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Abstract 54 
Background: Investigators often interpret genome-wide data by analyzing the expression levels of genes within 55 
pathways. While this within-pathway analysis is routine, the products of any one pathway can affect the activity of 56 
other pathways. Past efforts to identify relationships between biological processes have evaluated overlap in 57 
knowledge bases or evaluated changes that occur after specific treatments. Individual experiments can highlight 58 
condition-specific pathway-pathway relationships; however, constructing a complete network of such relationships 59 
across many conditions requires analyzing results from many studies.  60 
Results: We developed PathCORE-T framework by implementing existing methods to identify pathway-pathway 61 
transcriptional relationships evident across a broad data compendium. PathCORE-T is applied to the output of 62 
feature construction algorithms; it identifies pairs of pathways observed in features more than expected by chance 63 
as functionally co-occurring. We demonstrate PathCORE-T by analyzing an existing eADAGE model of a microbial 64 
compendium and building and analyzing NMF features from the TCGA dataset of 33 cancer types. The PathCORE-T 65 
framework includes a demonstration web interface, with source code, that users can launch to (1) visualize the 66 
network and (2) review the expression levels of associated genes in the original data. PathCORE-T creates and 67 
displays the network of globally co-occurring pathways based on features observed in a machine learning analysis 68 
of gene expression data.   69 
Conclusions: The PathCORE-T framework identifies transcriptionally co-occurring pathways from the results of 70 
unsupervised analysis of gene expression data and visualizes the relationships between pathways as a network. 71 
PathCORE-T recapitulated previously described pathway-pathway relationships and suggested experimentally 72 
testable additional hypotheses that remain to be explored.  73 
Keywords: gene expression; unsupervised feature construction; crosstalk; pathway interactions 74 
 75 
Background 76 

The number of publicly available genome-wide datasets is growing rapidly [1]. High-throughput 77 
sequencing technologies that measure gene expression quickly with high accuracy and low cost continue to enable 78 
this growth [2]. Expanding public data repositories [3, 4] have laid the foundation for computational methods that 79 
consider entire compendia of gene expression data to extract biological patterns [5]. These patterns may be 80 
difficult to detect in measurements from a single experiment. Unsupervised approaches, which identify important 81 
signals in the data without being constrained to previously-described patterns, may discover new expression 82 
modules and thus will complement supervised methods, particularly for exploratory analyses [6,7].  83 

 84 
Feature extraction methods are a class of unsupervised algorithms that can reveal unannotated biological 85 

processes from genomic data [7]. Each feature can be defined by a subset of influential genes, and these genes 86 
suggest the biological or technical pattern captured by the feature. These features, like pathways, are often 87 
considered individually [7,8]. When examined in the context of knowledgebases such as the Kyoto Encyclopedia of 88 
Genes and Genomes (KEGG) [9], most features are significantly enriched for more than one biological gene set [7]. 89 
In this work, we refer to such a gene set by the colloquial term, pathway. It follows then that such features can be 90 
described by sets of functionally related pathways. We introduce the PathCORE-T (identifying pathway co-91 
occurrence relationships in transcriptomic data) software, which implements existing methods that jointly consider 92 
features and gene sets to map pathways with shared transcriptional responses.  93 

 94 
PathCORE-T offers a data-driven approach for identifying and visualizing transcriptional pathway-pathway 95 

relationships. In this case, relationships are drawn based on the sets of pathways, annotated in a resource of gene 96 
sets, occurring within constructed features. Because PathCORE-T starts from a feature extraction model, the 97 
number of samples in the compendium used for model generation and the fraction of samples needed to observe 98 
a specific biological or technical pattern is expected to vary by feature extraction method. Pathways must be 99 
perturbed in a sufficient fraction of experiments in the data compendium to be captured by any such method. To 100 
avoid discovering relationships between pathways that share many genes—which could more easily be discovered 101 
by directly comparing pathway membership—we implement an optional pre-processing step that corrects for 102 
genes shared between gene sets, which Donato et al. refer to as pathway crosstalk [10]. Donato et al.’s correction 103 
method, maximum impact estimation, has not previously been implemented in open source software. We have 104 
released our implementation of maximum impact estimation as its own Python package (PyPI package name: 105 
crosstalk-correction) so that it can be used independently of PathCORE-T. Applying this correction in PathCORE-T 106 
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software allows a user to examine relationships between gene sets based on how genes are expressed as opposed 107 
to which genes are shared.  108 
 109 

We apply PathCORE-T to a microbial and a cancer expression dataset, each analyzed using different 110 
feature extraction methods, to demonstrate its broad applicability. For the microbial analysis, we created a 111 
network of KEGG pathways from recently described ensemble Analysis using Denoising Autoencoders for Gene 112 
Expression (eADAGE) models trained on a compendium of Pseudomonas aeruginosa (P. aeruginosa) gene 113 
expression data (doi:10.5281/zenodo.583694) [7]. We provide a live demo of the PathCORE-T web application for 114 
this network: users can click on edges in the network to review the expression levels of associated genes in the 115 
original compendium (https://pathcore-demo.herokuapp.com/PAO1). To show its use outside of the microbial 116 
space, we also demonstrate PathCORE-T analysis of Pathway Interaction Database (PID)-annotated [11] non-117 
negative matrix factorization (NMF) features [12, 13] extracted from The Cancer Genome Atlas’s (TCGA) pan-118 
cancer dataset of 33 different tumor types (doi:10.5281/zenodo.56735) [14]. 119 

 120 
In addition to visualizing the results of these two applications, the PathCORE-T web interface 121 

(https://pathcore-demo.herokuapp.com/) links to the documentation and source code for our implementation and 122 
example usage of PathCORE-T. Methods implemented in PathCORE-T are written in Python and pip-installable 123 
(PyPI package name: PathCORE-T). Examples of how to use these methods are provided in the PathCORE-T analysis 124 
repository (https://github.com/greenelab/PathCORE-T-analysis). In addition to scripts that reproduce the eADAGE 125 
and NMF analyses described in this paper, the PathCORE-T-analysis repository includes a Jupyter notebook 126 
(https://goo.gl/VuzN12) with step-by-step descriptions for the complete PathCORE-T framework. 127 
 128 
Related work 129 

