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Abstract 

During economic decisions, neurons in orbitofrontal cortex (OFC) encode the values of offered 
and chosen goods. Importantly, their responses adapt to the range of values available in any 
given context. A fundamental and open question is whether range adaptation is behaviorally 
advantageous. Here we develop a theoretical framework to assess optimal coding for economic 
decisions and we examine the activity of offer value cells in non-human primates. We show that 
firing rates are quasi-linear functions of the offered values. Furthermore, we demonstrate that if 
response functions are linear, range adaptation maximizes the expected payoff. This is true even 
if adaptation is corrected to avoid choice biases. Finally, we show that neuronal responses are 
quasi-linear even when optimal tuning functions would be highly non-linear. Thus value coding 
in OFC is functionally rigid (linear responses) but parametrically plastic (range adaptation with 
optimal gain). While generally suboptimal, linear response functions may facilitate transitive 
choices. 
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Introduction 

The relation between optimal coding and neuronal adaptation has often been examined in 
sensory systems1-3. One emerging concept is that some aspects of sensory coding are plastic and 
optimally adapting to the current behavioral context4-10 while other aspects are optimized for the 
distribution of natural stimuli and thus presumably rigid4,11,12. Importantly, uncorrected 
adaptation makes firing rates intrinsically ambiguous (coding catastrophe)13,14. Thus neuronal 
adaptation at any processing stage must be corrected at later stages15 or ultimately results in 
impaired behavioral performance16,17. Here we examined the relation between optimal coding 
and neuronal adaptation in the neural circuit underlying economic decisions. This circuit presents 
interesting analogies and notable differences with sensory systems. 

Choosing between two goods entails computing and comparing their subjective values. Evidence 
from lesions and neurophysiology indicates that these mental operations engage the OFC18-20. 
Experiments in which rhesus monkeys chose between different juices identified three groups of 
neurons in this area. Offer value cells encode the values of individual goods and are thought to 
provide the primary input to the decision. Conversely, chosen juice cells and chosen value cells 
represent the binary choice outcome and the value of the chosen good21,22. Here we focus on 
offer value cells. Because they constitute the input layer of the decision circuit, these neurons are 
in some ways analogous to sensory cells. However, the behavioral goal subserved by offer value 
cells differs from that subserved by neurons in sensory systems. For the purpose of accurate 
perception, sensory neurons are optimally tuned if they transmit maximal information about the 
external world1-3. This goal is achieved if tuning functions match the cumulative distribution of 
the encoded stimuli2,7. In contrast, the purpose of a subject performing economic decisions is to 
maximize the payoff (i.e., the chosen value). Thus offer value cells are optimally tuned if they 
ensure maximal expected payoff. 

As in sensory neurons, the issue of optimal tuning in offer value cells is intertwined with that of 
neuronal adaptation. Previous work indicated that offer value cells have linear responses and 
undergo range adaptation21,23. In other words, their tuning slope is inversely proportional to the 
range of values offered in any behavioral context23-25. Prima facie, a range adapting 
representation seems computationally efficient. However, it was shown that uncorrected 
adaptation in offer value cells would result in arbitrary choice biases26 conceptually analogous to 
the coding catastrophe discussed for sensory systems14. Thus it remains unclear whether range 
adaptation is behaviorally advantageous. 

Here we present a series of theoretical analyses and experimental results shedding new light on 
the nature of value coding and the role played by neuronal adaptation in economic decisions. 
Behavioral and neuronal data were collected in two experiments in which monkeys chose 
between different juices offered in variable amounts. First, we show that offer value tuning 
functions are quasi-linear and do not match the cumulative distributions of offered values. 
Second, we show that range adaptation is corrected within the decision circuit to avoid choice 
biases. Third, we develop a theory of optimal coding for economic decisions. We thus 
demonstrate that range adaptation, corrected to avoid choice biases, ensures maximal expected 
payoff. Fourth, confirming theoretical predictions, we show that payoff and value range are 
inversely related in the experiments. Fifth, we demonstrate that linear response functions were in 
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fact suboptimal in our experiments. Hence, linearity is a rigid property of value coding not 
subject to contextual adaptation. 

