








 

Figure 4: Exposure response relationships between the 5 exposures and the 4 generated 
outcomes 
 
Detection of interactions: We calculated all potential two-way interactions using the predictions 

form the SuperLearner after plugging desired values of the two specific exposures of interest. 

The only interactive effects that are truly differed from 0 are the interactions between PFOS and 

pp-DDE for the simulated exposure-response 3, as well as the interaction between pp-DDE and 

sex for the simulated exposure-response 4. These were the only included interactions in the 

simulated data.  Figure 5 shows interactive effect estimates for each pair of potentially 

interacting exposures, as well as sex. Effect estimates were derived from Equation 11 and 95% 

CI were constructed using bootstrap. Again, the SuperLearner was able to pick the two true 

interactions in Exposure-response 3 and 4. GLM, ENET, and GAM models were not able to pick 

interactions since these models do not handle interactions unless they are formally included in 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 30, 2017. ; https://doi.org/10.1101/147413doi: bioRxiv preprint 



the model’s specification. XGB and PMARS algorithms performed very well although the 

former picked a false positive interaction in Exposure-response 1 and the later tended to be 

bounded by 0 when it picked interactions. RF algorithm tended to pick a high proportion of 

interactions, and was therefore keen to select false positive interactions. In regard to effect 

estimates, the SL algorithm was again the less biased one (Figure 5).    

 

Figure 5: Effect estimates of the potential two-way interactions for all included algorithms 
and the 4 scenarios. Red asterisks indicate significant interaction terms. 
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Visualizing interactions: In addition to this well-known approach embedded within the potential 

outcome framework, we present an innovative way to unravel existing interactions. We 

estimated the individual conditional expectations for each observation for specific levels of the 

exposure of interest (i.e. percentiles). Unlike Figure 4, where effects are averaged for all 

observations, plotting ICE allows observing specific patterns by groups of individuals (Figure 6).  

 

Figure 6: Individual conditional expectations for each exposure and for each generated 
exposure-response relationship. E-R: Exposure-Response.  
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In this Figure 6, for most Exposure-Response relationships, ICE present parallel patterns for all 

the individuals, except when there is an interaction with another variable as demonstrated for 

pp’DDE in Exposure-Response 3 and 4, and for PFOS in Exposure-Response 3.  

Two examples are shown in Figures 7 and 8. Figure 7 describes the ICE for specific percentiles 

of pp’DDE exposure according to PFOS levels. Clearly, we can identify the interactive effect 

between pp’DDE and PFOS for Exposure-response 3 in Figure 7 since the dose-response 

relationship between pp’DDE and Y3 depends on the levels of PFOS.   

 

Figure 7: ICE of the relationship between pp’DDE and generated outcomes according to 
PFOS levels 
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Figure 8 describes ICE for specific percentiles of pp’DDE exposure according to sex. We can 

therefore visualize the effect modification by sex of the relationship between pp’DDE and Y4.  

 

Figure 8: ICE of the relationship between pp’DDE and generated outcomes according to 
sex. 
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DISCUSSION 

In the present paper, we have shown that ensemble learning methods to model the conditional 

mean of the outcome given known confounders can be advantageous, and have the potential to 

provide a solution to the long-lasting issue of chemical mixtures, especially in regard to model 

misspecification and multicollinearity issues. While this application represents a first proof of 

concept for application of these computational techniques to multiple correlated exposures in 

environmental epidemiology studies, our findings suggest that the proposed approach has an 

excellent predictive performance in a realistic environmental health scenario, in addition to a 

very good ability to correctly reconstruct dose-response relationships and to detect interactions.   

We were also able to derive estimates of marginal effects, using G-computation, a maximum 

likelihood substitution estimator. Under assumptions of conditional exchangeability, consistency, 

and positivity, these estimates may be interpreted causally.  