Our approach diverges from other algorithms that we identified in the literature in its intent: PathCORE-T 130 
finds pathway pairs within a biological system that are overrepresented in features constructed from diverse 131 
transcriptomic data. This complements other work that developed models specific to a single condition or disease. 132 
Approaches designed to capture pathway-pathway interactions from gene expression experiments for disease-133 
specific, case-control studies have been published [15,16]. For example, Pham et al. developed Latent Pathway 134 
Identification Analysis to find pathways that exert latent influences on transcriptionally altered genes [17]. Under 135 
this approach, the transcriptional response profiles for a binary condition (disease/normal), in conjunction with 136 
pathways specified in the KEGG and functions in Gene Ontology (GO) [18], are used to construct a pathway-137 
pathway network where key pathways are identified by their network centrality scores [17]. Similarly, Pan et al. 138 
measured the betweenness centrality of pathways in disease-specific genetic interaction and coexpression 139 
networks to identify those most likely to be associated with bladder cancer risk [19]. These methods captured 140 
pathway relationships associated with a particular disease state.  141 

 142 
Global networks identify relationships between pathways that are not disease- or condition-specific. One 143 

such network, detailed by Li et al., relied on publicly available protein interaction data to determine pathway-144 
pathway interactions [20]. Two pathways were connected in the network if the number of protein interactions 145 
between the pair was significant with respect to the computed background distribution. Such approaches rely on 146 
databases of interactions, though the interactions identified can be subsequently used for pathway-centric 147 
analyses of transcriptomic data [20, 21]. Pita-Juárez et al. created the Pathway Coexpression Network (PCxN) as a 148 
tool to discover pathways correlated with a pathway of interest [22]. They estimated correlations between 149 
pathways based on the expression of their underlying genes (as annotated in MSigDB) across a curated 150 
compendium of microarray data [22]. Software like PathCORE-T that generates global networks of pathway 151 
relationships from unsupervised feature analysis models built using transcriptomics data has not yet been 152 
published. 153 

 154 
  The intention of PathCORE-T is to work from transcriptomic data in ways that do not give undue 155 
preference to combinations of pathways that share genes. Other methods have sought to consider shared genes 156 
between gene sets, protein-protein interactions, or other curated knowledgebases to define pathway-pathway 157 
interactions [20–21, 23–25]. For example, Glass and Girvan described another network structure that relates 158 
functional terms in GO based on shared gene annotations [26]. In contrast with this approach, PathCORE-T 159 
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specifically removes gene overlap in pathway definitions before they are used to build a network. Our software 160 
reports pathway-pathway connections overrepresented in gene expression patterns extracted from a large 161 
transcriptomic compendium while controlling for the fact that some pathways share genes. 162 
 163 
Implementation 164 

PathCORE-T identifies functional links between known pathways from the output of feature construction 165 
methods applied to gene expression data (Fig. 1a, b). The result is a network of pathway co-occurrence 166 
relationships that represents the grouping of biological gene sets within those features. We correct for gene 167 
overlap in the pathway annotations to avoid identifying co-occurrence relationships driven by shared genes. 168 
Additionally, PathCORE-T implements a permutation test for evaluating and removing edges—pathway-pathway 169 
relationships—in the resulting network that cannot be distinguished from a null model of random associations. 170 
Though we refer to the relationships in the network as co-occurrences, it is important to note that the final 171 
network displays co-occurrences that have been filtered based on this permutation test (Fig. 1c).  172 

 173 
Our software is written in Python and pip-installable (PyPI package name: PathCORE-T), and examples of 174 

how to use the methods in PathCORE-T are provided in the PathCORE-T-analysis repository 175 
(https://github.com/greenelab/PathCORE-T-analysis). We recommend that those interested in using the 176 
PathCORE-T software consult the documentation and scripts in PathCORE-T-analysis. Each of the functions in 177 
PathCORE-T that we describe here can be used independently; however, we expect most users to employ the 178 
complete approach for interpreting pathways shared in extracted features (Fig. 1). 179 
 180 
Data organization 181 
PathCORE-T requires the following inputs: 182 

1) A weight matrix that connects each gene to each feature. We expect that this results from the application 183 
of a feature construction algorithm to a compendium of gene expression data. The primary requirements 184 
are that features must contain the full set of genes in the compendium and genes must have been 185 
assigned weights that quantify their contribution to a given feature. Accordingly, a weight matrix will have 186 
the dimensions n x k, where n is the number of genes in the compendium and k is the number of features 187 
constructed. In principal component analysis (PCA), this is the loadings matrix [27]; in independent 188 
component analysis (ICA), it is the unmixing matrix [28]; in ADAGE or eADAGE it is termed the weight 189 
matrix [5,7]; in NMF it is the matrix W, where the NMF approximation of the input dataset A is A ~ WH 190 
[12]. In addition to the scripts we provide for the eADAGE and NMF examples in the PathCORE-T analysis 191 
repository, we include a Jupyter notebook (https://goo.gl/VuzN12) that demonstrates how a weight 192 
matrix can be constructed by applying ICA to the P. aeruginosa gene compendium.  193 

2) Gene signature rule(s). To construct a pathway co-occurrence network, the weight matrix must be 194 
processed into gene signatures by applying threshold(s) to the gene weights in each feature—we refer to 195 
these as gene signature rules. Subsequent pathway overrepresentation will be determined by the set of 196 
genes that makes up a feature’s gene signature. These are often the weights at the extremes of the 197 
distribution. How gene weights are distributed will depend on the user’s selected feature construction 198 
algorithm; because of this, a user must specify criterion for including a gene in a gene signature. 199 
PathCORE-T permits rules for a single gene signature or both a positive and a negative gene signature. The 200 
use of 2 signatures may be appropriate when the feature construction algorithm produces positive and 201 
negative weights, the extremes of which both characterize a feature (e.g. PCA, ICA, ADAGE or eADAGE). 202 
Because a feature can have more than one gene signature, we maintain a distinction between a feature 203 
and a feature’s gene signature(s). 204 

3) A list of pathway definitions, where each pathway is defined by a set of genes (e.g. KEGG pathways, PID 205 
pathways, GO biological processes). We provide the files for the P. aeruginosa KEGG pathway definitions 206 
and the Nature-NCI PID pathway definitions in the PathCORE-T analysis repository 207 
(https://github.com/greenelab/PathCORE-T-analysis/tree/master/data). 208 