Results 

Relative value, choice variability and expected payoff 

In Exp.1, monkeys chose between two juices (A and B, with A preferred) offered in variable 
amounts (Fig.1ab). The range of quantities offered for each juice remained fixed within a 
session, while the quantity offered on any given trial varied pseudo-randomly. Monkeys' choices 
generally presented a quality-quantity trade-off. If the two juices were offered in equal amounts, 
the animal would generally choose A (by definition). However, if sufficiently large quantities of 
juice B were offered against one drop of juice A, the animal would choose B. The "choice 
pattern" was defined as the percentage of trials in which the animal chose juice B as a function of 
the offer type. In each session, the choice pattern was fitted with a sigmoid function, and the flex 
of the sigmoid provided a measure for the relative value of the two juices, referred to as ρ (see 
Methods). The relative value allows to express quantities of the two juices on a common value 
scale. In one representative session, we measured ρ = 4.1 (Fig.1b). 

Choice patterns often presented some variability. For example, consider in Fig.1b offers 6B:1A. 
In most trials, the animal chose juice B, consistent with the fact that the value of 6B was higher 
than the value of 1A. However, in some trials, the animal chose the option with the lower value. 
Similarly, in some trials, the animal chose 3B over 1A. In each session, the width of the fitted 
sigmoid, referred to as σ, quantified choice variability (Methods). 

In any given trial, we define the payoff as the value chosen by the animal. Thus given a set of 
offers and a sigmoid function, the expected payoff is equal to the chosen value averaged across 
trials. Importantly, the expected payoff is inversely related to choice variability, and thus 
inversely related to the sigmoid width. When the sigmoid is steeper, choice variability is lower, 
and the expected payoff is higher; when the sigmoid is shallower, choice variability is higher, 
and the expected payoff is lower. Notably, the relative value of two juices is entirely subjective. 
In contrast, a key aspect of the expected payoff is objective: Given a set of offers, a relative value 
and two sigmoid functions, the steeper sigmoid yields higher expected payoff. 

Quasi-linear coding of offer values 

While animals performed the task, we recorded the activity of individual neurons in the central 
OFC. Firing rates were analyzed in multiple time windows. In each session, an "offer type" was 
defined by a pair of offers (e.g., [1A:3B]); a "trial type" was defined by an offer type and a 
choice (e.g., [1A:3B, B]); a "neuronal response" was defined as the activity of one cell in one 
time window as a function of the trial type. Earlier analyses showed that different responses 
encoded variables offer value, chosen value and chosen juice21,22. Unless otherwise indicated, the 
present analyses focus on offer value responses. 

Previous work failed to emphasize that the tuning of offer value cells was quasi-linear even 
though the distribution of values was highly non-uniform. To illustrate this point, we identified 
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for each offer value response the quantity levels for the corresponding juice, and we calculated 
the number of trials in which each quantity level had been presented to the animal within the 
session. For example, Fig.1c illustrates one offer value A response. In this session, juice A was 
offered in quantity levels (number of trials): 0 (39), 1 (169), 2 (19) and 3 (20). For each set of 
trials, we computed the mean firing rate of the cell. In addition, we computed the cumulative 
distribution function for the number of trials (ntrialsCDF) as a function of the quantity level. By 
analogy with sensory systems2, neurons encoding ntrialsCDF would provide maximal information 
about the offer values. Notably, firing rates and ntrialsCDF were highly correlated. For both of 
them, a linear regression on the quantity level provided a reasonably good fit (Fig.1d). However, 
the non-uniform distribution of trials induced a curvature in ntrialsCDF. Similarly, each neuronal 
response taken alone always presented some curvature. To assess whether and how the curvature 
in neuronal responses was related to the curvature in ntrialsCDF, we normalized both firing rates 
and ntrialsCDF (Methods). We thus fit each set of data points with a 2D polynomial, which 
provided a coefficient for the quadratic term (β2). Separately, we fit each set of data points with a 
3D polynomial, which provided a coefficient for the cubic term (β3; Fig.1e; see also Fig.1f-h).  

