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Abstract

Motivation: Biological networks unravel the inher-
ent structure of molecular interactions which can lead
to discovery of driver genes and meaningful pathways
especially in cancer context. Often due to gene muta-
tions, the gene expression undergoes changes and the
corresponding gene regulatory network sustains some
amount of localized re-wiring. The ability to identify
significant changes in the interaction patterns caused
by the progression of the disease can lead to the rev-
elation of novel relevant signatures.

Methods: The task of identifying differen-
tial sub-networks in paired biological networks
(A:control,B:case) can be re-phrased as one of find-
ing dense communities in a single noisy differential
topological (DT) graph constructed by taking abso-
lute difference between the topological graphs of A
and B. In this paper, we propose a fast two-stage
approach, namely Differential Community Detection
(DCD), to identify differential sub-networks as dif-
ferential communities in a de-noised version of the
DT graph. In the first stage, we iteratively re-order

the nodes of the DT graph to determine approximate
block diagonals present in the DT adjacency matrix
using neighbourhood information of the nodes and
Jaccard similarity. In the second stage, the ordered
DT adjacency matrix is traversed along the diagonal
to remove all the edges associated with a node, if that
node has no immediate edges within a window. We
then apply community detection methods on this de-
noised DT graph to discover differential sub-networks
as communities.

Results: Our proposed DCD approach can effec-
tively locate differential sub-networks in several sim-
ulated paired random-geometric networks and vari-
ous paired scale-free graphs with different power-law
exponents. The DCD approach easily outperforms
community detection methods applied on the origi-
nal noisy DT graph and recent statistical techniques
in simulation studies. We applied DCD method on
two real datasets: a) Ovarian cancer dataset to dis-
cover differential DNA co-methylation sub-networks
in patients and controls; b) Glioma cancer dataset
to discover the difference between the regulatory
networks of IDH-mutant and IDH-wild-type. We
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demonstrate the potential benefits of DCD for find-
ing network-inferred bio-markers/pathways associ-
ated with a trait of interest.

Conclusion: The proposed DCD approach over-
comes the limitations of previous statistical tech-
niques and the issues associated with identify-
ing differential sub-networks by use of commu-
nity detection methods on the noisy DT graph.
This is reflected in the superior performance of
the DCD method with respect to various met-
rics like Precision, Accuracy, Kappa and Specificity.
The code implementing proposed DCD method
is available at https://sites.google.com/site/
raghvendramallmlresearcher/codes.

1 Background

In the modern era complex networks are ubiquitous.
Their omnipresence is reflected in a myriad of do-
mains including web graphs [6], road graphs [I1], so-
cial networks [24] [42], financial networks [4] and bi-
ological networks [22] 27, [43]. Here we focus on bi-
ological networks but the caveats introduced in this
paper apply to networks in other domains.

In network biology, particularly in cancer research,
comparisons are performed on gene regulatory net-
works [57] and DNA co-methylation networks [56]
obtained from the gene expression and DNA methy-
lation profiles respectively of healthy and diseased
tissues. The goal is to identify genes whose expres-
sion or methylation levels are significantly different
between the conditions and can lead to discovery of
novel molecular diagnostic and prognostic signatures.
It was shown in [53} [1,[@] that the gene regulatory net-
works undergo some amount of localized re-wirings as
cancer progresses.

One of the primary problems in cell biology is to in-
fer regulatory networks, that capture the interactions
between molecular entities from high-throughput
data. An important challenge that needs to be ad-
dressed is how the cell changes its behaviour in re-
sponse to changes in copy number or alterations such
as driver somatic mutations or an external stimuli.
The gene expression and methylation levels change
due to the downstream effect of the de-regulation of

the global behaviour of the cell in different conditions,
for example different cancer subtypes [9]. Hence,
it can be suggested that driver mutations regulate
functional pathways described by different local re-
wirings in the intrinsic gene regulatory networks.

The problem of detecting significant changes in
paired biological networks is different from popular
graph theory problems like graph isomorphism [46]
and sub-graph matching [51] for which various graph
matching and graph similarity algorithms [5, [30] exist
and have been utilized in biological networks[55], 45].
This problem has primarily been addressed either in
a statistical framework [37, 211, [50L 33] or from a com-
munity detection perspective [33] 10, [54] 23] 14, 32]
in literature.

In statistics, a common statistic used to distin-
guish one graph from another is the Mean Absolute
Difference (MAD), which is defined as: d(A,B) =
m Zi#j \aij — b”| Here Qi and bij are edge
weights corresponding to the topological graphs of
networks A and B. A topological graph captures
first order interactions between the nodes in the net-
work and can better apprehend subtle changes be-
tween two networks [49]. The MAD distance is
equivalent to the Hamming distance [I8] which has
been widely used for comparing networks [7, [15].
The Quadratic Assignment Procedure (QAP) [37]
defined as: Q(A, B) m Zi:l Zj:l aijbij
is another statistic used to identify association be-
tween networks. These statistics are often used in
permutation-based procedures to detect significant
difference between two networks. Ruan et al [50]
showed that these statistics are not always sensi-
tive to subtle topological variations and proposed a
Generalized Hamming Distance (GHD) based statis-
tic to measure the distance between paired biological
graphs which outperforms MAD and QAP.

The GHD permutation distribution follows a nor-
mal distribution under the null hypothesis that net-
works A and B are independent for scale-free net-
works whose power-law exponent « should strictly
satisfy: 1 < a < 2 or @ > 3. They also gen-
erated closed-form expression for p-values and de-
vised a differential sub-network identification tech-
nique, namely dGHD, where they iteratively remove
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least different node. This is unlike previous differ-
ential network analysis techniques [15, 14, 17] and
generate p-values by comparing the remaining sub-
networks. Recently, a Closed-Form approach was
proposed in [33] which is faster and more accurate
than the dGHD technique for identifying statistically
significant changes between paired networks as differ-
ential sub-networks. However, these statistical tech-
niques are still computationally expensive and suffer
from strict restrictions on the exponent of power-law
for scale-free graphs. It was shown in [38] that biolog-
ical networks are scale-free and usually have power-
law exponents that satisfies: 0 < « < 2 which is not
always within the restrictions acceptable for dGHD
and Closed-Form techniques.