 209 
Weight matrix construction and signature definition 210 

In practice, users can obtain a weight matrix from many different methods. For the purposes of this 211 
paper, we demonstrate generality by constructing weight matrices via eADAGE and NMF. 212 
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 213 
eADAGE  214 

eADAGE is an unsupervised feature construction algorithm developed by Tan et al. [7] that uses an 215 
ensemble of neural networks (an ensemble of ADAGE models) to capture biological patterns embedded in the 216 
expression compendium. We use models from Tan et al. [7]. In that work, Tan et al. evaluated multiple eADAGE 217 
model sizes to identify that k=300 features was an appropriate size for the current P. aeruginosa compendium. The 218 
authors also compared eADAGE to two other commonly used feature construction approaches, PCA and ICA [7]. 219 
Tan et al. produced 10 eADAGE models that each extracted k=300 features from the compendium of genome-scale 220 
P. aeruginosa data. Because PathCORE-T supports the aggregation of co-occurrence networks created from 221 
different models on the same input data, we use all 10 of these models in the PathCORE-T analysis of eADAGE 222 
models (doi:10.5281/zenodo.583172).  223 

 224 
Tan et al. refers to the features constructed by eADAGE as nodes. They are represented as a weight matrix 225 

of size n x k, where n genes in the compendium are assigned positive or negative gene weights, according to a 226 
standard normal distribution, for each of the k features. Tan et al. determined that the gene sets contributing the 227 
highest positive or highest negative weights (+/- 2.5 standard deviations) to a feature described gene expression 228 
patterns across the compendium, and thus referred to the gene sets as signatures. Because a feature’s positive 229 
and negative gene signatures did not necessarily correspond to the same biological processes or functions, Tan et 230 
al. analyzed each of these sets separately [7]. Tan et al.’s gene signature rules are specified as an input to the 231 
PathCORE-T analysis as well.  232 
 233 
NMF 234 

We also constructed an NMF model for the TCGA pan-cancer dataset. Given an NMF approximation of A ~ 235 
WH [12], where A is the input expression dataset of size n x s (n genes by s samples), NMF aims to find the optimal 236 
reconstruction of A by WH such that W clusters on samples (size n x k) and H clusters on genes (size k x s). In order 237 
to match the number of features constructed in each eADAGE model by Tan et al., we set k, the desired number of 238 
features, to be 300 and used W as the input weight matrix for the PathCORE-T software. We found that the gene 239 
weight distribution of an NMF feature is right-skewed and (as the name suggests) non-negative (Fig. S1). In this 240 
case, we defined a single gene signature rule: an NMF feature’s gene signature is the set of genes with weights 2.0 241 
standard deviations above the mean weight of the feature.  242 

 243 
The selection of k=300 for the NMF model allowed us to make the eADAGE-based and NMF-based case 244 

studies roughly parallel. We verified that 300 components was appropriate by evaluating the percentage of 245 
variance explained by PCA applied to the TCGA dataset. In general, the principal components explained very little 246 
variance—the first principal component only explained 11% of the variance. At 300 components, the proportion of 247 
variance explained was 81%.  248 

 249 
As an additional analysis, we determined the number of components (k=24) where each additional 250 

component explained less than 0.5% of the variance. We found that using a very small number of constructed 251 
features resulted in a substantial loss of power: PathCORE-T analysis with a single k=24 model yielded no 252 
significant edges after permutation test. However, PathCORE-T can be applied over multiple models as long as the 253 
feature construction method produces different solutions depending on random seed initialization. We performed 254 
10 factorizations to generate an aggregate of 10 k=24-feature NMF models and found that the resulting co-255 
occurrence network was denser (364 edges) than our k=300 factor network (119 edges). 65 edges were found in 256 
both networks. These shared edges had higher weights, on average, in both networks compared to edges unique 257 
to each network (https://goo.gl/vnDVNA). 258 
 259 
Construction of a pathway co-occurrence network 260 

We employ a Fisher’s exact test [29] to determine the pathways significantly associated with each gene 261 
signature. When considering significance of a particular pathway, the two categories of gene classification are as 262 
follows: (1) presence or absence of the gene in the gene signature and (2) presence or absence of the gene in the 263 
pathway definition. For each pathway in the input list of pathway definitions, we specify a contingency table and 264 
calculate its p-value, which is corrected using the Benjamini—Hochberg [30] procedure to produce a feature-wise 265 
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false discovery rate (FDR). A pathway with an adjusted p-value that is less than the user-settable FDR significance 266 
cutoff, alpha (default: 0.05), is considered significantly enriched in a given gene signature. This cutoff value should 267 
be selected to most aid user interpretation of the model. The next step of PathCORE-T is to convert pathway-node 268 
relationships into pathway-pathway relationships. For this, we apply a subsequent permutation test over pathway-269 
pathway edge weights that accounts for the frequency at which pathways are observed as associated with 270 
features. This permutation produces a p-value for each edge. Two pathways co-occur, or share an edge in the 271 
pathway co-occurrence network, if they are both overrepresented in a gene signature. The weight of each edge in 272 
the pathway-pathway graph corresponds to number of times such a pathway pair is present over all gene 273 
signatures in a model (Fig. 2a). 274 

 275 
Permutation test 276 

The network that results from the preceding method is densely connected, and many edges may be 277 
spurious. To remove correlations that cannot be distinguished from random pathway associations, we define a 278 
statistical test that determines whether a pathway-pathway relationship appearing x times in a k-feature model is 279 
unexpected under the null hypothesis—the null hypothesis being that the relationship does not appear more often 280 
than it would in a random network. We create N weighted null networks, where each null network is constructed 281 
by permuting overrepresented pathways across the model’s gene signatures while preserving the number of 282 
pathways for which each gene signature is enriched (Fig. 2b). N is a user-settable parameter: the example 283 
PathCORE-T analyses we provide specify an N of 10,000. Increasing the value of N leads to more precise p-values, 284 
particularly for low p-values, but comes at the expense of additional computation time.  285 