Because trials at lower quantity levels were over-represented in the experiments, we generally 
measured β2, ntrialsCDF<0 and β3, ntrialsCDF>0. In contrast, β2, firing rate and β3, firing rate varied broadly 
across the population, and their distributions were fairly symmetric around zero (Fig.2). In other 
words, neuronal response functions were, on average, quasi-linear. These results held true for 
individual monkeys, in each time window, and independently of the sign of the encoding 
(Fig.S1). Similar results were also obtained for chosen value responses (Fig.S2). 

Range adaptation is corrected within the decision circuit 

As previously shown, offer value cells undergo range adaptation (Fig.S3)23. Linear tuning 
implies that any given value interval is allotted the same activity interval in the neuronal 
representation. Range adaptation ensures that the full activity range is always available to 
represent the range of values offered in the current context. Thus range adaptation seems to 
provide an efficient representation for offer values. However, range adaptation also poses a 
computational puzzle26 illustrated in Fig.3ab. In essence, current models assume that binary 
decisions are made by comparing the firing rates of two neuronal populations encoding the 
subjective values of the offered goods27-31. If so, by varying the ranges of the two offers one 
could impose any indifference point (an arbitrary choice bias). 

Exp.2 was conducted to test this prediction in controlled conditions. In each session, monkeys 
chose between two juices. Trials were divided in two blocks. Across blocks, we either halved or 
doubled the range of one of the two juices (2x2 design). For each trial block, QA and QB indicate 
the maximum quantities of juices A and B offered, respectively. Thus independently of other 
factors, the ratio QA/QB changed by a factor of two between blocks (QA/QB = X or 2X). The 
experimental design controlled for juice-specific satiety and other possible sources of choice bias 
(see Methods).  

We collected behavioral data in 220 sessions. In each session and each trial block, we measured 
the relative value of the juices. We then compared the measures obtained in the two trial blocks. 
According to the argument in Fig.3ab, the relative value measured when QA/QB = X should be 
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roughly twice that measured when QA/QB = 2X. Contrary to this prediction, the relative values 
measured in the two trial blocks were generally similar (Fig.3c). Pooling all sessions, the ratio of 
relative values measured for the two trial blocks was statistically indistinguishable from 1 (mean 
ratio = 1.006; p=0.81, Wilcoxon signed rank test) and significantly below 2 (p<10-37, Wilcoxon 
signed rank test). These results held true for each animal.  

Range adaptation maximizes the expected payoff 

Exp.2 indicated that range adaptation is corrected within the decision circuit. We previously 
proposed a possible scheme for this correction. In essence, choice biases are avoided if the 
synaptic efficacies between offer value cells and downstream neuronal populations are rescaled 
by the value ranges26,31. However, if this correction occurs, it is reasonable to question whether 
range adaptation benefits the decision process at all. The central result of this study is that range 
adaptation in offer value cells maximizes the expected payoff, even if adaptation is corrected 
within the decision circuit. The theoretical argument is summarized here and detailed in the 
Supplementary Material, where we provide mathematical proofs.  

Consider the general problem of choices between two goods, A and B. We indicate the quantities 
of A and B offered on a particular trial with qA and qB. Across trials, qA varies in the range [0, 
QA], while qB varies in the range [0, QB]. We assume linear indifference curves (Fig.4a) and 
indicate the relative value with ρ. Choices can be described by a sigmoid surface (Fig.4b). For 
each pair of offers, one of the two options provides a higher payoff, but in some trials the animal 
fails to choose that option (choice variability). Intuitively, this may happen because the neural 
decision circuit has a finite number of neurons, limited firing rates, trial-by-trial variability in the 
activity of each cell, and non-zero noise correlations. 

