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Abstract 22 
 23 
 Animals must integrate the activity of multiple mechanoreceptors to navigate complex 24 

environments. In Caenorhabditis elegans, the general roles of the mechanosensory neurons have been 25 

defined, but most studies involve end-point or single-time-point measurements, and thus lack dynamical 26 

information. Here, we formulate a set of unbiased quantitative characterizations of the mechanosensory 27 

system by using reverse correlation analysis on behavior. We use a custom tracking, selective illumination, 28 

and optogenetics platform to compare two mechanosensory systems: the gentle-touch (TRNs) and harsh-29 

touch (PVD) circuits. This method yields characteristic linear filters that allow for prediction of behavioral 30 

responses. The resulting filters are consistent with previous findings, and further provide new insights on 31 

the dynamics and spatial encoding of the systems. Our results suggest that the tiled network of the gentle-32 

touch neurons has better resolution for spatial encoding than the harsh-touch neurons. Additionally, 33 

linear-nonlinear models can predict behavioral responses based only on sensory neuron activity. Our 34 

results capture the overall dynamics of behavior induced by the activation of sensory neurons, providing 35 

simple transformations that quantitatively characterize these systems. Furthermore, this platform can be 36 

extended to capture the behavioral dynamics induced by any neuron or other excitable cells in the animal.  37 

Introduction 38 
 39 

A key function of the nervous system is to integrate the activity from a variety of sensory neurons 40 

and transform these neuronal signals into specific behavioral responses. This integration occurs not only 41 

across sensory modalities but also spatially and temporally within a single modality such as in 42 

mechanosensation 1. Characterizations of how the nervous system processes this information is vital for 43 

understanding brain function and allowing for prediction of behavioral responses.  Caenorhabditis 44 

elegans, a nematode with a mapped connectome and powerful genetic and physiology tools, is an 45 

effective model organism for investigating relationships between sensory inputs and downstream 46 
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activities 2,3. The components of the neural circuits involved in C. elegans mechanosensation have been 47 

elucidated through various genetic and behavioral analyses, coupled with neuronal cell ablation assays 4–48 

6. Two sets of mechanoreceptors are specifically responsible for sensing touch throughout the body: the 49 

gentle touch sensing TRNs and harsh touch sensing PVDs 7. These specific neurons have been the focus of 50 

a number of studies, including genetic dissections of the mechanical signal transduction, their calcium 51 

responses and the eventual behavioral outcomes 4,8–15. However, most descriptions are specific to a single 52 

specific input stimulus, typically a single pulse with an eye lash or a metal pick, and a single behavioral 53 

output. This leaves unexplored space of the stimuli and outputs, leading to descriptions that are 54 

potentially biased toward a specific stimulus, and not allowing for the generalizable prediction of the 55 

system.  56 

To map the transformations between mechanoreceptor neurons and behavioral outputs, we 57 

sought to model these transformations in an unbiased quantitative framework that captures the systems’ 58 

dynamics in a predictive manner. This is computationally challenging because of the stochasticity and 59 

complexity of the animal’s behavioral repertoire, as well as the various time scales and frequencies 60 

relevant in the system16–18. A successful technique for characterizing neuronal systems is the use of 61 

reverse correlation analysis with a white noise stimulus 19–26. This methodology is commonly applied in 62 

sensory physiology to model a sensory neuron’s response to natural stimuli as a linear filter. The 63 

computed linear filters provide a complete description of the linear dynamics of the neuron, and can be 64 

used in conjunction with a nonlinear filter to accurately model its function 21,27–30. This technique has also 65 

been extended to modeling sensory neurons31 and behavior in invertebrates32–36. However, this technique 66 

has not been extended to model and contrast the spatial and temporal properties of behavioral responses 67 

to the gentle and harsh touch mechanosensory neurons.  68 

 Although reverse correlation analysis allows for accurate estimations of system dynamics, several 69 

experimental obstacles hinder its applicability to the mechanosensory circuits in C. elegans at present. 70 
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Current techniques for delivering precise mechanical stimuli to animals involve the delivery of a 71 

mechanical force via a stylus or microfluidic device to specific locations on the animal’s body 9,14,15,37. 72 

Although ideal for neuronal imaging, these techniques require the immobilization of animals with glue or 73 

other techniques, and therefore, do not allow for reverse correlation analysis with behavior response 74 

dynamics. Additionally, many of these techniques have a low experimental throughput, and cannot 75 

provide the large sample sizes required for reverse correlation studies. One technique that overcomes 76 

these challenges is to couple optogenetics with behavior, as a light stimulus is more easily controlled, and 77 

can be used to activate specific neurons in freely moving animals 34,35,38. This fictive stimulus has the added 78 

benefit of bypassing differences in native receptor protein expressions, allowing for comparison between 79 

sensory systems. In order to apply light stimuli with spatial resolution to activate specific regions of 80 

sensory neurons, we adapted a previously developed tracking platform with selective illumination 39. The 81 

custom microscopy system uses a projector and computer vision tools to track the animal, allowing for 82 

the delivery of spatially and temporally resolved stimuli required for white noise signal delivery.  83 

Combining these tools, we developed an experimental and computational pipeline for performing 84 

white noise analysis on C. elegans, and apply this method to elucidate models of transformations between 85 

mechanosensory neuron activity and behavioral response. Using our platform, we computed linear filters 86 

that characterize the dynamics of the gentle touch sensing TRNs and harsh touch sensing PVDs. These 87 

filters provide a quantitative framework for the functions of these neurons, and allowed for the 88 

investigation of differences in spatial encoding. Furthermore, this method allowed us to create models 89 

that accurately predict behavioral changes in response to mechanosensory neuron activity. Our method 90 

provides simple transformations that quantitatively characterize these systems by capturing the 91 

spatiotemporal dynamics of behaviors induced by optogenetic activation of sensory neurons.  92 

 93 
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Results  94 
 95 
Reverse-correlation analysis using optogenetics and behavior tracking  96 
 97 

To illuminate the differences between the mechanosensory systems, we characterize and 98 

compare the dynamics for these two anatomically distinct sets of mechanosensory neurons: the gentle 99 

touch sensing TRNs and the harsh touch sensing PVDs (Fig 1A). In order to use reverse correlation for 100 

modeling behavioral responses, the two main experimental requirements are the delivery of a white noise 101 

stimulus and accurate measurements of the output. For the stimulus, we used optogenetics to directly 102 

activate the mechanosensory neurons with a white noise signal. This unmediated input enabled us to 103 

activate neurons regardless of expression of mechanotransductive channels. This allows the comparison 104 

of how the two systems and their morphologies control downstream activity, rather than differences in 105 

their sensory activation. Additionally, whereas a natural stimulus can activate additional sensory neurons 106 

and possibly interfere with the characterization, the optogenetic stimulus will only activate the neurons 107 

expressing channelrhodopsin. Therefore, the resulting filters characterize the dynamics of behaviors 108 

exclusively in response to activation of specific sensory neurons. Our tracking platform 39  enables the 109 

delivery of patterned illumination while simultaneously tracking individual animals, allowing for selective 110 

activation of specific sections of transgenic animals with high spatial and temporal precision (Fig 1B, Movie  111 

