRNA gene was amplified and sequenced using the Roche 454 pyrosequencing.  In our study, we used a total of 43 sam-90 

ples (3 each from corn, switchgrass, mixed grasses (2 yrs. only), and restored prairie grasses grown in Wisconsin and 91 

Michigan, and sampled after 2 and 10 years. Switchgrass grown in Michigan, composed of 4 samples, were collected 92 

following 10 years of plant growth. 93 

The dataset “Rodrigues 2017”(Rodrigues et al., 2017), PRJNA320123, compared the root-zone soil microbial commu-94 

nities associated with switchgrass cultivars: “Alamo” and “Dacotah”. The switchgrass were grown in the greenhouse us-95 

ing soil derived from plots growing Switchgrass (>7 years) near Blacksburg, VA. Switchgrass rhizosphere bacteria were 96 

sampled at three different growth stages. The V3-V4 region of the 16S rRNA gene was amplified and sequenced using 97 

Illumina MiSeq sequencing. In our study, we used a total of 18 switchgrass samples for Alamo (A) and Dacotah (D) from 98 

stages V2 and E3 (4 AV2, 4 DV2, 5 AE3, 5 DE3 = 18). 99 

Overall, these datasets served as a diverse resource (relevant differences are summarized in Figure 1) to compare the 100 

root-zone bacteria and identify core-bacteria associated with switchgrass. 101 

 102 

2.2. Sequence data analysis and picking of Operational Taxonomic Units (OTU)  103 

For the Rodrigues 2017 dataset, the OTU table was obtained from previously performed analysis (Rodrigues et al., 2017). 104 

For the Jesus 2016 dataset, quality score (25) and read lengths (150) thresholds were enforced using cutadapt (1.8.1) 105 

(Martin, 2011) and an open reference OTU picking (enable_rev_strand_match True) was performed in QIIME v1.8.0 106 

(Caporaso et al., 2010), as previously described (Rodrigues et al., 2015; Rodrigues et al., 2017), to allow comparison with 107 

the other dataset. Briefly, uclust (Edgar, 2010) was used to cluster reads into OTUs (97% sequence similarity) and assign 108 

taxonomy against the Greengenes reference database version 13.8 (DeSantis et al., 2006; McDonald et al., 2012). Two 109 

samples from the Jesus 2016 dataset were removed from downstream analysis due to very few sequences assigned to 110 

OTUs. 111 

 112 

2.3. Combining two datasets 113 

Within each OTU table, sequences assigned to identical OTUs in a sample were summed to retain unique taxa. The 114 

common (678) OTUs from the two datasets were selected, converted to biom format and used for further analyses (Figure 115 
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1). The data table was filtered and rarefied using a sequence threshold of 1150, and the beta diversity was calculated us-116 

ing Bray-Curtis (Beals, 1984) distance and visualized using Principal Coordinate Analysis (Gower, 2005). Multivariate 117 

data analysis methods of MRPP (Mielke, 1984), Permanova (Anderson, 2001) and ANOSIM (Clarke, 1993) were used to 118 

identify whether the plant type (switchgrass versus non-switchgrass) were associated with different bacterial communi-119 

ties.  120 

 121 

2.4. Core microbiome analysis 122 

To find the set of core OTUs, the samples in the combined OTU table (original data) were first divided into the interest 123 

group samples (switchgrass) and out-group samples. The abundance values for each OTU in each sample are then con-124 

verted to binary (present/absent) values based on whether they are zero or nonzero. For each OTU a one-tailed Fisher’s 125 

Exact Test was used to calculate a p-value testing whether an OTU was present in a significantly higher portion in the 126 

interest in-group (Switchgrass) compared to the out-group samples (numerous other grass species). 127 

These p-values were corrected for multiple-testing using Benjamini Hochberg. The OTUs with a q-value < 0.05 were 128 

then selected to only the OTUs that are present in at least 90% of the interest group samples. Uninformative OTUs (e.g., 129 

k_Bacteria;p_;c_;o_;f_;g_;s_) were filtered out and the remaining OTUs were candidates for the core microbiome.  130 

 131 

2.5. Implementation of COREMIC  132 

COREMIC and the datasets are available at http://coremic2.appspot.com. Its code is available on github 133 

(https://github.com/richrr/coremicro). The web-tool was developed in Python 2.7, and is hosted on Google App Engine. 134 