Fig.4c illustrates the issue of interest. We assume that neuronal response functions are linear. 
Actual neurons always have a baseline firing rate (corresponding to a zero offer), but we assume 
that this activity does not contribute to the decision. Thus we focus on baseline-subtracted 
response functions. Let us consider a hypothetical scenario in which there is no adaptation. If so, 
neurons would have fixed tuning, corresponding to a linear response function defined on a very 
large value range. In contexts where the encoded good varies on a smaller range, neuronal firing 
rates would span only a subset of their potential activity range. In contrast, if neurons undergo 
complete range adaptation, firing rates span the full activity range in each behavioral context.  

To understand how range adaptation in offer value cells affects the expected payoff, it is 
necessary to consider a specific decision model. That is, the question must be addressed under 
some hypothesis of how the activity of offer value cells is transformed into a decision. We 
examined the linear decision model32,33 formulated as follows:  

        (1) 
niBAgrwKX

XXD
g

i
g
iig

g

BA

...1, 



where  is the firing rate of an offer value g cell,  are decision weights, n is the number of 

cells associated with each juice, and is the synaptic efficacy of offer value g cells onto 

g
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g
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downstream populations. Conditions and 0D 0D  correspond to choices of goods A and B, 
respectively.  

We model the firing rates of offer value cells as Poisson variables and we approximate noise 
correlations with their mean long-distance component32. In accord with experimental measures, 
we set the noise correlation to 01.0  for pairs of neurons associated with the same good, and 
to zero for pairs of neurons associated with different goods32. Importantly,   does not depend on 
firing rates (Fig.S4). We thus compute the probability of choosing juice A given offers 

, tuning slopes  and synaptic efficacies ),( BA qqq  ),( BA ttt )B,( A KKK  : 
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where  is the standard normal distribution and )1,0(N 4 .   

Eq.2, allows to calculate the expected payoff. Indicating with   the maximum possible firing 
rate, we demonstrate that the expected payoff is maximal when gg Qt  . This condition 

corresponds to complete range adaptation (Fig.4c). In the symmetric case, defined by ρ QA = QB 
(equal value ranges), the expected payoff is maximal when BA KK   and there is no choice bias. 
In the asymmetric case, (unequal value ranges), there is a small choice bias that depends on   
and favors the larger value range. 

Notably, Eq.2 expresses the sigmoid surface describing choices. By computing the slope of this 
surface on the indifference line, we show that under optimal coding the sigmoid width is directly 
related to the value ranges (see Supplementary Material, Eq.28).  

Relation between choice variability and value range 

The previous section summarizes a theory of optimal coding of offer values for economic 
decisions. The main prediction for linear response functions is that the slope of the encoding 
should be inversely proportional to the value range, as indeed observed in the experiments (range 
adaptation; Fig.S3de). The theory also makes another testable prediction. Consider experiments 
in which monkeys choose between two juices and value ranges vary from session to session. The 
sigmoid width should increase as a function of the value ranges. To test this prediction, we 
examined 164 sessions from Exp.1. For each session, we computed the geometric mean value 
range Δ ≡ (ρ QA QB)1/2, and we obtained a measure for the sigmoid width (σ) from the sigmoid 
fit. We thus examined the relation between σ and Δ.  

Fig.5ab illustrates the fitted sigmoid obtained for each experimental session in our data set, 
separately for monkeys V and L. For each animal, sigmoid functions were aligned at the flex and 
ranked according to Δ. Notably, sigmoid functions with large Δ were generally shallower (large 
σ), while sigmoid functions with small Δ were generally steeper (small σ). In other words, there 
was a positive correlation between σ and Δ. This correlation, summarized in a scatter plot 
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(Fig.6), was statistically significant in each animal (monkey V: corr coef = 0.63, p<10-8; monkey 
L: corr coef = 0.39, p<10-3). An analysis of the inverse temperature confirmed this finding 
(Fig.S5). Similar results were also obtained for data from Exp.2 (Fig.S6).  