 286 
In the case where we have positive and negative gene signatures, overrepresentation can be positive or 287 

negative. Because certain pathways may display bias toward one side—for example, a pathway may be 288 
overrepresented more often in features’ positive gene signatures—we perform the permutation separately for 289 
each side. The N random networks produce the background weight distribution for every observed edge; 290 
significance can then be assessed by comparing the true (observed) edge weight against the null. The p-value for 291 
each edge e is calculated by summing the number of times a random network contained e at a weight greater than 292 
or equal to its observed edge weight and dividing this value by N. Following Benjamini—Hochberg FDR correction 293 
by the number of edges in the observed network, pathway-pathway relationships with adjusted p-values above 294 
alpha (user-settable default: 0.05) are removed from the network of co-occurring pathways (Fig. 2c). The threshold 295 
alpha value is a configurable parameter, and the user should select an FDR that best balances the costs and 296 
consequences of false positives. For highly exploratory analyses in which it may be helpful to have more 297 
speculative edges, this value can be raised. For analyses that require particularly stringent control, it can be 298 
lowered. 299 

 300 
Because the expected weight of every edge can be determined from the N random networks (by taking 301 

the sum of the background weight distribution for an edge and dividing it by N), we can divide each observed edge 302 
weight by its expected weight (dividing by 1 if the expected edge weight is 0 based on the N permutations) to get 303 
the edge’s odds ratio. Edges in the final network are weighted by their odds ratios. 304 
 305 
Gene overlap correction 306 

Pathways can co-occur because of shared genes (Fig. 3a, b, d). Though some approaches use the overlap 307 
of genes to identify connected pathways, we sought to capture pairs of pathways that persisted even when this 308 
overlap was removed. The phenomenon of observing enrichment of multiple pathways due to gene overlap has 309 
been previously termed as “crosstalk,” and Donato et al. have developed a method to correct for it [10]. Due to 310 
confusion around the term, we refer to this as overlapping genes in this work, except where specifically 311 
referencing Donato et al. Their approach, called maximum impact estimation, begins with a membership matrix 312 
indicating the original assignment of multiple genes to multiple pathways. It uses expectation maximization to 313 
estimate the pathway in which a gene contributes its greatest predicted impact (its maximum impact) and assigns 314 
the gene only to this pathway [10]. This provides a set of new pathway definitions that no longer share genes (Fig. 315 
3c, e).  316 

 317 
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There was no existing open source implementation of this algorithm, so we implemented Donato et al.’s 318 
maximum impact estimation as a Python package (PyPI package name: crosstalk-correction). This software is 319 
separate from PathCORE-T because we expect that it may be useful in its own right for other analytical workflows, 320 
such as differential expression analysis. The procedure is written using NumPy functions and data structures, which 321 
allows for efficient implementation of array and matrix operations in Python [31]. 322 

 323 
In PathCORE-T, we used this software to resolve overlapping genes before pathway overrepresentation 324 

analysis. Overlap correction is applied to each feature of the model independently. This most closely matches the 325 
setting evaluated by the original authors of the method. Work on methods that resolves overlap by using 326 
information shared across features may provide opportunities for future enhancements but was deemed to be out 327 
of the scope of a software contribution. 328 

 329 
With this step, the pathway co-occurrence network identifies relationships that are not driven simply by 330 

the same genes being annotated to multiple pathways. Without this correction step, it is difficult to determine 331 
whether a co-occurrence relationship can be attributed to the features extracted from expression data or gene 332 
overlap in the two pathway annotations. We incorporate this correction into the PathCORE-T workflow by default; 333 
however, users interested in using PathCORE-T to find connections between overlapping gene sets can choose to 334 
disable the correction step. 335 

 336 
PathCORE-T network visualization and support for experimental follow-up 337 

The PathCORE-T analysis workflow outputs a list of pathway-pathway relationships, or edges in a network 338 
visualization, as a text file. An example of the KEGG P. aeruginosa edges file is available for download on the demo 339 
application: http://pathcore-demo.herokuapp.com/quickview. While we chose to represent pathway-pathway 340 
relationships as a network, users can use this file output to visualize the identified relationships as an adjacency 341 
matrix or in any other format they choose.    342 

 343 
As an optional step, users can set up a Flask application for each PathCORE-T network. Metadata gathered 344 

from the analysis are saved to TSV files, and we use a script to populate collections in a MongoDB database with 345 
this information. The co-occurrence network is rendered using the D3.js force-directed graph layout [32]. Users 346 
can select a pathway-pathway relationship in the network to view a new page containing details about the genes 347 
annotated to one or both pathways (Fig. 4a).  348 

 349 
We created a web interface for deeper examination of relationships present in the pathway co-350 

occurrence network. The details we included in an edge-specific page (1) highlight up to twenty genes—annotated 351 
to either of the two pathways in the edge—contained in features that also contain this edge, after controlling for 352 
the total number of features that contain each gene, and (2) display the expression levels of these genes in each of 353 
the fifteen samples where they were most and least expressed. The quantity of information (twenty genes, thirty 354 
samples total) we choose to include in an edge page is intentionally limited so that users can review it in a 355 
reasonable amount of time. 356 

 357 
To implement the functionality in (1), we computed an odds ratio for every gene annotated to one or 358 

both pathways in the edge. The odds ratio measures how often we observe a feature enriched for both the given 359 
gene and the edge of interest relative to how often we would expect to see this occurrence. We calculate the 360 
proportion of observed cases and divide by the expected proportion--equivalent to the frequency of the edge 361 
appearing in the model’s features. 362 

 363 
Let k be the number of features from which the PathCORE-T network was built. kG is the number of 364 

features that contain gene G (i.e. G is in kG features’ gene signatures), kE the number of features that contain edge 365 
E (i.e. the two pathways connected by E are overrepresented in kE features), and kG & E the number of features that 366 
contain both gene G and edge E. The odds ratio is computed as follows: 367 

observed = kG & E / kG 368 
expected = kE / k 369 

odds ratio = observed / expected 370 
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An odds ratio above 1 suggests that the gene is more likely to appear in features enriched for this pair of pathways. 371 
In the web interface, we sort the genes by their odds ratio to highlight genes most observed with the co-372 
occurrence relationship. 373 
 374 