Other requirements include GoogleAppEnginePipeline 1.9.22.1, pyqi 0.3.1, requests 2.10.0, requests-toolbelt 0.6.2, 135 

mailjet-rest 1.2.2, biom-format 1.1.2, ete3 3.0.0 (for tree generation—see below for details), webapp2 2.5.2, numpy 1.6.1, 136 

matplotlib 1.2.0, jinja2 2.6, ssl 2.7. COREMIC is accessible via any internet connected browser and emails the results to 137 

the user. The processing times with the default settings after uploading the data are provided in Table S1. 138 

A custom python script generates a phylogenetic tree using the taxonomic labels for each OTU displaying the relation-139 

ship between the core OTUs obtained from the group of interest and the out-group. This tree is generated using the ete3 140 

3.0.0 library.  141 

 142 

3. Results 143 
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After quality filtering, a total of 319,821 reads were obtained from the Jesus 2016 dataset (mean 461.45 and std. dev. 144 

69.34). Two samples with very few (48 and 75) counts were removed; each of the remaining samples had more than 1150 145 

sequences assigned to OTUs. The number of OTUs in the Jesus 2016 and Rodrigues 2017 datasets was 771 and 1118, 146 

respectively. The combined dataset had 678 OTUs, 31 switchgrass and 28 non-switchgrass (other grasses) samples.  147 

The bacterial communities in switchgrass and grasses from the combined dataset were significantly different 148 

(Permanova, MRPP, and ANOSIM p-values < 0.01) and as can be observed using the PCoA plot using the Bray-Curtis 149 

dissimilarity metric (Figure 2). These differences were apparent despite significant difference across datasets 150 

(Permanova, MRPP, and ANOSIM p-values < 0.01); which could be the result, for example, of the heterogeneity of the 151 

data set related to climate, soil type-condition, growth conditions, and plant age. In this regard, at the phylum level, Mann 152 

Whitney test identified Bacteroidetes and Verrucomicrobia had significantly greater (p-value < 0.05) relative abundance 153 

in switchgrass, whereas, Gemmatimonadetes were more abundant in other grasses (Figure S1).  154 

We used a very conservative criterion of >90% threshold i.e., an OTU has to be present in at least 90% of switchgrass 155 

samples and observed five OTUs with FDR q-values < 0.05 (Table 1). The relative abundance and a phylogenetic tree 156 

exhibiting their relationship with the core-OTUs from the non-switchgrass samples is shown in Figure S2 and Figure S3, 157 

respectively. Despite the enormous variability across the many different sampling locations, there is support for the oc-158 

currence of a core microbiome in the root-zone of switchgrass. 159 

 160 

Table 1: Bacterial OTUs associated with switchgrass.  161 

OTU present(%) 

p_Proteobacteria;c_Gammaproteobacteria;o_Xanthomonadales;f_Xanthomonadaceae;g_Lysobacter;s_ 100 

p_Planctomycetes;c_Planctomycetia;o_B97;f_;g_;s_ 96.8 

p_Bacteroidetes;c_[Saprospirae];o_[Saprospirales];f_Chitinophagaceae 96.8 

p_Proteobacteria;c_Alphaproteobacteria;o_Rhizobiales;f_Phyllobacteriaceae;g_Mesorhizobium;s_ 90.3 

p_Proteobacteria;c_Gammaproteobacteria;o_Legionellales;f_;g_;s_ 90.3 

The core bacterial OTUs those were significantly (q-value < 0.05) associated with switchgrass, calculated using pres-162 

ence/absence data and present in >90% switchgrass samples. 163 
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 164 

4. Discussion  165 

The case study showed how COREMIC can identify key habitat-specific microbes across diverse samples, using current-166 

ly available databases and a unique freely available software. The core set of bacteria associated with switchgrass includ-167 

ed, among others, closely related taxa from Lysobacter spp., Mesorhizobium spp, and Chitinophagaceae. The functional 168 

relevance of these bacteria related to switchgrass is unknown, but it is notable that these bacteria have been shown to 169 

produce bacterial and fungal antibiotics and promote the growth of plants (Kaneko et al., 2000; Kilic-Ekici and Yuen, 170 

2004; Weir et al., 2004; Islam et al., 2005; Jochum et al., 2006; Ji et al., 2008; Park et al., 2008; Nandasena et al., 2009; 171 