S1, Methods).  We used this platform to deliver the white noise light stimulus for reverse correlation; we 112 

activate mechanosensory neurons with a pseudo-random m-sequence pattern, a spectrally unbiased 113 

binary signal (Methods). 114 

The outputs we seek to characterize are the behavioral responses of animals using the 115 

optogenetic stimuli as inputs. We developed a custom computer vision algorithm (Methods) to analyze 116 

recordings of animals’ behavior in a high-throughput and unbiased manner.  The worm’s posture and 117 

position are extracted for each frame, which are then used to quantify various “continuous” behaviors 118 

such as instantaneous velocity, instantaneous head angle, and instantaneous acceleration (Fig 1C). In 119 
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addition to these “continuous” behaviors we also quantified and categorized several classical “discrete” 120 

behaviors such as reversals, pauses, and omega turns 18,40–42 (Fig 1C, Methods). Each of these continuous 121 

and discrete variables was used as a separate output for reverse correlation analysis, yielding a filter that 122 

can be used to predict behavior responses to any arbitrary stimulus patterns. By using filters for a large 123 

portion of the worm’s behavioral repertoire, we can describe the overall behavioral response when 124 

stimulating specific mechanosensory neurons.  125 

Using the white noise light stimulus for optogenetics and the quantified behavioral responses, we 126 

next apply reverse correlation to model C. elegans response as transformations of linear and non-linear 127 

filters. Classically, when characterizing mammalian neuronal systems, a neuron’s response is modeled by 128 

computing the average of the stimuli that preceded its action potentials (spike-triggered average or STA) 129 

or its subthreshold voltages (voltage-weighted average or VWA) 29.  Analogously, we estimate the 130 

dynamics of C. elegans response by computing the behavior weighted average of the stimulus (BWA). 131 

When stimulating specific segments of the mechanosensory systems, the BWA represents how the 132 

animals characteristically transform patterns of activity of those neurons into specific behaviors, providing 133 

a filter estimation of this transformation (Fig 1D).  134 

 In order to accurately estimate these linear filters, a large sample size is required to test enough 135 

input values 20,30. To estimate the number of samples required in our system, we characterized the speed 136 

of convergence of computed filters as the number of input samples increased (Movie S2). We 137 

characterized the convergence of filters by computing the L2 norm of the difference between subsequent 138 

filters (computed as the absolute difference between filters). We found that our system converges (to a 139 

relative tolerance of δ<0.005) after using roughly 30,000 frames of tracking data (Fig 1E). With our 140 

experimental conditions, this is equivalent to a sample size of roughly 30 animals (Methods).  141 
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 142 
Linear Filters for anterior and posterior touch receptor neurons (TRNs) robustly capture behavioral 143 

dynamics 144 

We first used our method to characterize responses to the touch receptor neurons (TRNs: 145 

ALML/R, AVM, PVM, and PLML/R) by using transgenic animals expressing channelrhodopsin (ChR2) under 146 

the mec-4 promotor (Methods)39. In response to natural stimuli, the posterior TRNs (PVM and PLML/R) 147 

respond to posterior touch, inducing forward acceleration, whereas the anterior TRNs (ALML/R and AVM) 148 

respond to anterior touch, inducing reversals 4,7,8,39,43. To characterize the dynamics of these responses, 149 

we applied an m-sequence light stimulus to either the anterior or posterior region of transgenic animals, 150 

selectively stimulating the anterior or posterior TRNs, respectively (Fig 2A). We first computed linear filters 151 

characterizing the relationship between anterior TRNs and either discrete or continuous behavior (Fig 2 152 

and Fig S1). As a control, we also performed experiments with animals that were not fed all trans-retinol 153 

(ATR), a cofactor required for ChR2 function. The computed filters for control animals are flat, zero-mean 154 

signals (Fig 2, gray lines). In contrast, the acceleration BWA for the ATR-fed worms results in a filter with 155 

a robust negative peak, -13 ± 0.50 µm/s2 (Fig 2Ei). The presence of this peak in the experimental group 156 

and its absence in the control group suggest that the filter is optogenetically induced, and not due to 157 

spontaneous behavior. We attribute small fluctuations as experimental noise rather than representing a 158 

true high frequency response. Lastly, this deceleration in the experimental group is expected from typical 159 

reversal responses to anterior touch stimulation4,7.   160 

In order to further assess the validity of the resulting filters, we performed statistical tests 161 

comparing true filters and filters computed from shuffled data (Methods). We compute magnitudes for 162 

all filters, defined as the L2 norm, to the correctly computed filter. Data is shuffled in four different ways 163 

(Methods). In all tests, the BWA computed from experimental data has the highest magnitude compared 164 

to filters computed from shuffled data (Fig S2). Together with the statistical comparison of ATR-fed and 165 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 21, 2018. ; https://doi.org/10.1101/147363doi: bioRxiv preprint 

https://doi.org/10.1101/147363
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

non ATR-fed animals, we conclude that the BWA for acceleration is robust and descriptive of the 166 

behavioral response.  167 

In addition, our method also reveals new information about the dynamics of these responses. 168 

From the BWA, we can characterize metrics such as the delay to the peak (0.2s) and the decay timescale 169 

of the filter (0.4s); these temporal characteristics are critical for accurately predicting response to 170 

activation of the anterior TRNs. In comparison, the BWA computed with velocity also returns a linear filter 171 

with a negative peak (-6.1 ± 0.39 µm/s), although with a longer delay to peak (0.7s) and longer decay 172 

timescale (0.6s) (Fig S1). The difference between temporal characteristics of these two filters suggests 173 

that although animals reverse for a relatively long time after the stimulus (1.3s), the deceleration portion 174 

of this reversal only takes place in the first 0.6s after a stimulus.  175 

To ensure that the computed linear filters are not an artifact from the input signal itself, we tested 176 

computing filters using a different m-sequence stimulus. Using acceleration as an example, we observe a 177 

similar linear filter to those obtained with the previous stimulus (Fig 2C, as compared to 2B). When 178 

comparing the peak values of the filters computed with different stimuli, there is no statistical difference 179 

(Fig 2Eii). These results demonstrate that the linear filters are indeed characteristic of C. elegans’ 180 

behavioral output specifically in response to the activity in the anterior TRNs, and independent of the 181 

input signal.  182 

Next, we sought to compare the dynamics of the animals’ response between anterior or posterior 183 