The problem of community detection in graphs
has received wide attention from several perspectives
[16l [3, 48, [47, [44], 36], [34) B3], [29] and have also been
applied to biological networks. Methods such as jAc-
tiveModules [10] and the Spinglass algorithm [47]
have been applied to discover biologically meaning-
ful modules such as protein complexes, disease asso-
ciated clusters of genes, etc. as shown in [54, 23].
The problem of identifying differential sub-networks
in paired biological networks can be re-formulated
as one of finding heavy sub-networks, or dense mod-
ules, on a single differential topological (DT) graph
obtained by taking the absolute difference in the
edge weights between the topological graph of net-
work A and the topological graph of network B i.e.
DT(A,B)” = |aij — bij|7 VZ,j € V. This problem
is equivalent to identifying communities in the DT
graph. The notion of communities mean that nodes
within one community are densely connected to each
other and sparsely connected to nodes outside that
community. Large-scale networks consist of several
such communities. Hence, community detection is
equivalent to finding dense block diagonals in the DT
adjacency matrix. However, the DT graph can suf-
fer from noise caused by interactions between nodes
which are not part of differential sub-networks (re-
ferred further as non-differential nodes) and nodes
which are part of differential sub-networks (referred
further as differential nodes) which are just one hop
away in either network A or B but not in both. This
leads to spurious connections around the block diag-

onals present in the DT adjacency matrix. Commu-
nity detection techniques like Louvain [3], Infomap
[48] and Spectral [34] method can be applied to the
obtain communities/modules with differential nodes
with having perfect recall but suffer from very low
precision due to false recognition of non-differential
nodes as part of differential sub-networks.

The problem of identifying communities in the DT
graph such that the nodes comprising the commu-
nities are part of differential sub-networks between
paired biological networks (A, B) is unlike the tradi-
tional module based differential network analysis as
shown in [I4] 32]. In traditional module based differ-
ential network analysis, modules are detected at first
in weighted gene co-expression networks (WGCNA)
[14] obtained from gene expression data for case and
controls. The modules are then compared using ei-
ther Jaccard co-efficient (MOda) [32] or additional
genetic marker data (WGCNA) [I4] is utilized to dif-
ferentiate the modules. The advantage of these meth-
ods is that by focusing on modules rather than on in-
dividual gene expressions, they can greatly alleviate
the multiple-testing problem inherent in micro-array
data analysis. However, our goal is to identify the
difference between the paired biological networks as
dense modules/communities rather than comparing
the modules in the paired biological networks. For ex-
ample, say minor localized changes within two mod-
ules in the original biological networks together form
a differential sub-network. The method proposed in
this paper will be able to identify these changes as a
differential community which might otherwise not be
detected by WGCNA or MOda.

In this paper, we propose a novel two-stage ap-
proach, namely Differential Community Detection
(DCD), to identify differential sub-networks in paired
biological networks as communities from the origi-
nal nosiy DT graph. The proposed DCD method
overcomes the restrictions on power-law exponents
for scale-free graphs implied by statistical techniques
and retains the advantage of greatly reducing the
burden of multiple-testing from module based differ-
ential network analysis techniques. We applied our
DCD method on two real datasets, an ovarian cancer
dataset to discover differential DNA co-methylation
sub-networks in patients and controls, and a glioma
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cancer dataset to discover the difference between the
regulatory networks of IDH-mutant and IDH-wild-

type.

2 Method

The proposed DCD approach consists of two pri-
mary stages: In the first stage of DCD, the proposed
method re-orders the nodes of the DT graph to gen-
erate approximate block diagonals inherently present
in the DT adjacency matrix. It utilizes the neigh-
bourhood information from the DT graph for all the
nodes and a notion of similarity based on the Jac-
card index [3I]. In the second stage of DCD, the
ordered yet noisy DT adjacency matrix is traversed
along the diagonal to remove all the edges associated
with a node, if that node has no immediate edges
within a window. This is because the ordered DT
adjacency matrix is already comprised of block diag-
onals and nodes which are not part of block diagonals
are the ones causing spurious connections in the DT
graph. We then pick out such nodes and remove all
the edges associated with these nodes. Finally, we
apply community detection techniques like Louvain
[3], Infomap [48] and Spectral [34] methods on this
de-noised DT graph to discover the differential sub-
networks as communities. Figure [I]illustrates all the
steps involved in the DCD algorithm and its com-
parison with direct application of community detec-
tion techniques on noisy DT graph to locate differ-
ential sub-networks on a pair of simulated random-
geometric (RG) networks.

2.1 Ordering the Noisy DT graph

The goal of first stage of DCD method is to detect
sets of nodes which have higher similarity with each
other in comparison to other nodes by following an
iterative procedure to order the nodes in the adja-
cency matrix of the original DT graph G(V, E). The
total number of nodes in the DT graph is represented
as N = |V|. This iterative process is essential as
nodes are not usually ordered in the G(V, E) and the
inherent block diagonals have to be discovered. It
is important to locate approximate block diagonals

as it is a necessary condition for the second stage
of DCD approach. We define d(v;, V') as degree of
the node v; € V*, where V! represents the set of
nodes to be investigated at iteration ¢. During the
first iteration, we identify the node with highest de-
greeie. v! . = arg, . .d(v,V?) using the topology of
G(V, E) and calculate its Jaccard similarity w.r.t. all
the nodes in DT graph. Mathematically, it is defined
as:

n(vl,..) Nn(v;)]