Yin, 2010; Bailey et al., 2013; Degefu et al., 2013; Guerrouj et al., 2013; Madhaiyan et al., 2015). The analyses from the 172 

highly diverse data sets thus provided information that helps to greatly narrow down possibilities and thus set the stage 173 

for testing, using controlled studies, how the core microbiota potentially support or antagonize the function of a native 174 

grass.  This novel toolkit is simple to use and supports use by a broad range of biological scientists, and is particularly 175 

relevant to those with expertise in their field but with limited bioinformatics background. Overall, in a dataset derived 176 

from a complex and diverse set of habitats and ecosystems, this tool was shown to pinpoint microbiota of the microbiome 177 

that might have important functional implications within their habitat or host. 178 

 179 

4.1. Methodological considerations in the use of COREMIC 180 

COREMIC performs a complementary analysis different from that of existing methods by using presence/absence data. 181 

For two groups (A and B) it checks whether (pre-determined percentage of) samples from group A have a non-zero value 182 

for the OTU. This allows scientists to operate without making assumptions about the PCR-based OTU relative abundanc-183 

es. This is considered a potential advantage of the method because it is unknown whether relative abundance of sequence 184 

data is representative of true relative differences between communities. Further research, in this regard, will be aimed 185 

towards investigating other measures of OTU “presence”, namely the extent of exclusivity, consistency, or abundance of 186 

the group that is eventually determined to be a core microbiome.  187 

Sampling plots used in this study were located across a range of diverse environments to help create a backdrop of het-188 

erogeneity. While this diversity of habitat conditions ignores the potential for microbe-environment interactions that 189 

might be important for the plant-microbial relationship, it has the advantage of being a conservative approach with high 190 

veracity for defining a core microbiome regardless of habitat heterogeneity. The locations from which samples were 191 

grown (Michigan, Wisconsin, Virginia) were treated as independent to help isolate the overall habitat effect of 192 
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switchgrass (Werling et al., 2014; Jesus et al., 2016). When the effects of habitat are thought to be habitat specific, re-193 

searchers can take this into account during the design and analysis using COREMIC.  194 

It is notable that the representation of an outgroup (multiple non-switchgrass species) is an important criteria and 195 

choice made by researchers, and is an approach that has both advantages and caveats. By definition, a habitat is defined 196 

by its differences from that of other habitats, and therefore the use of the outgroup is an important choice. A counter-197 

argument for the current dataset might argue for exclusion of breeding lines of a cultivated grass (maize) as being unrep-198 

resentative of the grass outgroup. In our case, it was thought, a priori, that a diverse set of grasses would provide the best 199 

comparison; and no compelling argument was found that supported the exclusion of maize from the analysis. An implicit 200 

assumption was also made that the taxonomy of plant species (root-zone habitats) play an important role in determining 201 

root-zone microbial communities, an approach supported by extensive findings that different grass species associate with 202 

different microbial communities (Kuske et al., 2002; Kennedy et al., 2004; Berendsen et al., 2012; Chaudhary et al., 203 

2012; Turner et al., 2013). So although there is a need for careful consideration of the experimental questions of interest 204 

when using COREMIC, this is a common, if not ubiquitous foundation of all experimentation and hypothesis testing. The 205 

results provide a statistically valid approach using freely available software to describe and define a core microbiome of 206 

switchgrass.   207 

The choice of the outgroup, furthermore, for determining a core microbiome is amenable to choice using deductive rea-208 

soning but ultimately limited by available data. This issue almost certainly limits inclusion of many functionally im-209 

portant rhizosphere microbes that could affect the growth of switchgrass. In this study, the proof of concept utilized a 210 

conservative approach to highlight the methodology across a diversity of geographies, soil types, and plant ages. The 211 

COREMIC tool as well as the multiple methods for defining a core microbiome (e.g., QIIME (Caporaso et al., 2010), 212 

ISA (Dufrene and Legendre, 1997)) will always be defined by the expertise, and the nature of the hypotheses defined and 213 

defended by individual researchers. 214 

 215 

4.2. Core Microbes 216 

The individual datasets described in this study had previously focused on identifying abundant microbes and differences 217 

due to experimental conditions. The current meta-analysis goes a step further to find common microbiota that are associ-218 

ated with switchgrass across the diverse experimental conditions. The members of the Lysobacter genus, an identified 219 

core microbe of switchgrass, are known to live in soil and have been shown to be ecologically important due to their abil-220 

ity to produce exo-enzymes and antibiotics (Reichenbach, 2006). Their antimicrobial activities against bacteria, fungi, 221 
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unicellular algae, and nematodes have been described (Islam et al., 2005; Jochum et al., 2006; Park et al., 2008; Yin, 222 