TRN activities. Previous findings have shown that applying a mechanical force to the posterior region of 184 

the animal induces an acceleration, and PLM is required for these responses 4,7,8. As with the anterior 185 

TRNs, we stimulated the posterior TRNs by applying an m-sequence light stimulus to the posterior half of 186 

the animal, and computed the BWA for the same quantified behaviors (Fig 2 and Fig S1). The filter for 187 

acceleration has a positive peak (2.8 ± 0.48 µm/s2), although with a much smaller magnitude than its 188 

anterior counterpart and is not statistically significant compared to non ATR-fed worms (Fig 2D). 189 
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Additionally, the filter is not statistically significant when testing against filters for shuffled data (Fig S3).  190 

Interestingly, although the computed linear filter for the posterior TRNs has a peak in the direction that is 191 

consistent with previous findings, it is close to zero-mean. One interpretation that is consistent with 192 

literature is that worms have a lower rate of responses when activating PLM and PVM in comparison to 193 

the activating anterior TRNs. This is not surprising, as worms are generally moving forward and do not 194 

require a change in behavior to escape the weak stimulus, whereas avoidance of a weak anterior stimulus 195 

requires a directional change.  196 

In addition to continuous signals, we also estimated linear filters for the probability of transitions 197 

between defined states. Unlike in predicting continuous variables (e.g. acceleration and velocity), filters 198 

computed for these behaviors indicate a change in probability of transitions to these behaviors. When 199 

computing the BWA with transitions into pauses or reversals in response to anterior TRNs, we observe 200 

linear filters with positive peaks that are statistically significant as compared to non ATR-fed animals (Fig 201 

2F,G, I).  Similarly, the filters computed from shuffled data support this statistical significance (Fig S3). This 202 

indicates that activating the TRNs induce an increase in probability of transitions to pauses or reversals, 203 

and this increased likelihood happens within the first second after a stimulus. In contrast, when 204 

stimulating the posterior TRNs, the filter computed for transitions into pauses and reversals is close to 205 

zero-mean, indicating that the stimulus does not alter these behaviors significantly (Fig 2H,I, and Fig S3). 206 

  207 

Reverse Correlation Analysis of Harsh-Touch Sensing PVD Neurons 208 

In addition to the TRNs, C. elegans has another set of neurons that are responsible for body touch 209 

sensation. The PVD neurons are morphologically unique sensory neurons that have extensive and 210 

organized dendritic structures expanding most of the body of the worm; in contrast, TRNs are tiled (Fig 211 

1A). Additionally, the PVD neurons are known to respond to harsh touch, as opposed to gentle touch or 212 

nose touch5,10–13. Because of the morphological and functional differences between the PVD and TRN 213 
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systems, we ask whether there are also downstream differences in spatial and temporal behavioral 214 

response dynamics. To do so, we applied the same reverse correlation method to animals expressing ChR2 215 

in the PVD neurons 13.  216 

For comparison with the TRNs, we again divided the stimulus regions into anterior and posterior 217 

segments, and computed the BWA and estimated linear filters for the same behaviors (Fig 3A). 218 

Interestingly, when the animal is stimulated either anteriorly or posteriorly, the BWA’s for acceleration 219 

both have positive peaks (Fig 3B,C), indicating that activating either of these segments of PVD induces an 220 

increase in velocity. This positive peak is also observed for both segments when computing the BWA with 221 

velocity (Fig S4). However, only the filters from the posterior segment are statistically different from the 222 

non-ATR group, with a higher positive peak for both acceleration (Anterior 4.0 ± 0.58 µm/s2 vs Posterior 223 

7.1 ± 0.58 µm/s2) and velocity (Anterior 3.5 ± 0.32 µm/s vs Posterior 7.1 ± 0.32 µm/s) (Fig 3D and Fig S4). 224 

When computing the BWA with transitions into pauses or reversals in response to either anterior or 225 

posterior PVD, we observe flat, zero-mean linear filters (Fig 3 E, F).  These filters are statistically 226 

indistinguishable from the non-ATR fed control group (Fig 3G), indicating that activation of the PVDs do 227 

not induce a change in probability of these events.  When comparing these filters with shuffled data, only 228 

the posterior acceleration filter is statistically significant (Fig S5). This contrast from the TRN filters 229 

suggests a different role for PVD sensory neurons in the behavioral circuit – that PVD activation promotes 230 

positive acceleration, and TRNs promote negative acceleration, consistent with previous findings 8,12.  231 

In addition to the magnitudes, the context of peak occurrence can also be informative. The PVD 232 

acceleration filters have significant negative peaks following the positive peaks; the magnitudes of the 233 

negative peaks are of similar values to the first positive peak (Fig 3D). This suggests that the acceleration 234 

in response to PVD activation is more likely to occur when preceded by a negative acceleration. In other 235 

words, worms that are slowing down or reversing are more likely to respond to PVD activation and 236 

produce a positive acceleration. In contrast, the anterior TRN acceleration filters only contain one 237 
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significant peak. These differences in the acceleration filters further supports the idea that PVD and TRNs 238 

influence different aspects of behavior.  239 

 240 

Linear-Nonlinear Models Predict Behavioral Response 241 

In general, the filters computed from BWA in response to a white noise signal capture the linear 242 

dynamics of the analyzed systems. However, biological systems are rarely linear24. A common approach 243 

for modeling the nonlinear dynamics of a system is to use a linear-nonlinear cascade, where a static 244 

nonlinear filter is used to characterize the nonlinear dynamics not captured by reverse correlation 20,23–25. 245 

To define static nonlinear filters, we used the linear filters computed from BWA and compared predicted 246 

outputs with measured experimental outputs (Methods). For instance, for acceleration in response to 247 

anterior TRNs, we first compared predicted values with the quantified experimental values (Fig 4A, gray 248 

circles). Not surprisingly, there is a positive correlation between predicted and experimental outputs, 249 

indicating that the model does indeed capture linear dynamics in these responses. To capture the 250 

nonlinear dynamics of the response, we fit a static filter using a simple quadratic function (Fig 4A blue 251 

lines, Methods). Similarly, we also characterized nonlinear filters for velocity (Fig S6A) and transitions into 252 

pauses or reversals (Fig 4B, Methods). The quadratic functions greatly improve the model fit to the data, 253 

suggesting that they capture a large portion of the nonlinear dynamics of the anterior TRNs. We also 254 

computed static nonlinear filters for stimulation of the posterior TRNs. In comparison to the anterior TRNs, 255 

there is a lower correlation between experimental measurements and predicted values (Fig 4C,D, Fig S6B). 256 