J ’Ut ;) = | mazx 1
Cnee®) = ety Une)] Y
Here v, is the node with highest degree during iter-

ation t, v; € V, n(-) represents the immediate neigh-
bourhood set of a node and || represents the cardinal-
ity function. The Jaccard co-efficient of all the nodes
that don’t share a specified number of neighbours ()
with vf,,, is set to 0. This threshold 6 is a tunable
parameter representing the minimum size of a block
diagonal to be considered as a differential community
in the DT graph. We then sort all the nodes having
non-zero Jaccard similarity with vf ,, in decreasing
order and break ties based on degree where higher
degree nodes are placed closer to vf ... These or-
dered nodes and their corresponding edges results in
the first approximate block diagonal ABD? which is
preserved in Opr, representing the adjacency matrix
of ordered noisy DT graph. ABD? is an approximate
block diagonal because nodes with spurious connec-
tions are still present and associated with ABD! as
highlighted in Figure

During further iterations (¢ > 1), an additional
step is performed to re-order the nodes which are
common between the ABD*~! and ABD!. The or-
der of common nodes whose Jaccard similarity was
higher with the previous v! ! are unchanged and
these nodes are removed from ABD!. However,
nodes which are common with ABD!~! but have
higher Jaccard similarity with v!, . are removed from
ABD?'! while their order is retained in ABD?*. This
iterative process is greedy by nature, as in any iter-
ation t we compare only ABD!~! with ABD!, and
stop when either all the nodes in the G(V, E) are
part of some approximate block-diagonal or degree
of v¢ is 0, which means we are left with only iso-

max

lated nodes in the G(V, E). Algorithm [I] summarizes
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this procedure.

Algorithm 1: Ordering Noisy DT graph

Data: Noisy DT graph G(V, E) and threshold 6.
Result: Ordered noisy DT adjacency matrix Opr.
Initialize t = 1, V¥ = V and an all zero adjacency matrix
Opr € RVXV,

while V' # () do

Select node with highest degree as vfnam from V.
if d(vl, 40, V') = 0 then
Break out of loop. // Only isolated nodes left in
vt
end
Calculate J (v, ., vi), Yv; € V using Eq.
Set J(vl, 00> vi) = 0, {Vv; € V||n(v],,,) Nn(vi)| < 0}

Order v; with non-zero J(v:’mw7 v;) in decreasing order.

Ordered set of nodes and corresponding edges generate

ABD".

if t > 1 then

Identify common nodes c as

¢ = {vi|lv; € ABD'"' nw; € ABD'}.

Remove nodes and corresponding edges from

ABD?~! and its preserved copy in Opr s.t.

J(wimt vy < J(vt .. vi), Yui € c.

Remove those nodes and corresponding edges from

ABD?' s.t. J(vi bt vi) > J(vl .. vi), Yo; € c.

Keep remaining set of ordered nodes and their edges

as ABD".

/* A node can only be part of one approximate
block diagonal. */

end

Add ABD?! related info to Opr.

VvVt = V?*\ s, such that s = {v; € ABD"}.
t=1t+ 1.

end
if V' # 0 then
// Still isolated nodes are left.

Maintain isolated nodes v; € V't as isolated in Opr.
end

2.2 De-noising the DT graph

Once we have obtained Opt as shown in Figure
we prune out spurious edges associated with nodes
which are falsely recognized as part of block diag-
onals in the previous step. We traverse the land-
scape of the Opt matrix, for example in Figure
from left to right and bottom to up, along the di-
agonal. Since we have already identified approxi-
mate block diagonals (ABD’s) in Opr, our premise
is that if we traverse along the diagonal and pick a
node v; at random, there should be some immedi-
ate edges within 6 to the left and to the right (below
and above due to symmetry) in the landscape of Opr
for it to be a differential node in ABD. This means

that d(v;,Vi—g) and d(v;, Vi1¢) have to be non-zero
at the same time. Here V;_g and V;,¢ represent the
neighbourhood up to 6 nodes to the left and right
of v;. A non-differential node can be part of ABD
due to spurious connections with the differential set
of nodes present in ABD. We then remove all the
edges associated with such nodes from Opt to gen-
erate the de-noised ordered DT graph i.e. Dpp. The
proposed process leads to de-noised block diagonals
BD in Dpr instead of having ABD as shown in Fig-
ure Algorithm [l summarizes the de-noising pro-
cedure.

Algorithm 2: De-noising the DT graph

Data: Ordered DT adjacency matrix Opt and parameter 6.
Result: De-noised ordered DT adjacency matrix Dpr.
Initialize an all 0 adjacency matrix Dpr € RY XN | where
nodes have same order as in OpT.
for i=1to N do
if 1<60 &d(vi,Viye)=0)or (i>N-—-0E6
d(vi, Vimg) = 0) or (d(vi, Vige) =0 & d(vi, Vimg) = 0)
then
Set all edge-weights associated to v; in OpT to 0.
// These nodes are non-differential nodes.

end

else
Copy all edge-weights associated to v; in OpT to
DDT.
/* Node v; is part of a differential community.

*/

end
end

We can now run state-of-the-art community detec-
tion algorithms [34] [3, 48] to distinguish the BD’s in
Dpr as differential communities in paired biological
networks. The overall time complexity of proposed
steps is O(tNlog N + tEd,,), where t is number of
iterations in Algorithm FE represents number of
edges and d,, represents the average degree of a node
in DT graph. Algorithm [3| provides an overview of
the proposed DCD approach.

&

3 Simulated Experiments
Results

We performed multiple simulated experiments on
paired random-geometric (RG) and paired scale-free
networks under different experimental settings. All
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Algorithm 3: Differential Community Detection
(DCD) approach for paired biological networks

Data: Paired biological networks (A,B) and threshold 6.
Result: Differential sub-networks identified as differential
communities.

Create topological graphs for networks A and B.

Generate the noisy DT graph: DT(A, B)i; = |ai; — bijl,

Vi,jeV.