Neuronal responses are functionally rigid 

We have shown that range adaptation maximizes the expected payoff under the assumption of 
linear response functions. Next we address a closely related question, namely whether (or in 
what sense) linear response functions are optimal in the first place. In the visual system, optimal 
coding is achieved if tuning functions match the cumulative distribution of the encoded 
stimuli2,7. In the valuation system, the equivalent condition would occur if offer value responses 
matched the cumulative distribution of offered values. We already showed that this is not the 
case (Fig.2). In retrospect, this finding is not surprising because a subject performing economic 
decisions is best served by response functions that maximize the expected payoff, which do not 
necessarily maximize information transmission. Thus what is the optimal response function for 
offer value cells? 

The answer to this question depends on the joint distribution of offers and on the relative value 
of the two goods. For example, consider the case in which an animal chooses between goods A 
and B and ρ = 2. Good A is always offered in quantity 1, while good B is offered in quantities 
between 0 and 5 (Fig.7a). We consider offer value B cells and we indicate with rB their firing 
rate. It is easy to see that the payoff is maximal if rB(x) = 0 when x<2, rB(2) = 0.5, and rB(x) = 1 
when x>2, where x are quantities of juice B offered. Hence, the optimal response function is a 
step function with the step located at x = 2. Next consider the case in which quantities of both 
goods vary between 0 and 5, at least one of the two goods is always offered in quantity 1, and ρ 
= 2 (Fig.7b). Again, the optimal response function for offer value B cells is rB(x) = 0 when x<2, 
rB(2) = 0.5, and rB(x) = 1 when x>2. For offer value A cells, the optimal response function is 
rA(0) = 0, rA(1) = 0.5, and rA(x) = 1 when x>1. Thus for both goods, the optimal response 
function is a step function. Analogously, if offer types are the same but ρ = 3 (Fig.7c), the 
optimal response function for offer value B cells is a step function with the step located at x = 3. 

The scenarios depicted in Fig.7bc are similar to those occurring in Exp.1. Indeed our sessions 
always included forced choices for both juices. Furthermore, in 96% (200/208) of our sessions, 
when both juices were offered, at least one of them was offered in quantity 1 (Fig.S7). Thus in 
Exp.1, optimal response functions for offer value cells would have been step functions, not linear 
functions. Our neuronal data clearly belied this prediction (Fig.2). In other words, our results 
indicate that the functional form of offer value cells did not adapt to maximize the payoff in each 
session. To further examine this point, we ran two additional analyses.  

First, we entertained the hypothesis that the functional form of offer value cells might adapt on a 
longer time scale, over many sessions. However, we found that the mean optimal response 
function was a fairly sharp sigmoid (Fig.7d), contrary to our observations (Fig.2). Second and 
most important, we recognized that neuronal responses examined in Fig.2 were originally 
identified through a variable selection analysis that only considered linear response functions21 
(Methods). This effectively imposed a bias in favor of linearity. To eliminate this bias, we 
repeated the variable selection procedures including in the analysis all the variables discussed in 
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this study. These included the cumulative distribution function for the number of trials 
(ntrialsCDF), the optimal responses in each session (step functions) and the mean optimal 
response function across sessions (Methods). The results confirmed previous findings: variables 
offer value, chosen value and chosen juice still provided the highest explanatory power. In 
particular, the explanatory power of linear offer value variables was significantly higher than that 
of each of the new variables (Table S1).  

In the final analysis of this section, we considered whether the response functions observed 
experimentally would maximize the expected payoff for other possible joint distributions of 
offers. One interesting candidate was the symmetric uniform distribution (Fig.7e). We calculated 
the optimal response functions given this distribution (ORFuniform) and we found that they are 
quasi-linear and slightly convex. Notably, this non-linearity is in the same direction observed in 
Fig.2a (histogram). We then repeated the variable selection analysis including variables based on 
ORFuniform. Interestingly, neuronal responses best explained by ORFuniform variables were more 
numerous than those best explained by linear offer value variables (Fig.8). As in previous 
studies, we used two procedures for variable selection, namely stepwise and best-subset 
(Methods). Both procedures identified variables offer A ORFuniform, offer B ORFuniform, chosen 
value and chosen juice as providing the maximum explanatory power (Fig.9). However, a post-
hoc analysis indicated that the explanatory power of ORFuniform variables was statistically 
indistinguishable from that of linear offer value variables (Table S2).  