This is expected, as the estimated linear filters for these neurons were close to zero-mean, yielding a small 257 

range of predicted responses. Furthermore, because the linear filters alone led to a low predictability of 258 

responses for posterior TRNs, nonlinear functions also fail to capture a large portion of the variability in 259 

responses (Fig 4C,D, Fig S6B, orange lines).  260 
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We next sought to test the validity of using linear-nonlinear (LN) cascade models to predict 261 

behavioral responses to novel stimuli. To do this, we probed the anterior TRNs with a different m-262 

sequence stimulus from the one used to compute the filters (Fig 5A, Methods). We first compared the 263 

measured velocities of animals to the predicted velocities when using the linear filter only (Fig 5B).  264 

Although the magnitude of predicted velocity from the model did not exactly match the experimental 265 

measurements, the model captures large features of the temporal dynamics of velocity in response to this 266 

novel stimulus. Next, we incorporated the static nonlinear filter to predict velocities (Fig 5C). When using 267 

the LN model, the magnitudes of predicted velocities are more similar to experimental values, leading to 268 

more accurate predictions. In addition to predicting the continuous velocity of the animals, we also tested 269 

L and LN models for pauses and reversals, and observe predicted increases in probability of events similar 270 

to experimental values (Fig S7A,B). Incorporating the nonlinear component to these models also improves 271 

the model predictability.  272 

Interestingly, in our experiments we observe a time-dependent decrease in the magnitude of 273 

responses, which fails to be captured in time-scales of the dynamic linear filters (Fig 5B,C latter half). 274 

Biologically, this habituation of responses is commonly observed in sensory systems 44. In general, 275 

although LN models can predict system responses, this is true only to the time-scales captured in the 276 

linear filters, and does not capture adaptation dynamics. To model this decay of responses, we add a 277 

dynamic exponential function following the LN cascade (Fig 5A). We tested a wide range of decay rate 278 

values using this model and found that a decay rate of 50s best provided the best predictions (Fig S8). 279 

Interestingly, this decay rate is consistent with previous findings from investigations of habituation to 280 

stimulation of TRNs, with both tapping and optogenetic stimuli 45. When adding this exponential 281 

component to our model, the accuracy of our model’s predicted behavioral responses improves for later 282 

time points of the trials, thus improving the overall accuracy of our models (Fig 5D, Fig S7C,D). These 283 

results illustrate how the linear filters computed from BWA, when combined with additional nonlinear 284 
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filters, are powerful in predicting temporal dynamics of behavioral responses to sensory neuron 285 

activation, and likely generalizable to other sensory responses.  286 

 287 

Spatially Refined Selective Illumination Improves Resolution of Linear Filters from BWA 288 

We have thus far characterized mechanosensory systems by probing either the anterior or 289 

posterior segments of the animal, similar to previous investigations of the receptive fields of 290 

mechanosensory systems 12,14. To further examine the spatial resolution of the mechanosensory systems, 291 

we took advantage of our selective-illumination light stimulus, which allows for the probing of specific 292 

spatial segments as small as 14µm 39. We characterized the TRN system with better resolution by 293 

increasing the number of segments in our stimulus to 4 (Fig 6A). We applied an m-sequence stimulus 294 

selectively to one of the four segments, and computed linear filters for both continuous and discrete 295 

behavioral outputs (Fig 6 and Fig S9). This particular discretization of the TRN system allows for the 296 

computation of separate filters for the processes and cell bodies of ALM and AVM, as well as separate 297 

filters for PVM and PLM cell bodies (while keeping a high number of photons in the stimulus region). We 298 

first computed filters for acceleration in response to stimulating four segments. The filters for the most 299 

anterior quarter and second-most anterior quarter have a prominent negative peak, statistically 300 

significant when compared to non-ATR fed animals (Fig 6B,C,F). These filters are also statistically 301 

significant when compared to shuffled data (Fig S10). Interestingly, these filters are similar to the filter 302 

computed from stimulating the entire anterior region (compare to Fig 2B,C). This suggests that there are 303 

no observable differences in acceleration dynamics between cell body and axon activity of the anterior 304 

TRNs.  305 

Not surprisingly, the filters for acceleration in response to the most posterior quarter and second 306 

most posterior quarter are both flat and are statistically indistinguishable from filters computed with non-307 

ATR fed animals (Fig 6D,E,F). These filters are also not statistically significant when comparing to shuffled 308 
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data (Fig S10). Similar to the anterior region, the acceleration filters for the separate posterior segments 309 

are similar to the flat filter computed from stimulating the entire posterior region (compare to Fig 2D).  310 

We next computed linear filters for transitions into pauses or reversals, and found differences in 311 

spatial encoding. The results for the anterior segments did not reveal much spatial encoding, with the 312 

filters for both the most anterior quarter and second-most anterior quarter both having positive peaks 313 

(Fig 6G,H,K), similar to the filter computed when stimulating the entire anterior regions (compare to 314 

Fig2F,H). These filters are also statistically significant when comparing to shuffled data (Fig S10). This 315 

suggests that there is low spatial encoding of these discrete behavioral responses between the axons and 316 

cell bodies of the anterior TRNs. Interestingly, we observe different filters when dividing the posterior 317 

segment of the TRNs into separate segments for the cell bodies of PVM and PLM. The filter for the most 318 

posterior quarter, which includes the PLM cell body, is again a flat filter (Fig 6J), similar to the filter 319 

computed when stimulating the entire posterior region (compare to 2H). Surprisingly, the filter for 320 

second-most posterior quarter has a negative peak, statistically significant when compared to non-ATR 321 

fed animals (Fig 6I,K). This filter is also statistically significant when compared to shuffled data (Fig S10). 322 

The negative peak indicates that there is a reduced probability of pauses and reversals when activating 323 

PVM cell body. This suggests that PVM potentially has a previously undescribed function of inhibiting 324 

pauses and reversals. Additionally, the difference in filters for the four segments implies that the TRNs 325 

employ their tiled network to allow for spatial encoding of behavioral responses. This suggests that the 326 

morphological differences between the tiled TRNs and branched PVDs are used to differently control 327 

downstream activity.  328 

Discussion 329 

The nervous system continuously transduces sensory stimuli into neuronal activity and 330 

appropriate behavioral outputs. One of the biggest challenges in mapping this neuronal encoding is the 331 
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lack of a quantitative framework for characterizing how a layer of neural activity is transduced into the 332 

downstream circuit. In this work, inspired by previous work in modeling neuronal systems, we built a 333 

framework that uses reverse correlation analysis with a custom tracking platform to analyze a C. elegans 334 

sensory system. We investigated the spatial and temporal encoding of two mechanosensory systems, the 335 

gentle touch sensing TRNs and the harsh touch sensing PVDs. We computed several linear filters that 336 

quantitatively describe transformations between sensory neuron activity and behavioral outputs, and 337 

support previous findings about the systems.  Analysis of the PVDs produced linear filters that indicate an 338 

increase in velocity and acceleration from their activation, which is consistent with  literature on its 339 