The information specified in (2) requires an “expression score” for every sample. A sample expression 375 
score is calculated using the genes we selected in goal (1): it is the average of the normalized gene expression 376 
values weighted by the normalized gene odds ratio. Selection of the most and least expressed samples is based on 377 
these scores. We use two heatmaps to show the (maximum of twenty) genes’ expression values in each of the 378 
fifteen most and least expressed samples (Fig. 4b). 379 

 380 
For each sample in an edge page, a user can examine how the expression values of the edge’s twenty 381 

genes in that sample compare to those recorded for all other samples in the dataset that are from the same 382 
experiment (Fig. 4c). Genes that display distinct expression patterns under a specific setting may be good 383 
candidates for follow-up studies. 384 
 385 
Results 386 
 387 
PathCORE-T software 388 

Unsupervised methods can identify previously undiscovered patterns in large collections of data. 389 
PathCORE-T overlays curated knowledge after feature construction to help researchers interpret constructed 390 
features in the context of existing knowledgebases. Specifically, PathCORE-T aims to clarify how expert-annotated 391 
gene sets work together from a gene expression perspective. PathCORE-T starts from an unsupervised feature 392 
construction model. Before applying the software, users should evaluate models to make sure that they capture 393 
biological features in their dataset. Model evaluation can be performed in numerous ways depending on the 394 
setting and potential assessments include consistency across biological replicates, reconstruction error given a 395 
fixed dimensionality, and independent validation experiments. Tan et al. described several ways that models could 396 
be evaluated [7]. Datasets will vary in terms of their amenability to analysis by different model-building strategies, 397 
and researchers may wish to consult a recent review for more discussion of feature construction methods [33]. 398 

 399 
We implemented the methods contained in the PathCORE-T software in Python. The implementations of 400 

the primary steps are pip-installable (PyPI package name: PathCORE-T), and examples of how to use the methods 401 
in PathCORE-T are provided in the PathCORE-T-analysis repository (https://github.com/greenelab/PathCORE-T-402 
analysis). We also implemented an optional step, which corrects for overlapping genes between pathway 403 
definitions, described by Donato et al. [10]. Though the algorithm had been described, no publicly available 404 
implementation existed. We provide this overlap correction algorithm as a Python package (PyPI package name: 405 
crosstalk-correction) available under the BSD 3-clause license. Each component of PathCORE-T can be used 406 
independently of each other (Fig. 1c).  407 

 408 
Here, we present analyses that can be produced by applying the full PathCORE-T pipeline to models 409 

created from a transcriptomic compendium by an unsupervised feature construction algorithm. Input pathway 410 
definitions are “overlap-corrected” for each feature before enrichment analysis. An overlap-corrected, weighted 411 
pathway co-occurrence network is built by connecting the pairs of pathways that are overrepresented in features 412 
of the model. Finally, we remove edges that cannot be distinguished from a null model of random associations 413 
based on the results of a permutation test. 414 
 415 
Case study: P. aeruginosa eADAGE models annotated with KEGG pathways 416 

We used PathCORE-T to create a network of co-occurring pathways out of the expression signatures 417 
extracted by eADAGE from a P. aeruginosa compendium [7]. For every feature, overlap correction was applied to 418 
the P. aeruginosa KEGG pathway annotations and overlap-corrected annotations were used in the 419 
overrepresentation analysis. PathCORE-T aggregates multiple networks by taking the union of the edges across all 420 
networks and summing the weights of common pathway-pathway connections. We do this to emphasize the co-421 
occurrence relationships that are more stable [34]—that is, the relationships that appear across multiple models. 422 
Finally, we removed edges in the aggregate network that were not significant after FDR correction when compared 423 
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to the background distributions generated from 10,000 permutations of the network. Used in this way, PathCORE-424 
T software allowed for exploratory analysis of an existing well-validated model. 425 
 426 

The eADAGE co-occurrence network that resulted from our exploratory analysis contained a number of 427 
pathway-pathway relationships that have been previously characterized by other means (Fig. 5). Three glucose 428 
catabolism processes co-occur in the network: glycolysis, pentose phosphate, and the Entner-Doudoroff pathway 429 
(Fig. 5a). We also found a cluster relating organophosphate and inorganic phosphate transport- and metabolism-430 
related processes (Fig. 5b). Notably, phosphate uptake and acquisition genes were directly connected to the hxc 431 
genes that encode a type II secretion system. Studies in P. aeruginosa clinical isolates demonstrated that the Hxc 432 
secretion system was responsible for the secretion of alkaline phosphatases, which are phosphate scavenging 433 
enzymes [35,36] and the phosphate binding DING protein [37]. Furthermore, alkaline phosphatases, DING and the 434 
hxc genes are regulated by the transcription factor PhoB which is most active in response to phosphate limitation. 435 
The identification of this relationship by PathCORE-T as a global pattern suggested the role of type II secretion and 436 
phosphate limitation seen in a limited number of isolates may be generalizable to broader P. aeruginosa biology. 437 
As shown in Fig. 5c, we also identified linkages between two pathways involved in the catabolism of sulfur-438 
containing molecules, taurine and methionine, and the general sulfur metabolism process. Other connections 439 
between pathways involved in the transport of iron (ferrienterobactin binding) [38] and zinc (the znu uptake 440 
system [39]) were identified (Fig. 5d). Interestingly, genes identified in the edge between the zinc transport and 441 
MacAB-TolC pathways included the pvd genes involved in pyoverdine biosynthesis and regulation, a putative 442 
periplasmic metal binding protein, as well as other components of an ABC transporter (genes PA2407, PA2408, and 443 
PA2409 at https://goo.gl/bfqOk8) [40]. PathCORE-T suggested a relationship between zinc and iron pathways in P. 444 
aeruginosa transcriptional data though such a relationship has not yet been described. Structural analysis of the 445 
iron-responsive regulator Fur found that it also productively binds zinc in E. coli and Bacillus subtilis providing a 446 
mechanism by which these pathways may be linked [41, 42]. 447 