Use G(V, E) and 6 to generate Opt as shown in Algorithm

Use Opt and 0 to generate DpT using Algorithm

Use either Louvain [3], Infomap [48] or Spectral [34]

community detection technique on Dpt to identify

communities C; € C,i=1,...,k.

if |C;| < 6 then

|  Remove C; from C.

end

All remaining communities in C are marked as differential

communities.

/* A differential community represents the set of nodes
whose corresponding edges form the differential
sub-networks. */

the experiments were repeated 10 times for each ex-
perimental setting.

In an RG network nodes are generated by uni-
formly sampling N points on [0, 1]2. An edge is drawn
between points if the euclidean distance between the
points is less than a parameter v. This parameter v
controls the density of the RG network where smaller
values of v result in sparse networks while larger val-
ues of v result in dense networks. We performed two
set of experiments on RG networks. In the first case,
we generated RG network A; with NV = 1,000 and
v = 0.15. Network B is obtained by permuting first
100 nodes in network A. Thus, these first 100 nodes
form the differential sub-network for the paired RG
networks A; and Bj.

In the second case, we again used N = 1,000 and
v = 0.15 to generate network A,. We then cre-
ate a small dense RG network with 100 nodes us-
ing ¥ = 0.3. Network Bs was generated by replac-
ing first 100 nodes in network As with the small
dense sub-network. These 100 nodes form the dif-
ferential sub-network for the paired networks A, and
Bs. Such a mechanism can appear in real-life net-
works, for example, in case of cancer the transcrip-
tion activity of some set of genes might get enhanced
or suppressed generating more or fewer edges in a
sub-network of the gene or DNA methylation net-
work. We performed similar set of experiments using

density parameter v = 0.3 and permuting first 100
nodes, using density parameter v = 0.3 and adding
more edges to first 100 nodes using revised density
parameter 7 = 0.5 on paired RG networks.

We also conducted experiments on undirected
scale-free graphs, hereby referred as Power-Law (PL)
networks, using N = 1000 and E' = 10, 000 with vary-
ing power-law exponents a = {1, 1.5, 2} respectively.
We permuted the first 100 nodes of each PL network
(A4) to form the permuted network (B). The pro-
posed DCD method has one tunable parameter 6. In
Figure[2] we illustrate the effect of § on the area under
the precision-recall curve. From Figures
21 21 and 2] we can observe that for smaller values
of 6 ({3,5}), the area under precision-recall curves
are relatively lower in comparison to those for higher
values of #. This is due to the fact that for smaller
values of 0, we are allowing smaller sized communities
to be distinguished as differential sub-networks. This
can force to break the natural block diagonals inher-
ently present in the DT graph and reduce the number
of true positives (i.e. nodes which are actually part
of differential sub-networks) leading to lower preci-
sion and recall. At the same time, smaller values of
0 allow non-differential nodes with few spurious con-
nections to differential nodes to be falsely identified
as part of differential sub-networks resulting in lower
precision. For higher values of 6 ({7,9}), the area
under precision-recall curves shows less variance and
converges to nearly perfect result (= 1) as depicted
in Figures 2d 2g]2h] 2K and 21

Table |1 encapsulates a comprehensive comparison
of the proposed DCD approach, where the commu-
nity detection technique used in DCD is either Lou-
vain [3] or Infomap [48] or Spectral [34], with sta-
tistical techniques like dGHD [50] and Closed-Form
[33] approach and direct application of community
detection methods like Louvain, Infomap and Spec-
tral on the noisy DT graph to detect differential sub-
networks in the simulated experiments. We used the
threshold 6 = 7 in the DCD approach for all compar-
isons as the area under precision-recall curves shows
less variance and converges to nearly perfect value
(= 1) in all the simulated experimental settings for
this threshold as depicted in Figure For nearly
all PL graph experiments, if we directly apply com-
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munity detection methods on the noisy DT graph,
they identify all the nodes in the network as part of
differential sub-network as depicted from evaluation
metrics in Table [Tl

to
networks

4 Application
methylation
ovarian cancer

co-
in

We applied our proposed DCD approach, with pa-
rameter 6 set to 7, on co-methylation networks gen-
erated from ovarian cancer dataset [52]. Thus, the
smallest community in DT graph should comprise
at least 7 nodes. The ovarian cancer dataset con-
sists of methylation profiles for 27,578 CpG islands
of 540 women, of which 266 cases were from post-
menopausal women with ovarian cancer and 274 were
healthy controls with similar age as that of cases.
In our analysis, we have compared case and control
DNA co-methylation networks to identify differential
sub-networks.

The pre-processed dataset was downloaded from
GEO (repository number GSE19711). The original
data was collected using Illumina Infinium 27k Hu-
man DNA methylation Beadchip v1.2. Since there
were no missing or negative values for the intensity
of the methylated (M) and unmethylated (U) alle-
les, beta values corresponding to each CpG probe
were computed as: [ = MLH] as in [50]. We fol-
lowed the quality control procedure as originally in-
troduced in [52]. Then principal component analysis
(PCA) was applied to the beta values for detection
and removal of outliers. After quality control, 243
case samples and 214 control samples remained for
further analysis. Networks for case and control sam-
ples were created by treating each probe as a node.
Edges between the nodes represent strong correlation
and were inferred following [19]. Adjacency measure
;; was computed for each pair of nodes (¢ and j)

b
w’ , where cor(;, B;) represents

as (;; = ‘
Pearson’s correlation coefficient between beta values
observed at i and j*® CpG sites. The exponent

b was set to 12 to emphasize more on higher posi-

tive correlations [57]. An edge exists if €;; value was
higher than 0.2. The resulting control network has
73,145 edges and case network has 102,799 edges.
Each of these networks follows a scale-free network
model as shown in Figure

Our approach detected differential sub-networks
comprising of a total of 1,893 nodes. We used Lou-
vain [3] method for detection of communities in the
differential case and control sub-networks. Nine com-
munities were detected in the case differential sub-
network out of which seven are also present in the
control differential sub-network as shown in Figure
ik

We investigated the biological meaning of the
sub-networks by identifying enriched Gene Ontol-
ogy (GO) terms. We used R package GOstats [13]
to identify Biological Processes (BP) and Molecu-
lar Functions (MF). The hypergeometric test de-
tected 711 BP and 100 MP statistically significant
terms enriched in the sub-networks at 5% signifi-
cance level. The top three BPs were regulation of
myeloid cell apoptotic process, myeloid cell apoptotic
process, and establishment of protein localization to
organelle. The top three MFs were protein binding,
peroxidase activity and glycosaminoglycan binding.
Furthermore, we identified 16 significantly enriched
KEGG pathways at 5% significance level including
transcriptional mis-regulation in cancer, hematopoi-
etic cell lineage, and pathways in cancer using DAVID
[20].