function 5,10–13. Similarly, the linear filters computed for the TRNs were also consistent with previous 340 

literature: the anterior TRNs show decreases in velocity and acceleration, and an increase in probability 341 

of pauses and reversals 4,7,8,39,43, and the posterior TRNs show an increase in acceleration 4,8,39. It should be 342 

noted that we do not measure expression levels of ChR2 in the sensory systems, and any differences in 343 

computed filters could be explained by differences in expression levels. However, when assuming uniform 344 

expression levels across the sensory systems, our results provide spatiotemporal receptive fields for these 345 

systems that are consistent with previous findings 7.   346 

 The linear filters resulting from our method provide several insights into the circuitry and 347 

morphological differences between the two sensory systems. First, although we used identical stimuli for 348 

both segments, the filters produced from activating the anterior TRNs were much more robust than the 349 

filters from activating the posterior TRNs, suggesting that downstream interneurons in this circuit are 350 

more responsive to the anterior neurons. This preference in downstream activity has also been observed 351 

in experiments involving tap responses, which show that reversals dominate over accelerations when 352 

tapping cultured plates, and this preference occurs downstream of sensory neuron activity 8. In contrast, 353 

the filters for the posterior segments of PVD were more robust than the anterior segments. This is also 354 

consistent with previous findings that show PVD is required for posterior harsh touch sensation, but not 355 
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required for anterior harsh touch 12. A key difference in our experiments is that we bypass 356 

mechanoreceptor activation, and can therefore separate out effects due to differences in sensory neuron 357 

response to different spatial stimuli, as well as other neurons that might affect response rate. Therefore, 358 

one possible mechanism for the differential decision-making is that the two mechanosensory systems 359 

may have different strengths of connections to postsynaptic command interneurons. Particularly for PVD, 360 

although the number of physical synapses to forward command neuron PVC and backward command 361 

neuron AVA are similar 46, the functional connectivity seems to be higher for PVC compared to AVA. Our 362 

results strongly support this hypothesis.  363 

Our results also provide insight on the levels of spatial encoding in the TRNs and PVD systems. 364 

The TRNs, which employ a tiled network to cover the body, appear to have more spatial encoding. When 365 

comparing the computed filters for the anterior and posterior TRNs, most behaviors show distinct 366 

differences in responses. Furthermore, when analyzing this system in four segments, we observed 367 

differences in linear filters among the four segments. In contrast, the branched network in PVD does not 368 

appear to spatially encode behavioral responses. The filters from activating the anterior and posterior 369 

segments of the PVD system have similar dynamics, with the anterior filters having slightly smaller 370 

magnitudes and longer delays. This contrast between the two mechanosensory systems suggests that 371 

although both the TRNs and PVDs have spatially distributed processes to sense touch throughout the 372 

body, the unique morphological strategies in the two systems lead to differences in their capabilities of 373 

encoding responses. Biologically, this disparity in encoding can be explained by their morphologies and 374 

perhaps synaptic connectivity to downstream neurons, as the tiled TRN system consists of more nodes, 375 

which could allow for more spatially specific behavioral responses.  376 

One new finding from our experiments concerns the role of the cryptic PVM neuron. Although 377 

shown to respond to mechanical stimuli 47, its role in mediating behavior is poorly understood 4,7,8,39. We 378 

found that activating PVM did not induce significant changes in velocity, but induced a slight decrease in 379 
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acceleration. Interestingly, PVM activation significantly reduced the probability of reversal events.  These 380 

filters suggest a unique function for PVM in modulating escape response. In contrast to the other TRNs, 381 

PVM does not induce escape responses, but rather suppresses these behaviors, as well as decrease the 382 

velocity of forward movement.  383 

The findings in this work demonstrate the utility of our method for providing new insights into 384 

the dynamics of the mechanosensory system in C. elegans, one of the earliest and better characterized 385 

neural circuits. By using a quantitative framework to compare the dynamics between the two sensory 386 

systems, we recapitulated qualitative findings from previous literature, and provide further insights in the 387 

temporal and spatial encoding in these systems. Additionally, we used linear filters computed from BWA 388 

to create LNE models that can predict the behavioral responses of animals in response to activity in 389 

sensory neurons alone. Because this method is noninvasive and independent of natural stimulus, it can 390 

be easily extended to investigate the dynamics of other neural circuits in C. elegans and other model 391 

organisms.  We foresee many potential applications in better understanding sensory behavior responses 392 

and sensory integration.  393 

 394 

Methods and Materials 395 

C. elegans Culture and Maintenance. We used transgenic worms expressing channelrhodopsin in 396 

various mechanosensory neurons. Worm populations were cultured at 20C in the dark on standard 397 

nematode growth medium (NGM) petri dishes. Plates were coated with OP50 bacteria lawn 398 

supplemented with the cofactor required for channelrhodopsin, all-trans-retinal (Sigma-Aldrich). The 399 

solution was prepared by diluting a 50mM stock solution (in ethanol) in OP50 suspension to a final 400 

concentration of 100uM. Control animals were grown in parallel on OP50 without all-trans-retinal. All 401 

worms tested were F1 progeny of P0 adults picked onto seeded plates 3-4 days before experiments. 402 
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Animals were washed to unseeded NGM plates 1hr prior to assays. Animals were then picked to individual 403 

plates for experiments. Each animal was exposed to a single stimulus profile and then discarded. The 404 

strains used in this work included AQ2334: lite-1(ce314); ljIs123[pmec-4∷ChR2; punc-122∷rfp] 39 and 405 

ZX899: lite-1(ce314); ljIs123[pmec-4∷ChR2; punc-122∷rfp] 13.  406 

 407 

Tracking and Light Delivery Platform. Experiments were performed on a tracking system adapted from 408 

a previously developed projector based microscopy system 39. The system uses an inverted microscope 409 