We considered 4 simulations characterized by varying degrees of complexity to describe the 

Exposure-Response relationships. Each time, the SuperLearner combined with G-computation 

performed best or close to the best algorithm. This is an important and primordial result since the 

true parametric specification of the model is almost never known a priori. Therefore, the use of 

the SuperLearner allows relaxing the strong a priori assumptions in regard to the Dose-Response 

relationship.  

The literature on the use of ensemble learning methods for estimating causal effects is limited 

(32), especially in the field of environmental epidemiology. To our knowledge, this approach is 

completely new and has not been explored in environmental epidemiological settings involving 

multi-pollutant exposures. Although ensemble learning techniques have gained increasing 

recognition, especially for climate change predictions (33-35), their use in environmental health 
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studies is rare. Existing comparable attempts in this type are those of Diaz et al. (36), Chambaz et 

al. (37) and Kreif et al. (38), all of which are developed in contexts (e.g. genetics, health policy) 

very different from environmental mixtures. But these investigations did not extend the use of 

the SuperLearner to detect interactions and/or to construct dose-response relationships. Given 

that the marginal effects of an exposure in a nonlinear model are not constant over its entire 

range, even in the absence of interaction terms, it is important to reconstruct the dose response 

relationship (39).  

Several methods have been proposed to estimate the joint effects of environmental mixtures, and 

individual effects within a mixture, often with an emphasis on variable selection. The most 

widely used methods are the LASSO (40), EWAS (5, 41), weighted quantile sum regression (42, 

43), and Elastic Net (13, 44). A major disadvantage of such approaches is that they typically 

assume specific and often restrictive parametric functional forms for the exposure-response 

relationship, often resulting in a model that does not accurately capture the complexity of the 

relationships among high dimensional covariates and health outcomes. This misspecification can 

lead to biased estimators and overly liberal (too optimistic) assessment of the uncertainty 

associated with estimation. We typically observed this trend in our results when such methods 

were applied to complex Exposure-responses with interactions and non-linearities.     

The present work has several limitations. First, we only considered environmental exposures and 

one potential effect modifier, eg. sex. Future studies should examine the performance of this 

approach while taking into account the data generating process of such exposures allowing for 

multiple potential confounders. The inclusion of potential confounders when these are measured, 

should be based on a priori knowledge and causal approaches based on the interdependencies 

between variables, e.g. Non parametric structural equation models (45, 46), and not only based 
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on the predictive performance. Second, the ability of the SuperLearner approach depends on the 

choice of candidate learners that should be guided by theoretical and practical considerations 

based on expert knowledge. We did not include some powerful algorithms such as the Bayesian 

Additive Regression Tress (BART), nor did we specify tuning parameters for the included 

algorithms to minimize computational time. But these are possibilities that should be 

investigated in future work. Third, we used the bootstrap to estimate valid confidence intervals in 

the absence of a theoretical formula for the asymptotic distribution of the parameters of interest 

within the SuperLearner framework. This gave rise to heavy computational burden, since the 

described analyses are quite time consuming. Running these analyses in multicore parallel 

computing will substantially reduce this time, but just how much time can be saved depends on 

the availability of computing cores with sufficient memory, and is therefore installation-

dependent (47). Finally, the generated dose-response relationships in this investigation were 

based on associations with relatively strong effect sizes, and further studies will consider the 

performance of such approach when effect sizes are moderate or low.  

Despite the abovementioned limitations, these analyses provide a significant contribution to the 

field of environmental health. This approach leverages the high predictive ability of ensemble 

learning techniques, while opening the blackbox of these methods to allow for the estimation of 

individual associations, interactive effects, and reconstruction of dose-response relationships. 

The overall idea of this paper is to propose a general approach that is flexible. Such method can 

lay the ground for additional methodological extensions allowing for future developments 

encompassing high dimensional data from omics technologies such as microbiomics, 

epigenetics, and metabolomics, as well as a flexible way to assess mediation and moderation, as 

well as multivariate analyses. This approach can also be easily adapted to estimate generalized 
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propensity scores for doubly robust estimations. Therefore, additional developments and 

progresses starting from this work may provide substantial improvements. 
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