We detected probes with significant changes in
mean methylation levels using the t-test. We found
5,098 significantly differentially methylated CpGs at
5% significance level after FDR correction for mul-
tiple testing [2]. Table [2| summarizes the number of
probes, differentially methylated probes (g;), density
ratio between control and case sub-networks (R;),
and distribution of enriched GO terms and KEGG
pathways in the identified communities.

5 Application in Glioma Can-
cer

We also applied the DCD approach, with parame-
ter @ set to 7, on gene regulatory networks (GRN)
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Graph Parameters Method DT graph | AUC_ROC Precision Recall Accuracy Specificity Kappa Time
Mean + Sd Mean + Sd Mean + Sd Mean + Sd Mean + Sd Mean £ Sd_| Mean
RG:Permute V=015 Closed-Form Noisy 0.935 £ 0.051 | 0.849 £ 0.037 | 0.846 £ 0.102 | 0.969 £ 0.011 | 0.0983 £ 0.004 | 0.828 £ 0.068 | 0.078
RG:Permute v =0.15 dGHD Noisy 0.926 + 0.018 | 0.793 £ 0.021 | 0.878 £ 0.036 | 0.965 + 0.005 | 0.974 £ 0.003 | 0.813 £ 0.026 1.0
RG:Permute v =0.15 Louvain Noisy 0.5885 + 0.012 0.3425 + 0.007 1.0 = 0.0 0.424 + 0.017 0.114 £ 0.017 0.177 + 0.024 0.012
RG:Permute v=0.15 Infomap Noisy 0.589 + 0.012 | 0.343 + 0.006 1.0 + 0.0 0.425 + 0.016 | 0.115 4+ 0.0168 | 0.178 + 0.024 | 0.018
RG:Permute v =0.15 Spectral Noisy 0.5884 + 0.012 | 0.3425 + 0.007 1.0 £ 0.0 0.424 + 0.017 | 0.114 £ 0.017 | 0.177 £ 0.024 | 0.015
R 3:Permute v =0.15 DCD (Louvain) | De-noised | 0.990 + 0.007 1.0 + 0.0 0.980 + 0.0176 | 0.994 + 0.004 | 0.986 =+ 0.013 1.0 + 0. 0.014
RG:Permute v=0.15 DCD (Infomap) | De-noised | 0.990 + 0.008 1.0 + 0.0 0.980 + 0.0176 | 0.994 + 0.005 | 0.986 + 0.012 1.0 + 0.0 0.021
RG:Permute v =0.15 DCD (Spectral) | De-noised | 0.990 + 0.007 1.0 + 0.0 0.980 + 0.0176 | 0.994 + 0.004 | 0.986 + 0.014 1.0 £ 0. 0.018
RG:Dense | v =0.15, = 0.3 | Closed-Form Noisy 0.927 £ 0.048 | 0.839 £ 0.031 | 0.862 £ 0.098 | 0.969 £ 0.008 | 0.982 £ 0.005 | 0.825 £ 0.054 | 0.081
RG:Dense = .3 dGHD Noisy 0.922 + 0.022 0.806 + 0.027 0.868 + 0.045 0.966 + 0.006 0.977 £ 0.004 0.816 + 0.032 1.0
RG:Dense = .3 Louvain Noisy 0.599 + 0.008 | 0.349 +0.004 | 0.999 £ 0.002 | 0.440 £ 0.011 | 0.130 + 0.011 | 0.199 £ 0.0015 | 0.013
RG:Dense = .3 Infomap 0.602 + 0.005 | 0.350 £ 0.003 | 0.999 £ 0.002 | 0.444 £ 0.007 | 0.134 £ 0.008 | 0.205 £ 0.011 | 0.020
= .3 Spectral 0.600 + 0.007 | 0.348 + 0.004 1.0 £ 0.0 0.440 % 0.011 0.131 + 0.011 | 0.200 + 0.015 | 0.016
.3 | DCD (Louvain) 0.998 + 0.002 1.0 + 0.0 0.995 + 0.005 | 0.999 + 0.001 | 0.997 + 0.003 1.0 + 0.0 0.015
.3 | DCD (Infomap) 0.998 + 0.003 1.0 + 0.0 0.995 + 0.006 | 0.999 + 0.003 | 0.997 + 0.002 1.0 £ 0.0 0.0124
.3 | DCD (Spectral) 0.998 + 0.003 1.0 + 0.0 0.995 + 0.005 | 0.999 + 0.002 | 0.997 + 0.002 1.0 + 0.0 0.019
Closed-Form 0.877 £+ 0.067 0.714 £+ 0.075 0.789 £ 0.135 0.947 £ 0.016 0.975 £ 0.011 0.716 + 0.099 0.083
dGHD 0.724 £ 0.029 | 0.645 +0.049 | 0.577 £0.059 | 0.921 +0.007 | 0.971 + 0.006 | 0.504 £ 0.051 1.0
Louvain 0.909 + 0.006 | 0.702 + 0.013 1.0 £ 0.0 0.872 + 0.008 | 0.730 + 0.0149 | 0.818 + 0.011 | 0.013
Infomap 0.877 £+ 0.011 0.698 + 0.010 1.0 + 0.0 0.842 + 0.09 0.725 + 0.022 0.807 £+ 0.009 0.021
Spectral 0.911 + 0.007 | 0.708 + 0.017 1.0 + 0.0 0.876 + 0.009 | 0.736 + 0.018 | 0.823 + 0.014 | 0.017
RG:Permute DCD (Louvain) | De-noised | 0.996 + 0.001 1.0 + 0.0 0.992 + 0.002 | 0.998 + 0.001 | 0.995 + 0.002 1.0 £ 0.0 0.016
RG:Permute DCD (Infomap) | De-noised | 0.996 + 0.002 1.0 + 0.0 0.992 + 0.002 | 0.998 + 0.002 | 0.995 % 0.001 1.0 + 0.0 0.025
RG:Permute DCD (Spectral) | De-noised | 0.996 + 0.001 1.0 + 0.0 0.992 + 0.003 | 0.998 + 0.000 | 0.995 + 0.003 1.0 + 0.0 0.02