(Leica-DMIRB) with a low-magnification objective (x4) to image freely moving animals. We image using 410 

near-infrared light by applying a long-pass filter (715nm) to the transmitted light path and capture images 411 

using a large sensor NIR camera (Basler acA2040-180kmNIR), which limits interference in blue light used 412 

for optogenetics stimulus. A three-color LCD projector is used as the light source for optogenetic stimulus 413 

with selective illumination. We use a camera with large sensor area to capture the full body of the animal, 414 

and use a small ROI and binning to reduce the size of images to improve processing speed and therefore 415 

tracking rate. A Lenovo desktop computer with an Intel Core i74790 Processor (8MB Cache, up to 4.0GHz) 416 

and a 512GB Solid State Drive and 16GB RAM was used to process images for tracking and selective 417 

illumination. Tracking of individual animals was performed by using images taken with the camera, and 418 

processed to compute the centroid of the animal in terms of x-y pixels on the camera FOV. Based on the 419 

position of the computed centroid, a command is sent to a motorized stage to move the animal to the 420 

center of the FOV. To apply a light stimulus with spatial and temporal control, we used a modified 421 

projector as the light source to the microscope. Images taken with the camera are processed to determine 422 

the outline of the animal’s body in each frame. The appropriate illumination pattern is then computed 423 

and sent to the projector. Stimuli were only presented when ansterior and posterior segments were 424 

correctly computed by the algorithm; during pirouettes or other uncommon postures, stimulus 425 
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presentation was paused. This process was performed at a rate of 13 frames per second. For each animal, 426 

illumination profile and tracking videos were saved for future analysis.  427 

 428 

Quantitative Behavior Analysis. To extract quantitative behavioral features from tracking recordings, a 429 

custom MATLAB script was developed. A series of segmentation and morphological processes were used 430 

to extract body postures in each frame. We combined extracted postures with recorded stage movements 431 

to quantify several behaviors. We computed various “continuous” behaviors that have a scalar value for 432 

each time point. This includes velocity (magnitude), velocity (angle), acceleration, head angle, angular 433 

velocity. We also classified various “discrete” behaviors that have been used in previous works 18,40,48,49. 434 

These include behaviors such as pauses, reversals, omega turns, and turns. Each of these behaviors were 435 

classified by applying thresholds on quantified continuous behaviors. Pauses and reversals were classified 436 

by applying both vertical and horizontal thresholds on velocity measurements. Omega turns were 437 

classified by applying a threshold on the eccentricity of the animal’s posture. Curves were classified by 438 

applying a threshold on the angle of position trajectory.  439 

 440 

White Noise Experiments. We used the selective illumination capability of the tracking system to deliver 441 

spatially controlled light stimuli to freely moving animals expressing ChR2 in their mechanosensory 442 

neurons. We used a pseudorandom m-sequence, a binary signal with unbiased spectrum, with similar 443 

properties to a Gaussian white noise signal 22,31. We tested several white noise signals, and found that an 444 

m-sequence with a maximum frequency of 2Hz produced reliable results, as it allows for testing time 445 

scales appropriate for behavioral responses. We use a light intensity of 0.75mW/mm2 as it induces reliable 446 

and varying behavioral responses, similar to previous work 39. The generated pseudorandom sequences 447 

were repeats of a 6-bit words, 63 value length m-sequences ( 2*(26-1) = 126 values). We deliver the same 448 

pseudorandom signal for each experimental group, applying the signal through the tracking system and 449 
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changing values in the m-sequence at 2Hz, which is lower than the Nyquist Frequency (acquisition rate is 450 

13Hz). Stimuli were only presented when ansterior and posterior segments were correctly computed by 451 

the tracking algorithm; during pirouettes or other uncommon postures, stimulus presentation was 452 

paused.  453 

 454 

Reverse Correlation Analysis. To compute mathematical functions that describe the transformations 455 

from sensory neuronal activity into behavior, we first modeled the entire animal as a linear transducer:  456 

𝑜𝑜(𝑡𝑡) = ℎ(𝑡𝑡) ∗ 𝑠𝑠(𝑡𝑡) =  ∫ ℎ(𝜏𝜏)𝑠𝑠(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝜏𝜏∞
−∞   (1) 457 

where the relationship between the input signal (neuronal activity through optogenetics) s(t) and output 458 

signal (behavior) o(t) is characterized by a function h(t). We assume that the system is causal, and h(t)<0 459 

for t<0.  We used standard reverse-correlation similar to 29–31,34,35, and computed h(t) for specific behaviors 460 

by computing a “behavior-weighted-average” (BWA):  461 

ℎ(𝑡𝑡)~ 𝐵𝐵𝐵𝐵𝐵𝐵 =  1
𝑁𝑁
∑ 𝑠𝑠𝜏𝜏−𝑡𝑡�������⃑  𝜏𝜏 × 𝑣𝑣𝑜𝑜(𝜏𝜏)  (2) 462 

where the stimulus preceding each time-point is weighed by the scalar value of the behavior at that time. 463 

We convert the light stimulus patterns into -1 and 1 for when the light is on and off, respectively. For 464 

continuous behaviors, we used the scalar values at each time points as the weights. For discrete behaviors, 465 

we used a binary signal indicating transitions from forward movement to specific states. For all cases, we 466 

compute linear filters using 400 points preceding and following each time point (801 total timepoints). 467 

The points preceding each time point are computed as a control to capture experimental variablity.  468 

 469 

Statistical Significance of Computed Filters. Behavior-weighted averages (BWAs) were tested for 470 

significance by comparing their magnitude, computed as the L2 norm, to a distribution of random filters 471 

computed with shuffled data. We tested four different methods of shuffling data: cyclic shuffling of the 472 
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stimulus vector by a random integer, cyclic shuffling of the output vector by a random integer, random 473 

permutations of the stimulus vector, and random permutations of the output vector. For each test, we 474 

perform the same computation with the shuffled data and repeat 100 times. The BWA is classified as 475 

significant if its magnitude is higher than all shuffled data tests. Random integers were generated from a 476 

uniform distribution from 1 to length of vector using the MATLAB function rand, and random 477 

permutations of vectors were performed using the MATLAB function randperm. 478 

 479 

Nonlinear Filters and Model Predictions. We model static nonlinear filters for each behavioral response 480 

in order to extract the nonlinear dynamics not captured in the linear filters computed from reverse 481 

correlation 50. We first compute linear model predictions by convolving the computed linear filters from 482 

presented stimuli in each trial used, as shown in equation (1). We then compare these linear predictions 483 

to the measured outputs at each time point, and fit a quadratic function. For “discrete” behaviors, 484 

probabilities for transitions into specific behaviors were calculated at each time point. These quadratic 485 

functions are then used as static nonlinear filters in a linear-nonlinear (LN) cascade model for specific 486 

behavior transformations.  487 

𝑦𝑦𝑝𝑝𝑁𝑁(t) = 𝐹𝐹𝑁𝑁(𝑦𝑦𝑝𝑝𝑝𝑝)  (3) 488 

where the predicted nonlinear output is a static function of the predicted linear output. We also apply an 489 

exponential decay filter (LNE) to capture nonlinear adaptations to the stimuli. We apply this exponential 490 

factor to only the changes in behavior after the stimulus: 491 

𝑦𝑦𝑝𝑝𝑝𝑝(𝑡𝑡 > 5) =  (𝑦𝑦𝑝𝑝𝑁𝑁(𝑡𝑡 > 5) − avg(𝑦𝑦𝑝𝑝𝑁𝑁(𝑡𝑡 < 5)) ∗ exp (−𝜆𝜆𝑡𝑡) + avg(𝑦𝑦𝑝𝑝𝑁𝑁(𝑡𝑡 < 5)) (4) 492 

where the decay parameter 𝜆𝜆 is 50s, based on empirical data (Fig S8) and previous findings45. We use 493 

bootstrap sampling to compute 95% confidence intervals for our model predictions. Confidence 494 

intervals were computed using the MATLAB functions bootstrp and bootci, computed with 1000 495 

resamples of the stimulus data.  496 
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 497 