 448 
The network constructed using the PathCORE-T framework had 203 edges between 89 pathways. For 449 

comparison, we constructed a KEGG pathway-pathway network where edges were drawn between pathways with 450 
significant gene overlap (FDR-corrected hypergeometric test < 0.05). The overlap-based network had 406 edges 451 
between 158 pathways. Only 35 of the edges in the PathCORE-T network were between pathways that shared 452 
genes, with an average Jaccard Index of only 0.035. The network constructed using PathCORE-T (with overlap-453 
correction applied by default) captured pathway co-occurrences not driven by shared genes between pathways. 454 
 455 
Case study: TCGA’s pan-cancer compendium analyzed by NMF with PID pathways 456 

PathCORE-T is not specific to a certain dataset, organism, or feature construction method. We 457 
constructed a 300-feature NMF model of TCGA pan-cancer gene expression data, which is comprised of 33 458 
different cancer-types from various organ sites and applied the PathCORE-T software to those features. We chose 459 
NMF because it has been used in previous studies to identify biologically relevant patterns in transcriptomic data 460 
[12] and by many studies to derive molecular subtypes [43–45]. The 300 NMF features were analyzed using 461 
overlap-corrected PID pathways, a collection of 196 human cell signaling pathways with a particular focus on 462 
processes relevant to cancer [11].  463 

 464 
PathCORE-T detected modules of co-occurring pathways that were consistent with our current 465 

understanding of cancer-related interactions (Fig. 6). Because cancer-relevant pathways were used, it was not 466 
surprising that cancer-relevant pathways appeared. However, the edges between those pathways were also 467 
encouraging. For example, a module composed of a FoxM1 transcription factor network, an E2F transcription 468 
factor network, Aurora B kinase signaling, ATR signaling, PLK1 signaling, and members of the Fanconi anemia DNA 469 
damage response pathway was densely connected (Fig 6a). The connections in this module recapitulated well 470 
known cancer hallmarks including cellular proliferation pathways and markers of genome instability, such as the 471 
activation of DNA damage response pathways [46]. We found that several pairwise pathway co-occurrences 472 
corresponded with previously reported pathway-pathway interactions [47–49]. We also observed a hub of 473 
pathways interacting with Wnt signaling, among them the regulation of nuclear Beta-catenin signaling, FGF 474 
signaling, and BMP signaling (Fig. 6b). The Wnt and BMP pathways are functionally integrated in biological 475 
processes that contribute to cancer progression [50]. Additionally, Wnt/Beta-catenin signaling is a well-studied 476 
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regulatory system, and the effects of mutations in Wnt pathway components on this system have been linked to 477 
tumorigenesis [51]. Wnt/Beta-catenin and FGF together influence the directional migration of cancer cell clusters 478 
[52].  479 
 480 

Two modules in the network related to angiogenesis, or the formation of new blood vessels (Fig. 6c, d). 481 
Tumors transmit signals that stimulate angiogenesis because a blood supply provides the necessary oxygen and 482 
nutrients for their growth and proliferation. One module relates angiogenesis factors to cell proliferation. This 483 
module connected the following pathways: PDGFR-beta signaling, FAK-mediated signaling events, VEGFR1 and 484 
VEGFR2-mediated signaling events, nuclear SMAD2/3 signaling regulation, and RB1 regulation (Fig. 6c). These 485 
functional connections are known to be involved in tumor proliferation [53–55]. The other module indicated a 486 
relationship by which the VEGF pathway interacts with the S1P3 pathway through Beta3 integrins (Fig. 6d). S1P3 is 487 
a known regulator of angiogenesis [56], and has been demonstrated to be associated with treatment-resistant 488 
breast cancer and poor survival [57]. Moreover, this interaction module has been observed to promote endothelial 489 
cell migration in human umbilical veins [58]. Taken together, this independent module may suggest a distinct 490 
angiogenesis process activated in more aggressive and metastatic tumors that is disrupted and regulated by 491 
alternative mechanisms [59].  492 

 493 
Finally, PathCORE-T revealed a large, densely connected module of immune related pathways (Fig. 6e). 494 

We found that this module contains many co-occurrence relationships that align with immune system processes. 495 
One such example is the well characterized interaction cycle formed by T-Cell Receptor (TCR) signaling in naïve 496 
CD4+ T cells and IL-12/IL-4 mediated signaling events [60–62]. At the same time, PathCORE-T identifies additional 497 
immune-related relationships. We observed a cycle between the three transcription factor networks: ATF-2, AP-1, 498 
and CaN-regulated NFAT-dependent transcription. These pathways can take on different, often opposing, 499 
functions depending on the tissue and subcellular context. For example, ATF-2 can be an oncogene in one context 500 
(e.g. melanoma) and a tumor suppressor in another (e.g. breast cancer) [63]. AP-1, comprised of Jun/Fos proteins, 501 
is associated with both tumorigenesis and tumor suppression due to its roles in cell survival, proliferation, and cell 502 
death [64]. Moreover, NFAT in complex with AP-1 regulates immune cell differentiation, but dysregulation of NFAT 503 
signaling can lead to malignant growth and tumor metastasis [65]. The functional association observed between 504 
the ATF-2, AP-1, and NFAT cycle together within the immunity module might suggest that dysregulation within this 505 
cycle has profound consequences for immune cell processes and may trigger variable oncogenic processes.  506 

 507 
Just as we did for the eADAGE-based P. aeruginosa KEGG pathways case study, we constructed a network 508 

only from PID pathways with significant gene overlap. The network constructed using PathCORE-T and NMF 509 
features had 119 edges between 57 pathways. The overlap-based network was much denser: it had 3826 edges 510 
between 196 pathways. This suggested a high degree of overlap between PID pathways. For the PathCORE-T NMF 511 
co-occurrence network, 96 of the edges were between pathways that shared genes. However, the average Jaccard 512 
Index for these pathway pairs remained low, at 0.058.  513 

 514 
Conclusions 515 
 516 

Unsupervised analyses of genome-scale datasets that summarize key patterns in the data have the 517 
potential to improve our understanding of how a biological system operates via complex interactions between 518 
molecular processes. Feature construction algorithms capture coordinated changes in the expression of many 519 
genes as features. The genes that contribute most to each feature co-vary. However, interpreting the features 520 
generated by unsupervised approaches remains challenging. PathCORE-T creates a network of globally co-521 
occurring pathways based on features created from the analysis of a compendium of gene expression data. 522 
Networks modeling the relationships between curated processes in a biological system offer a means for 523 
developing new hypotheses about which pathways influence each other and when. Our framework provides a 524 
data-driven characterization of the biological system at the pathway-level by identifying pairs of pathways that are 525 
overrepresented across many features. 526 