RG:Dense = 5 Closed-Form Noisy 0.979 £0.005 | 0.771 £0.061 | 0.930 £ 0.082 | 0.965 £ 0.012 | 0.969 £ 0.011 | 0.821 £ 0.062 | 0.09
RG:Dense | v= 5 dGHD Noisy 0.848 £ 0.071 | 0.700 £ 0.038 | 0.731 £ 0.148 | 0.941 £ 0.010 | 0.964 £ 0.009 | 0.672 £ 0.078 1.0
RG:Dense v = 5 Louvain Nolsy 0.758 £+ 0.056 0.353 £+ 0.086 1.0 + 0.0 0.613 £+ 0.090 0.310 £ 0.125 0.517 + 0.113 0.014
RG:Dense | v= 5 Infomap Sy 0.752 + 0.060 | 0.349 + 0.092 1.0 £ 0.0 0.604 + 0.097 | 0.302 +0.134 | 0.505 + 0.121 | 0.023
RG:Dense | v= 5 Spectral 0.750 + 0.087 | 0.332 + 0.047 1.0 £ 0.0 0.589 + 0.099 | 0.286 + 0.101 | 0.500 + 0.175 | 0.02
RG:Dense v =0. 5 DCD (Louvain) 1.0 + 0.0 1.0 + 0.0 1.0 = 0.0 1.0 £ 0.0 1.0 £ 0.0 1.0 £ 0.0 0.017
RG:Dense | v=0.3,9=0.5 | DCD (Infomap) 1.0 + 0.0 1.0 + 0.0 1.0 + 0.0 1.0 £ 0.0 1.0 £ 0.0 1.0 + 0.0 0.027
RG:Dense v=03,7=05 | DCD (Spectral) 1.0 + 0.0 1.0 + 0.0 1.0 £ 0.0 1.0 £ 0.0 1.0 £ 0.0 1.0 £ 0.0 0.024
PL:Permute a=1 Closed-Form 0.797 £ 0.046 | 0.307 £ 0.007 | 0.799 £ 0.049 | 0.801 £ 0.018 | 0.349 £ 0.051 | 0.802 £ 0.022 | 0.09
PL:Permute a=1 dGHD 0.797 £ 0.023 | 0.294 +0.009 | 0.794 £ 0.027 | 0.787 £ 0.008 | 0.333 £ 0.045 | 0.784 £ 0.019 1.0
PL:Permute a=1 Louvain 0.500 + 0.001 | 0.100 + 0.001 1.0 £ 0.0 0.100 + 0.001 | 0.001 +0.000 | 0.001 + 0.000 | 0.015
PL:Permute a=1 Infomap 0.501 + 0.002 | 0.101 = 0.000 1.0 £ 0.0 0.101 & 0.000 | 0.001 £ 0.000 | 0.001 % 0.000 | 0.026
PL:Permute a=1 Spectral Nolsy 0.500 £+ 0.000 0.100 £ 0.001 1.0 + 0.0 0.100 £ 0.001 0.001 £ 0.000 0.001 £+ 0.000 0.019
PL:Permute a=1 DCD (Louvain) | De-noised | 0.973 + 0.012 1.0 + 0.0 0.945 + 0.023 | 0.995 + 0.002 | 0.969 + 0.014 1.0 £ 0.0 0.018
PL:Permute a=1 DCD (Infomap) | De-noised | 0.973 + 0.011 1.0 + 0.0 0.945 + 0.024 | 0.995 + 0.003 | 0.969 + 0.015 1.0 + 0.0 0.03
PL:Permute a=1 DCD (Infomap) | De-noised | 0.973 + 0.013 1.0 + 0.0 0.945 + 0.022 | 0.995 + 0.001 | 0.969 + 0.013 1.0 + 0.0 0.022
PL:Permute a=15 Closed-Form Noisy 0.811 £ 0.045 | 0311 £0.011 | 0.797 £ 0.051 | 0.807 £ 0.022 | 0.366 £ 0.015 | 0.810 £ 0.004 | 0.088
PL:Permute a=15 dGHD Noisy 0.809 + 0.043 | 0.301 + 0.009 | 0. 791 +0.042 | 0.797 £ 0.015 | 0.344 £ 0.016 | 0.796 % 0.007 1.0
PL:Permute a=15 Louvain Noisy 0 5+ 0.0 0.1+ 0.0 1.0 £ 0. 0.1 £ 0.0 0.0 £ 0.0 0.0 £ 0.0 0.016
PL:Permute o .5 Infomap Noisy .5 £ 0.0 0.1 £ 0.0 .0 = 0.0 0.1 £0.0 0.0 £ 0.0 l? 0+ 0.0 0.026
PL:Permute a=15 Spectral Noisy o 5+ 0.0 0.1+0.0 1.0 £ 0.0 0.1+ 0.0 0.0 £ 0.0 0+ 0.0 0.019
PL:Permute a=15 DCD (Louvain) | De-noised | 0.989 % 0.005 1.0 + 0.0 0.979 + 0.010 | 0.998 + 0.001 | 0.988 % 0.006 1 0 +0 0.018
PL:Permute a = 1. DCD (Infomap) De-noised 0.989 + 0.004 1.0 + 0.0 0.979 + 0.010 0.998 + 0.000 0.988 + 0.005 1.0+ 0 0.03
PL:Permute a=15 DCD (Spectral) | De-noised | 0.989 + 0.006 1.0 + 0.0 0.979 + 0.009 | 0.998 + 0.001 | 0.988 + 0.007 1.0+ 0 0.022
PL:Permute a=2 Closed-Form i 0.825 £ 0.345 £ 0.015 | 0.825 £ 0.035 | 0.826 £ 0.007 | 0.402 £ 0.024 | 0.826 £ 0.004 | 0.085
PL:Permute a=2 dGHD 0.818 + 0.327 £ 0.018 | 0.799 £ 0.050 | 0.816 £ 0.008 | 0.375 £ 0.031 | 0.817 £ 0.004 1.0
PL:Permute a=2 Louvain + 0.1+ 0.0 1.0 + 0.0 0.1 £ 0.0 0.0 £ 0.0 0.0 £ 0.0 0.016
PL Pcunmc a=2 Infomap + 0.1+0.0 1.0 £ 0.0 0.1 £ 0.0 0.0 £ 0.0 0.0 £ 0.0 0.026
: a=2 Spectral + 0.1+ 0.0 1.0 £ 0.0 0.1 £ 0.0 0.0 £ 0.0 0.0 £ 0.0 0.019
PL ermute a=2 DCD (Louvain) + 1.0 + 0.0 0.941 £ 0.033 0.994 + 0.003 0.966 + 0.020 1.0 +£ 0.0 0.018
PL:Permute a=2 DCD (Infomap) 1.0 + 0.0 0.941 + 0.032 | 0.994 + 0.002 | 0.966 + 0.021 1.0 £ 0.0 0.03
PL:Permute a=2 DCD (Spectral) | Denoised | 0.971 & 0.016 1.0 + 0.0 0.941 + 0.033_| 0.994 + 0.004 | 0.966 + 0.019 1.0 + 0.0 0.022