Statistics. Linear filters are presented as mean ± SEM as computed by the BWA. The two-tailed Student’s 498 

t-test was used to compare filter peaks between two groups. Peaks were determined by searching for 499 

local maxima in the filters between -1 < t < 1. P<0.005 was considered statistically significant. Accuracy of 500 

best-fit nonlinear filters were computed as coefficients of determination (R2 values). Performance of 501 

models were compared using the sum of squared error (SSE). Values are normalized to the SSE value for 502 

linear models.  503 

 504 

Code Availability. All custom code used to generate results in this manuscript are available on Github 505 

(https://github.gatech.edu/pages/dporto3/BWA-v1/).   506 

 507 

Data Availability. All behavior and stimulus data generated during the current study are available from 508 

the corresponding author upon reasonable request.  509 
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Figure Legends 630 

Fig 1: Reverse correlation analysis of mechanosensory neurons enabled by tracking and selective 631 

illumination platform.  632 

(A) Mechanosensory neurons characterized in this study. The gentle touch sensing neurons ALML/R, 633 

AVM, PVM, and PLML/R (blue) and harsh touch sensing neurons PVDL/R (red). (B) Schematic of custom 634 

tracking system with selective illumination used for reverse correlation experiments (Methods). A 635 

projector is used as the light source to enable selective illumination. Captured video frames are 636 

processed in real-time to deliver accurate light patterns on moving animals. (C) Sample stimulus and 637 

extracted quantified behavior traces obtained from the custom platform and analysis script (Methods). 638 

Input is a binary signal of On and Off. Outputs are characterized for both “discrete” and “continuous” 639 

behaviors. Discretized behaviors are classified based on a custom behavior analysis script (Methods). 640 

Colors represented in sample output: dark blue represents a pause, red represent reversals, light blue 641 

represents turns. (D) A sample filter computed using the BWA computation (Acceleration Response to 642 

Anterior TRN, n = 88,031 time-points). (E) The speed of convergence for the BWA as a function of the 643 

amount of data used to train the model. The error converges to a relative tolerance of δ<0.005 after 644 

30,000 time-points.  645 

 646 

Fig 2: Linear filters for the touch receptor neurons (TRNs) responses are robust and reproducible.   647 

(A) Stimulus patterns and neurons being analyzed. Animals used in these experiments express 648 

channelrhodopsin using the mec-4 promoter (Methods). (B-D) Linear filters computed from BWA for 649 

acceleration when stimulating the anterior (B,C) or posterior (D) TRNs. (E) Comparisons of peak values 650 

from computed linear filters in B-D. (F-H) Linear filters computed from BWA for pauses and reversals 651 

when stimulating the anterior (F,G) and the posterior (H) TRNs with an m-sequence. (I) Comparisons of 652 
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peak values from computed linear filters in F-H. Colored plots represent filters computed from ATR-fed 653 

animals, black plots represent filters computed from control (not ATR-fed) animals. Dark line and light 654 

shade represent BWA and SEM, respectively (sample sizes listed in Table S1). Error bars in bar plots 655 

indicate SEM (sample sizes listed in Table S1). Statistical significance for peaks computed using student’s 656 

t-test (***p<0.001) and statistical significance of filters computed using shuffled data (Fig S2).  657 

 658 

Fig 3: Linear filters for PVD activity illuminate dynamic differences between gentle and harsh touch 659 

systems.  660 

(A) Stimulus patterns and PVD neurons being analyzed. (B,C) Linear filters computed from BWA for 661 

acceleration when stimulating the anterior (B) or posterior (C) regions of PVD. (D) Comparisons of peak 662 

values from computed filters. (E,F) Linear filters computed for pauses and reversals when stimulating 663 

the anterior (E) and posterior (F) regions. (G) Comparisons of peak values from computed filters. Colored 664 

plots represent filters computed from ATR-fed animals, black plots represent filters computed from 665 

control (not ATR-fed) animals. Dark line and light shade represent BWA and SEM, respectively (sample 666 

sizes listed in Table S1). Error bars in bar plots indicate SEM (sample sizes listed in Table S1). Statistical 667 

significance for peaks computed using student’s t-test (***p<0.001) and statistical significance of filters 668 

computed using shuffled data (Fig S4).  669 

 670 

Fig 4: Static nonlinear filters capture nonlinear dynamics in behavioral outputs. Estimation of static 671 

filters to capture nonlinear dynamics. (A,B) Static nonlinear filters fitted using predicted values from the 672 

linear filter (x-axis) and experimental values (y-axis) when stimulating the anterior TRNs, for (A) 673 

acceleration and (B) transitions into pauses and reversals. (C,D) Static nonlinear filters when stimulating 674 

the posterior TRNs, for (C) acceleration and (D) transitions into pauses and reversals. Linear filters and 675 

experimental values are subsets of data used in Figure 2 (n=600 for all conditions). Colored traces 676 
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represent computed nonlinear filters and gray dots represent independent time-points from measured 677 

and predicted values. Probability of discrete events is computed as the probability of an event occurring 678 

at a given time point.  679 

 680 

Fig 5: Linear-Nonlinear-Exponential (LNE) model accurately predicts behavioral response.  681 

(A) Block diagram of LNE model for used to predict behavioral responses to mechanosensory neuron 682 

activity: a LTI system modeled from BWA, followed by a static nonlinear filter and exponential decay 683 

filter. (B-D) Predictions of velocity for L (B), LN (C), and LNE (D) models (blue) and experimental traces 684 

(black). For experimental data, dark line and shade represent average and SEM, respectively (n = 31 685 

animals). For model predictions, dark line represents model prediction and shaded area represents the 686 

95% confidence interval (Methods). (E) Comparison of performance of models, computed as the sum of 687 

squared error (SSE) and normalized to the linear model performance value (Methods).  688 

 689 
Fig 6: Decreasing the size of stimulus region allows for the estimation of a spatiotemporal 690 

receptive field with higher resolution.  691 

(A) Stimulus patterns used to analyze TRNs with improved spatial resolution. (B-E) Linear filters 692 

computed for acceleration when stimulating the most anterior (B), the second-most anterior quarter (C), 693 

second-most posterior quarter (D), and the most posterior quarter (E) of the TRNs with an m-sequence. 694 