2010). Strains of this genus, for example, have been used for control of diseases caused by bacteria in rice (Ji et al., 2008) 223 

and tall fescue (Kilic-Ekici and Yuen, 2004). Reports of their function thus support the idea that they may play an im-224 

portant role in switchgrass growth and survival. The core microbiome results thus support further research into the role 225 

played by this bacterium in the switchgrass rhizosphere. 226 

Similarly, members of the Mesorhizobium genus are well-known diazotrophs (Kaneko et al., 2000) and previously 227 

shown to be symbiotically associated with switchgrass (DeAngelis et al., 2010; Bahulikar et al., 2014) and legumes (Weir 228 

et al., 2004; Nandasena et al., 2009; Degefu et al., 2013; Guerrouj et al., 2013). Another identified core microbiome taxa, 229 

soil-dwelling members of the Chitinophagaceae family are known to have β-glucosidase (Bailey et al., 2013) and 230 

Aminocyclopropane-1-carboxylate (ACC) deaminase activities and ability to produce indole-3-acetic acid (IAA) 231 

(Madhaiyan et al., 2015). These molecules and enzymes are well known for their effects on plant growth (Zhao, 2010; 232 

Van de Poel and Van Der Straeten, 2014). The capacity to degrade cellulose might provide additional and readily availa-233 

ble options to aid survival of these bacteria near switchgrass root zones during times of environmental stress. ACC 234 

deaminase and IAA production, in contrast, are potent plant growth modulators (Glick, 2014) that could play a role in 235 

plant productivity and survival, especially under conditions of plant physiological stress. Though these examples above 236 

would need further study, they provide consistent examples describing how a core microorganism could play a role in 237 

determining plant function and growth. The power of the approach stems from the ability to identify the core microbes 238 

associated with a plant (or other habitat), and that can, with veracity, narrow down potentially important core microbes 239 

from otherwise hyperdiverse samples.  240 

From a technological standpoint, it is important to put the current approach into context with research before the 241 

metagenomics era. The search and identification of antagonistic plant growth promoting microbes has previously been 242 

tedious and labor intensive. Screenings of hundreds of microbes were used to cultivate and identify candidate microbes 243 

that might support (or deter) plant growth. In the case of beneficial microbes, even when identified under greenhouse 244 

conditions, the beneficial effects rarely translated into plant supportive growth under field growth conditions (Babalola, 245 

2010; Hayat et al., 2010). With the aid of hindsight and new knowledge suggesting the importance of the soil habitat and 246 

root-soil interactions in the development of growth promoting plant-microbial relationships, the approach used in this 247 

study reverses the focus (from top-down to bottom-up) to search for microbes that appear to already be naturally well-248 

adapted to the root-soil habitats of interest (Trabelsi and Mhamdi, 2013; Souza et al., 2015). This process streamlines the 249 

search for suitable microbes from a daunting pool of thousands of bacterial taxa. Bacteria and fungi with well-known 250 
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partnerships with members of the core microbiome, it would be expected, to be more readily adaptable to their native 251 

environment. Indeed, the concept of adaptability to an environment has been shown to be true for many types of microbes 252 

across the environmental spectrum, and has given rise to the concept of the niche (Lennon et al., 2012). The COREMIC 253 

tool provides an alternative and logical approach to help mine available datasets, in the search for core microbiomes as-254 

sociated with habitats that are ecologically and agriculturally important. 255 

 256 

4.3. Conclusions 257 

The COREMIC tool, by helping to mine multiple datasets fills a major gap in the search for the core microbiome associ-258 

ated with a host or habitat. It allows for the development of a working hypothesis in the search for microbes well suited 259 

for a habitat or host-microbe interaction. It can also be used to confirm laboratory studies that have identified target mi-260 

crobes that might be important symbionts or thought to be associated with a specific habitat. In the case of plants, but not 261 

limited to them, the COREMIC approach can identify microbial targets that might be useful for plant growth promotion. 262 