Table 1: Comparison of proposed DCD approach with Closed-Form [33] and dGHD [50)] statistical techniques
and direct application of community detection methods like Louvain [3], Infomap [48] and Spectral [34]
on nosiy DT graph to identify differential sub-networks in paired simulated networks for various settings.
Here RG:Permute represents RG networks where first 100 nodes are permuted and form differential sub-
network. Similarly, PL:Permute is used for experiments on PL graphs where first 100 nodes are permuted
and constitute the differential sub-network. RG:Dense depicts RG networks, where first 100 nodes have
higher density in network B in comparison to network A and make-up the differential sub-network. Time
is represented as fraction w.r.t. the computational time of most expensive method (dGHD). Best results
are highlighted in bold. The proposed DCD approach can robustly identify differential sub-networks in all
simulated experimental settings. It performs the best for evaluation metrics: AUC_ROC (area under ROC
curve), Precision, Accuracy, Kappa and Specificity.

generated from the TCGA pan-glioma dataset [33]. BAT algorithm [25]. The final gene expression data
The TCGA pan-glioma dataset includes 1,250 sam- includes 12,985 genes and 1,250 samples. From
ples (463 IDH-mutant and 653 IDH-wild-type), 583 of this data, we inferred the GRN for the two differ-
which were profiled with Agilent microarray and 667 ent glioma sub-types using the ARACNe [39] algo-
with RNA-Seq Illumina HiSeq (REF) downloaded rithm as in [33]. In our analysis, we compared the
from the TCGA portal. The batch effects between GRNs of IDH-mutant and IDH-wild-type to identify
the two platforms were corrected using the COM- sub-networks of transcription factors (TFs) having a
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different regulatory program in these two major con-
ditions.

The ARACNe networks were intersected with an
active binding network based on the presence of bind-
ing sites in the promoter of a target gene. The
active binding network is reconstructed for 2,532
unique motifs corresponding to 1,203 unique TFs
[26] [40, 28]. A binding relationship is considered ac-
tive if the TF motif signal is significantly (FDR <
0.05) over-represented in the target promoter region
(F 5kbp TSS, hgl9) and, in the same position (at
least 1bp overlapping), chromatin state is classified as
open by Hidden Markov Model proposed in [12]. The
active binding network consists of 6,652, 518 overlap-
ping active sites resulting in 1,959,125 unique TF
associations between 1,203 TFs and 51, 705 targets.

The final pruned networks are then obtained by
considering the common sub-network of active bind-
ing and functional ARACNE networks. They consists
of 13,683 unique connections for IDH-mutant and
14,158 for IDH-wild-type between TF-TF and TF-
target. The number of TFs was reduced to 457 when
intersected with the 12, 895 genes of our combined ex-
pression matrix. We then apply the proposed DCD
approach on the noisy DT graph G(V, E) obtained by
taking the absolute difference between the topologi-
cal graphs of IDH-mutant and IDH-wild-type. The
DCD technique discovered a total of 262 TFs as part
of 7 differential communities using the Louvain [3]
method in G(V, E).