(F) Comparisons of peak values from computed filters in B-E. Error bars indicate SEM (sample sizes listed 695 

in Table S1). (G-J) Linear filters computed for acceleration when stimulating the most anterior (G), the 696 

second-most anterior quarter (H), second-most posterior quarter (I), and the most posterior quarter (J) 697 

of the TRNs with an m-sequence. Colored plots represent filters computed from ATR-fed animals, black 698 

plots represent filters computed from control (not ATR-fed) animals. Dark line and light shade represent 699 

BWA and SEM, respectively (sample sizes listed in Table S1). (K) Comparisons of peak values from 700 
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computed filters in B-E. Error bars indicate Standard deviation. Statistical significance for peaks 701 

computed using student’s t-test (***p<0.001) and statistical significance of filters computed using 702 

shuffled data (Fig S10). 703 

 704 

Supplementary Information Legends 705 
 706 
 707 
Movie S1: Example trial of white noise stimulation in our platform. An m-sequence light signal is 708 

delivered to either the anterior or posterior segment of the animal while simultaneously being tracked. 709 

For each trial, various discrete and continuous behaviors are quantified (Methods).  710 

 711 

Movie S2: Sample filter computed using BWA as a function of sample size used for the computation.  712 

 713 

Figure S1: Additional linear filters for TRNs. Linear filters computed for various behaviors when 714 

stimulating the anterior TRNs with an m-sequence signal (left), a different m-sequence signal (center), 715 

and the posterior TRNs (right). Dark line and light shade represent BWA and SEM, respectively. Colored 716 

plots represent filters computed from ATR-fed animals, black plots represent filters computed from 717 

control (not ATR-fed) animals. Sample sizes listed in Table S1.  718 

 719 

Figure S2: Comparison of shuffled data significance tests. Results from comparison of four methods 720 

of shuffling data for statistical significance tests of linear filters. (A) Cyclic shuffling of stimulus vector by 721 

a random integer. (B) Cyclic shuffling of behavior vector by a random integer. (C) Random permutation 722 

of stimulus vector. (D) Random permutation of behavior vector. Bar plots represent the magnitude of 723 

filters, computed as the L2 norm, and are plotted in ranked order from highest to lowest magnitude. 724 
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Colored bar represents appropriately computed filter, gray bars represent filters computers with 725 

shuffled data.   726 

 727 

Figure S3: Significance test results for linear filters for TRNs. Results from shuffled data significance 728 

tests for linear filters computed for activation of TRNs in Figure 2. (A-C) Significance test results for 729 

computed filters for acceleration for anterior TRNs (A,B) and posterior TRNs (C). (D-F) Significance test 730 

results for computed filters for pauses and reversals for anterior TRNs (D,E) and posterior TRNs (F). Bar 731 

plots represent the magnitude of filters, computed as the L2 norm, and are plotted in ranked order from 732 

highest to lowest magnitude. Colored bar represents appropriately computed filter, gray bars represent 733 

filters computers with shuffled data.   734 

 735 

Figure S4: Additional linear filters for PVDs.  Linear filters computed for various behaviors when 736 

stimulating the anterior (left) and posterior (right) PVDs with an m-sequence signal. Dark line and light 737 

shade represent BWA and SEM, respectively. Colored plots represent filters computed from ATR-fed 738 

animals, black plots represent filters computed from control (not ATR-fed) animals. Sample sizes are 739 

listed Table S1. 740 

 741 

Figure S5: Significance test results for linear filters for PVD. Results from shuffled data significance 742 

tests for linear filters computed for activation of PVD in Figure 3. (A,B) Significance test results for 743 

computed filters for acceleration for anterior (A) and posterior (B) segments of PVD. (C,D) Significance 744 

test results for computed filters for pauses and reversals for anterior (C) and posterior (D) segments of 745 

PVD. Bar plots represent the magnitude of filters, computed as the L2 norm, and are plotted in ranked 746 

order from highest to lowest magnitude. Colored bar represents appropriately computed filter, gray 747 

bars represent filters computers with shuffled data.   748 
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 749 

Figure S6: Static nonlinear filters for velocity. Static nonlinear filters fitted for predicted values from 750 

the linear filter (x-axis) against experimental values (y-axis) when stimulating the anterior TRNs. Linear 751 

filters and experimental values are subsets of data used in Figure 2 (n>1,730 for all conditions). Colored 752 

traces represent computed nonlinear filters and gray dots represent independent time-points from 753 

measured and predicted values.  754 

 755 

Figure S7: Model predictions of reversal initiations. Comparison of model predictions of reversal 756 

transitions (blue) and experimental traces (black) when using A) only the linear filter, B) a linear-757 

nonlinear (LN) model, and C) an additional exponential component (LNE). For experimental data, dark 758 

line and shade represent average and SEM, respectively (n = 31 animals). For model predictions, dark 759 

line represents model prediction and shaded area represents the 95% confidence interval (Methods). 760 

Probability of reversal transitions is computed as the average of animals initiating a reversal at that time 761 

point. D) Comparison of performance of models, computed as the sum of squared error (SSE) and 762 

normalized to the linear model performance value.  763 

 764 

Figure S8: Comparison of decay factors. Comparison of model predictions of velocity for various 765 

exponential decay factors. Exponential decays of 2.5s, 5s, 50s, and 100s were tested, with 50s showing 766 

the best fit. Performance of models is computed as the sum of squared error (SSE), normalized to the 767 

linear model performance value.  768 

 769 

Figure S9: Additional filters for spatially refined analysis of TRNs Linear filters computed for various 770 

behaviors when stimulating the most anterior quarter (left), the second-most anterior quarter (second 771 

from left), the second-most posterior quarter (second from right), and the most posterior quarter (right) 772 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 21, 2018. ; https://doi.org/10.1101/147363doi: bioRxiv preprint 

https://doi.org/10.1101/147363
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 
 

of the TRNs with an m-sequence signal. Dark line and light shade represent BWA and SEM, respectively. 773 

Colored plots represent filters computed from ATR-fed animals, black plots represent filters computed 774 

from control (not ATR-fed) animals. Sample Sizes are listed Table S1. 775 

 776 

Figure S10: Significance test results for linear filters for refined TRN analysis. Results from shuffled 777 

data significance tests for linear filters computed for activation of TRNs in Figure 6. (A-D) Significance 778 

test results for computed filters for acceleration for most anterior (A), second-most anterior (B), second-779 

most posterior (C), and most posterior (D) segments of TRNs. (E-H) Significance test results for 780 

computed filters for pauses and reversals for most anterior (E), second-most anterior (F), second-most 781 

posterior (G), and most posterior (H) segments of TRNs. Bar plots represent the magnitude of filters, 782 

computed as the L2 norm, and are plotted in ranked order from highest to lowest magnitude. Colored 783 

bar represents appropriately computed filter, gray bars represent filters computers with shuffled data.   784 

 785 

Table S1: Sample sizes for computed linear filters in figures 2, 3, 4, 6, S1, S2, and S9.  786 

 787 
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