 527 
PathCORE-T connects the features extracted from data to curated resources. It is important to note that 528 

PathCORE-T will only be able to identify pathways that occur in features of the underlying model, which means 529 
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these pathways must be transcriptionally perturbed in at least some subset of the compendium. Models should be 530 
evaluated before analysis with PathCORE-T. The network resulting from PathCORE-T can help to identify global 531 
pathway-pathway relationships—a baseline network—that complements existing work to identify interactions 532 
between pathways in the context of a specific disease. The specific niche that PathCORE-T framework aims to fill is 533 
in revealing to researchers which gene sets are most closely related to each other in machine learning-based 534 
models of gene expression, which genes play a role in this co-occurrence, and which conditions drive this 535 
relationship.   536 
 537 
Project name: PathCORE-T 538 
Project home page: https://pathcore-demo.herokuapp.com 539 
Archived version: https://github.com/greenelab/PathCORE-T-analysis/releases/tag/v1.2.0 (links to download .zip 540 
and .tar.gz files are provided here) 541 
Operating system: Platform independent 542 
Programming language: Python 543 
Other requirements: Python 3 or higher 544 
License: BSD 3-clause 545 
 546 
Declarations 547 
Ethics approval and consent to participate 548 
Not applicable 549 
 550 
Consent for publication 551 
Not applicable 552 
 553 
Availability of data and materials 554 
Files for each of the PathCORE-T networks described in the results are provided in Supplementary material. 555 
 556 
Data sets 557 
P. aeruginosa eADAGE models: doi:10.5281/zenodo.583172 558 
 559 
P. aeruginosa gene expression compendium: doi:10.5281/zenodo.583694 560 
 The normalized gene expression compendium provided in this Zenodo record contains datasets on the 561 
GPL84 from ArrayExpress as of 31 July 2015. It includes 1,051 samples grown in 78 distinct medium conditions, 128 562 
distinct strains and isolates, and dozens of different environmental parameters [7]. Tan et al. compiled this dataset 563 
and used it to construct the 10 eADAGE models from which we generate the eADAGE-based P. aeruginosa KEGG 564 
network [7]. We use this same data compendium to generate the NMF P. aeruginosa model. The script used to 565 
download and process those datasets into the compendium is available at https://goo.gl/YjOEQl.  566 
 567 
TCGA pan-cancer dataset: doi:10.5281/zenodo.56735 568 
 The pan-cancer dataset was compiled using data from all 33 TCGA cohorts. It was generated by the TCGA 569 
Research Network: http://cancergenome.nih.gov/ [14]. RNA-seq data was downloaded on 8 March 2016 from 570 
UCSC Xena (https://xenabrowser.net/datapages/). Gene expression was measured using the Illumina HiSeq 571 
technology. More information and the latest version of the dataset can be found at 572 
https://xenabrowser.net/datapages/?dataset=TCGA.PANCAN.sampleMap/HiSeqV2&host=https://tcga.xenahubs.n573 
et. 574 
 575 
Source code  576 
PathCORE-T analysis: (https://github.com/greenelab/PathCORE-T-analysis/tree/v1.2.0) This repository contains all 577 
the scripts to reproduce the analyses described in this paper. The Python scripts here should be used as a starting 578 
point for new PathCORE-T analyses. Instructions for setting up a web application for a user’s specific PathCORE-T 579 
analysis are provided in this repository’s README. 580 
 581 
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Overlap correction: (https://github.com/kathyxchen/crosstalk-correction/tree/v1.0.4) Donato et. al’s procedure 582 
for overlap correction [10] is a pip-installable Python package ‘crosstalk-correction’ that is separate from, but listed 583 
as a dependency in, PathCORE-T. It is implemented using NumPy [31].  584 
 585 
PathCORE-T methods: (https://github.com/greenelab/PathCORE-T/tree/v1.0.2) The methods included in the 586 
PathCORE-T analysis workflow (Fig. 4c) are provided as a pip-installable Python package ‘pathcore’. It is 587 
implemented using Pandas [66], SciPy (specifically, scipy.stats) [67], StatsModels [68], and the crosstalk-correction 588 
package.  589 
 590 
PathCORE-T demo application: (https://github.com/kathyxchen/PathCORE-T-demo/tree/v2.1) The project home 591 
page, https://pathcore-demo.herokuapp.com provides links to 592 

(1) The web application for the eADAGE-based KEGG P. aeruginosa described in the first case study. 593 
(2) A view of the NMF-based PID pathway co-occurrence network described in the second case study. 594 
(3) A quick view page where users can temporarily load and visualize their own network file (generated from 595 