An example of this would be the identification of diazotrophic bacteria that aid the growth of bioenergy grasses and help 263 

to serve the development of sustainable agricultural systems. This combined with the ongoing efforts of plant breeding 264 

and genetic modification would help to catalyze microbe-driven crop yield improvement while practicing environmental 265 

stewardship through reduced fertilizer use. Here we show the applicability of COREMIC in rhizosphere-associated mi-266 

crobes, but the overall concepts are translational across disciplines with interests in host-microbe and microbe-habitat 267 

relationships. The applicability of COREMIC for the identification of core genes and microbes has excellent potential to 268 

help understand the roles of microorganisms in complex and diverse microbial communities. 269 
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 429 

Figure 1: The COREMIC approach. The workflow indicating the Jesus 2016 and Rodrigues 2017 datasets and differ-430 

ences between them, and the methodology used to identify core microbiome. Switchgrass and other grasses are indicated 431 

by “Swg” and “Non-Swg,” respectively. 432 

 433 

Figure 2: Beta-diversity of the combined dataset. PCoA plot showing Bray-Curtis dissimilarities for bacterial commu-434 

nities at the OTU level in switchgrass (blue colored) and other grasses (red colored). 435 

 436 

Figure S1: Taxonomic summary of the relative abundance of bacterial phyla in the combined dataset. The taxa and 437 

the labels are arranged as per total relative abundance across all samples, with the most abundant phyla at the bottom and 438 

the least abundant phyla at the top of the y-axis. Mann Whitney test was used to identify phyla with significantly different 439 

(p value < 0.05) relative abundance. 440 

 441 

Figure S2: Abundance of core microbiome of switchgrass. The bar plot compares the relative abundance of 442 

switchgrass (red colored) core OTUs (90% threshold and q-value < 0.05) and non-switchgrass (yellow colored) samples. 443 

 444 

Figure S3: Core microbiome of switchgrass. Phylogenetic tree showing relationships between core OTUs (90% thresh-445 

old and q-value < 0.05) identified from switchgrass (blue colored) and non-switchgrass samples. 446 

 447 

 448 

Table S1: Processing times for COREMIC. 449 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 17, 2017. ; https://doi.org/10.1101/147009doi: bioRxiv preprint 

https://doi.org/10.1101/147009
http://creativecommons.org/licenses/by-nc-nd/4.0/


Root-zone associated core microbiome  

 
 

17

Rows = 

678*numb 

Cols = 

59*numb 
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Mean 

Std. Er-

ror 

1 1 13.102 12.017 12.015 12.314 11.924 11.603 12.163 0.210 

2 1 28.426 26.511 27.832 28.623 25.742 30.245 27.896 0.655 

10 1 37.913 84.115 41.965 70.986 43.540 46.456 54.163 7.671 

1 2 12.924 13.924 12.914 14.639 16.016 17.961 14.730 0.802 

1 10 30.127 41.331 24.405 32.020 34.582 48.253 35.120 3.467 

2 2 29.118 29.512 29.586 34.621 36.447 35.057 32.390 1.359 

The run times (in seconds) for different sized inputs with a 678 OTUs (rows) and 59 samples (columns) dataset using 450 

default settings for COREMIC. 451 

 452 

 453 
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Jesus 2016 Rodrigues 2017

Amplicon regions V6-V8 V3-V4

Sequencing platform Pyroseq Illumina

Reads Single Paired

Lengths ~500 bp ~250 bp

Corn, Mixed grasses, 
Switchgrass, Praire grasses

SwitchgrassPlants

Location Wisconsin, Michigan Virginia

Age 2 yrs, 10 yrs 1.5 months, 3.5 months

Site Field Greenhouse

678 common OTUs

44067893

Core microbiome

OTU is significant if q-value < 5% 

OTUx OTUy

Jesus

13 Swg, 28 Non-Swg
771 OTUs

Rodrigues

18 Swg
1118 OTUs

Original data (treated as binary)

OTUx
OTUy
OTUz
OTUn

S-1 S-2 S-3 S-n N-1 N-2 N-3 N-n
101 1 01 1 0
101 1 01 1 1
101 1 11 1 1
111 0 10 0 0

absolute/relative
abundance

Fisher's exact test
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PC1 (32%)

PC2 (15%)

PC3 (6%)

Grass

Swg
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