We further investigated these communities by con-
sidering the regulons of all the TFs associated with
each such community C; in the corresponding IDH-
mutant and IDH-wild-type GRN. The regulon of a
TF is defined as its neighbourhood in the GRN. We

Cl C2 C3 C4 Cb5 C6 C7 C8 C9 Total

Probes 825 364 198 155 21 17 11 8 294 1893
qi 5 363 22 140 18 0 1 2 245 5098
Ri 0.82 0.16 0.09 0.11 1.77 0 3.67 0 3.23 0.72
BP 628 542 452 378 195 118 136 124 495 711

MF 8 53 44 37 9 9 16 8 53 100
KEGG 6 4 1 3 0 0 0 0 4 16

Table 2: DNA co-methylation networks: a summary
of different communities detected by DCD approach.

probed the regulons of all TFs present in a commu-
nity to detect enriched GO terms using DAVID [25].
We found 15 and 17 statistically significant biolog-
ical processes (BP) at a 5% significance level using
the regulons of TFs in C; for IDH-mutant and IDH-
wild-type GRNs respectively. We also located 50, 14,
9, 21, 51 and 40 significant BPs for Cs, C3, Cy4, Cs, Cg
and Cr respectively in IDH-mutant GRN. Similarly,
we unearthed 71, 11, 4, 20, 48 and 20 significant BPs
for Cs, C3, C4, Cs5, Cg and C7 respectively in IDH-wild-
type GRN.

We utilized the output from DAVID for each C; in
the IDH-mutant and IDH-wild-type GRN as input
to Enrichment Map tool [41] in Cytoscape. This tool
provides a visualization for functional enrichment as-
sociated with BPs in C; and allows comparison be-
tween enrichment results for two different conditions
(IDH-mutant and IDH-wild-type). Figure illus-
trates the difference between the enrichment results
of C; in IDH-mutant and IDH-wild-type case. Sim-
ilarly, Figure compares the enrichment results of
Cs in IDH-mutant and IDH-wild-type.

Interestingly, the differential community C; is en-
riched with functions related to epigenetic changes
such as Chromatin Modification and Histone Acety-
lation. Ceccarelli et al showed in [§] that the main
difference between IDH-mutant and IDH-wild-type
gliomas is the characteristic hyper-methylation phe-
notype (G-CIMP) which has a favourable prognosis
both in high grade and low grade gliomas. Con-
versely, the Cs reveals enrichments which are spe-
cific of IDH-wild-type gliomas such as proliferation
and activation of inflammatory response. There-
fore, the DCD approach is not only able to identify
known but also potential novel enrichments which
need to be investigated further, in the two patho-
logical conditions. Additional supplementary infor-
mation is provided at https://sites.google.com/
site/raghvendramallmlresearcher/codes.

6 Conclusion

We propose a fast two-stage DCD approach to iden-
tify differential sub-networks in paired biological
graphs. The proposed method performs node or-
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dering using neighbourhood information of nodes
and Jaccard similarity to detect approximate block-
diagonals. It de-noises the ordered noisy differen-
tial topological graph by traversing its landscape
along the diagonal. Finally, differential sub-networks
are identified using community detection algorithms.
We showcased the effectiveness of proposed approach
w.r.t. various statistical techniques and direct appli-
cation of community detection methods for a myr-
iad experimental settings using evaluation metrics
like Precision, Accuracy, Kappa and Specificity. The
DCD approach identified several meaningful biologi-
cal processes and molecular functions on ovarian can-
cer dataset. Similarly, using DCD, we singled out
some functional pathways that are different between
the IDH-mutant and IDH-wild-type subtypes in case
of glioma cancer.
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Figure 1: Illustration of DCD method and its benefit over directly using community detection methods
on noisy DT graph. Figure [la) represents a random-geometric network A with 1,000 nodes and Figure
represents another random-geometric network B where the nodes 1 to 100 and nodes 500 to 600 have different
interaction pattern from network A. Figures [Id and [Id] correspond to the topological graphs of network A
and B. Figure [le| shows the noisy differential topological (DT) graph obtained from topological graphs of
A and B. Figure [lf] evaluates the result of 3 state-of-the-art community detection techniques on the noisy
DT graph to detect differential sub-networks w.r.t. precision and recall metrics. Figure [Lg| illustrates the
ordered noisy DT graph obtained from first stage of DCD approach. Figure [Lh| demonstrates the de-noised
DT graph generated after the second stage of DCD method. Figure [[] showcases the efficiency of 3 different
community detection methods to identify the differerifial sub-networks from the de-noised DT graph.
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Figure 2: Area under the precision-recall curves for different values of threshold 6 for various experimental
settings. We demonstrate the area under precision-recall curves using the proposed steps of DCD approach
with either Louvain or Infomap or Spectral community detection method. Figures [2all2bl2c| and [2d| show the
role of parameter 6 on precision-recall values for paired RG networks (v = 0.15) where first 100 nodes are
permuted. Figures 2¢]21] 2g] and 2L illustrate how the area under precision-recall curves vary with threshold
0 for paired RG networks (v = 0.15) where the sub-network corresponding to first 100 nodes have higher
density (2 = 0.5). Similarly, Figures and |2]] describes the role of variable 6 on precision-recall
values for paired PL networks (o = 1.5) where the first 100 nodes are permuted.
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Figure 3: Degree distribution of nodes for control and case co-methylation networks. Since o < 1 for both the
networks, state-of-the-art statistical techniques cannot be applied on these paired networks for differential
sub-network analysis.
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Figure 4: DNA co-methylation differential sub-networks. Cluster C7 is a special case. Even though it
comprises of less than 7 nodes in the case sub-network, it consists of 9 nodes in control sub-network and has
very different topography in the two sub-networks. As a result, it appears as a differential community of size
greater than 7 in the de-noised DT graph. Clusters C6 and C8 are not present in the control sub-network.
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Figure 5: Comparison of enrichment results of IDH-mutant and IDH-wildtype for differential communities
Cy; and Cs. Here the nodes correspond to the BPs and red circle size is proportional to number of genes
in IDH-mutant associated with that BP. Similarly, the grey circle size in a node (BP) corresponds to the
number of genes in IDH-wild-type related to that BP. Edge size corresponds to the number of genes that
overlap between the two connected BPs. Green edges correspond to IDH-mutant while purple edges represent
interaction between BPs in IDH-wild-type.
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