the PathCORE-T analysis). 596 
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 752 
Figure 1 The PathCORE-T software analysis workflow. 753 
(a) A user applies a feature construction algorithm to a transcriptomic dataset of genes-by-samples. The features 754 
constructed must preserve the genes in the dataset and assign weights to each of these genes according to some 755 
distribution. (b) Inputs required to run the complete PathCORE-T analysis workflow. The constructed features are 756 
stored in a weight matrix. Based on how gene weights are distributed in the constructed features, a user defines 757 
thresholds to select the set of genes most indicative of each feature’s function—we refer to these user-defined 758 
thresholds as gene signature rules. Finally, a list of pathway definitions will be used to interpret the features and 759 
build a pathway co-occurrence network. (c) Methods in the PathCORE-T analysis workflow (indicated using purple 760 
font) can be employed independently of each other so long as the necessary input(s) are provided. The 2 examples 761 
we describe to demonstrate PathCORE-T software use the following inputs: (1) the weight matrix and gene 762 
signature rules for eADAGE (applied to the P. aeruginosa gene compendium) and KEGG pathways and (2) the 763 
weight matrix and gene signature rules for NMF (applied to the TCGA pan-cancer dataset) and PID pathways. 764 
 765 
Figure 2 The approach implemented in PathCORE-T to construct a pathway co-occurrence network from an 766 
expression compendium. 767 
(a) A user-selected feature extraction method is applied to expression data. Such methods assign each gene a 768 
weight, according to some distribution, that represents the gene’s contribution to the feature. The set of genes 769 
that are considered highly representative of a feature’s function is referred to as a feature’s gene signature. The 770 
gene signature is user-defined and should be based on the weight distribution produced by the unsupervised 771 
method of choice. In the event that the weight distribution contains both positive and negative values, a user can 772 
specify criteria for both a positive and negative gene signature. A test of pathway enrichment is applied to identify 773 
corresponding sets of pathways from the gene signature(s) in a feature. We consider pathways significantly 774 
overrepresented in the same feature to co-occur. Pairwise co-occurrence relationships are used to build a 775 
network, where each edge is weighted by the number of features containing both pathways.  776 
(b) N permuted networks are generated to assess the statistical significance of a co-occurrence relation in the 777 
graph. Here, we show the construction of one such permuted network. Two invariants are maintained during a 778 
permutation: (1) pathway side-specificity (if applicable, e.g. positive and negative gene signatures) and (2) the 779 
number of distinct pathways in a feature’s gene signature. 780 
(c) For each edge observed in the co-occurrence network, we compare its weight against the weight distribution 781 
generated from N (default: 10,000) permutations of the network to determine each edge’s p-value. After 782 
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correcting the p-value by the number of edges observed in the graph using the Benjamini—Hochberg procedure, 783 
only an edge with an adjusted p-value below alpha (default: 0.05) is kept in the final co-occurrence network. 784 
 785 
Figure 3 Correcting for gene overlap results in a sparser pathway co-occurrence network.  786 
(a) The KEGG pathway annotations for the sulfonate transport system are a subset of those for sulfur metabolism. 787 
12 genes annotated to the sulfonate transport system are also annotated to sulfur metabolism. (b) Without 788 
applying the overlap correction procedure, 25 of the genes in the positive and negative gene signatures of the 789 
eADAGE feature “Node 11” are annotated to sulfur metabolism--of those, 8 genes are annotated to the sulfonate 790 
transport system as well. (c) All 8 of the overlapping genes are mapped to the sulfur metabolism pathway after 791 
overlap correction.  792 
(d) A co-occurrence network built without applying the overlap correction procedure will report co-occurrence 793 
between the sulfonate transport system and sulfur metabolism, whereas (e) no such relation is identified after 794 
overlap correction.  795 
 796 
Figure 4 A web application used to analyze pathway-pathway relationships in the eADAGE-based, P. aeruginosa 797 
KEGG network. 798 
(a) A user clicks on an edge (a pathway-pathway relationship) in the network visualization. (b) The user is directed 799 
to a page that displays expression data from the original transcriptomic dataset specific to the selected edge 800 
(https://goo.gl/Hs5A3e). The expression data is visualized as two heatmaps that indicate the fifteen most and 801 
fifteen least expressed samples corresponding to the edge. To select the “most” and “least” expressed samples, 802 
we assign each sample a summary “expression score.” The expression score is based on the expression values of 803 
the genes (limited to the top twenty genes with an odds ratio above 1) annotated to one or both of the pathways. 804 
Here, we show the heatmap of least expressed samples specific to the [Phosphate transport - Type II general 805 
secretion] relationship. (c) Clicking on a square in the heatmap directs a user to an experiment page 806 
(https://goo.gl/KYNhwB) based on the sample corresponding to that square. A user can use the experiment page 807 
to identify whether the expression values of genes specific to an edge and a selected sample differ from those 808 
recorded in other samples of the experiment. In this experiment page, the first three samples (labeled in black) are 809 
P. aeruginosa “baseline” replicates grown for 72 h in drop-flow biofilm reactors. The following three samples 810 
(labeled in blue) are P. aeruginosa grown for an additional 12 h (84 h total). Labels in blue indicate that the three 811 
84 h replicates are in the heatmap of least expressed samples displayed on the [Phosphate transport – Type II 812 
general secretion] edge page. 813 
 814 
Figure 5 eADAGE features constructed from publicly available P. aeruginosa expression data describe known KEGG 815 
pathway-pathway relationships. 816 
(a) The glycerolipid metabolism, Entner-Doudoroff, glycolysis/gluconeogenesis, and pentose phosphate, pathways 817 
share common functions related to glucose catabolism. 818 
(b) Organophosphate and inorganic phosphate transport- and metabolism-related processes frequently co-occur 819 
with bacterial secretion systems. Here, we observe pairwise relationships between type II general secretion and 820 
phosphate-related processes. 821 
(c) Pathways involved in the catabolism of sulfur-containing molecules--taurine (NitT/TauT family transport) and 822 
methionine (D-Methionine transport), and the general sulfur metabolism process--are functionally linked. 823 
(d) The zinc transport, iron complex transport, and MacAB-TolC transporter systems are pairwise connected.  824 
The fully labeled network can be viewed at https://pathcore-demo.herokuapp.com/PAO1. The list of KEGG 825 
pathway-pathway relationships visualized in the network is available at the specified link (Ctrl + L for list view) and 826 
as a supplemental file for this paper. 827 
 828 
Figure 6 PID pathway-pathway relationships discovered in NMF features constructed from the TCGA pan-cancer 829 
gene expression dataset. 830 
(a) Pathways in this module are responsible for cell cycle progression. 831 
(b) Wnt signaling interactions with nuclear Beta-catenin signaling, FGF signaling, and BMP signaling have all been 832 
linked to cancer progression. 833 
(c) Here, we observe functional links between pathways responsible for angiogenesis and those responsible for cell 834 
proliferation. 835 
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(d) The VEGF-VEGFR pathway interacts with the S1P3 pathway through Beta3 integrins. 836 
(e) This module contains many relationships related to immune system processes. The interaction cycle formed by 837 
T-Cell Receptor (TCR) signaling in naïve CD4+ T cells and IL-12/IL-4 mediated signaling events, outlined in yellow, is 838 
one well-known example. The cycle in blue is formed by the ATF2, NFAT, and AP1 pathways; pairwise co-839 
occurrence of these three transcription factor networks may suggest that dysregulation of any one of these 840 
pathways can trigger variable oncogenic processes in the immune system. 841 
The list of PID pathway-pathway relationships visualized in the network is available as a supplemental file for this 842 
paper. 843 
 844 
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