In conclusion, the variable selection analyses confirmed that offer value responses were quasi-
linear and thus suboptimal given the joint distributions of offers in our experiments. 
Furthermore, offer value responses were indistinguishable from optimal responses functions 
calculated assuming a uniform joint distribution of offers. Below we elaborate on the 
significance of this finding. 

The cost of rigidity and the benefit of adaptation 

The tuning of offer value cells is functionally rigid (quasi-linear) but parametrically plastic 
(range adapting with optimal gain). In terms of the expected payoff, functional rigidity ultimately 
imposes some cost, while range adaptation ultimately yields some benefit. We sought to quantify 
these two terms in our experiments.  

For each session of Exp.1, we focused on strictly binary choices (i.e., we excluded forced 
choices). Based on the relative value of the juices (ρ), we computed for each trial the chosen 
value (i.e., the payoff) and the max value, defined as the higher of the two values offered in that 
trial. We also defined the chosen valuechance as the chosen value expected if the animal chose 
randomly between the two offers. Hence, chosen valuechance = (offer value A + offer value B)/2. 
For each session we defined the fractional lost value (FLV) as: 

  
chancevaluechosenvaluemax

valuechosenvaluemax
valuelostfractional




FLV   (3) 

where brackets indicate an average across trials. Under normal circumstances, FLV varies 
between 0 and 1. Specifically, FLV = 0 if the animal always chooses the higher value (chosen 
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value = max value) and FLV = 1 if the animal always chooses randomly (chosen value = chosen 
valuechance). Thus FLV quantifies the fraction of value lost to choice variability. For each session, 
we also computed the percent error, defined as the percent of trials in which the animal chose 
the lower value. We thus examined these metrics across sessions.  

The percent error varied substantially from session to session, between 0% and 23% (Fig.S8a). 
On average across sessions, mean(percent error) = 8.6%. The FLV also varied substantially 
across sessions, between 0 and 0.24 (Fig.S8b). On average across sessions, mean(FLV) = 0.05. 
Importantly, this estimate provides an upper bound for the value lost by the animal due to 
suboptimal tuning functions. It is an upper bound because other factors might also contribute to 
choice variability. Hence, the cost of functional rigidity in the coding of offer values may be 
quantified as ≤ 0.05. 

Since we cannot observe decisions in the absence of neuronal adaptation, quantifying the 
benefits of range adaptation requires a simulation. We proceeded as follows. For each session 
and for each trial, the sigmoid fit provided the probability that the animal would choose juice B 
(Pch=B; see Eq.4) or juice A (Pch=A = 1 - Pch=B). Thus in each trial the expected chosen value was: 

  E(chosen value) = Pch=A offer value A + Pch=B offer value B 

For each session, we computed the expected fractional lost value (EFLV) by substituting the 
E(chosen value) for the chosen value in Eq.3. Importantly, we verified that EFLV provided a 
good estimate for the actual FLV (Fig.S8c). 

To address the question of interest, we reasoned along the lines of Fig.4c, where the absence of 
adaptation is approximated with a scenario in which neurons adapt to a very large value range. 
We already showed that increasing the value range increases the sigmoid width (Fig.6) or, 
equivalently, that it decreases the inverse temperature (a1 in Eq.4; Fig.S5). Thus we examined 
how reducing the inverse temperature would affect the EFLV. We found that the effects were 
large. For example, when we halved the inverse temperature (a1 → a1/2), we obtained 
mean(EFLV) = 0.14; when we divided the inverse temperature by ten (a1 → a1/10), we obtained 
mean(EFLV) = 0.52. Hence, the benefit of range adaptation, while difficult to quantify exactly, 
is clearly very high.  

To summarize, the cost of functional rigidity is rather small compared to the benefit of range 
adaptation. Our analyses suggest that a quasi-linear, but range adapting encoding of offer values 
is sufficient to ensure close-to-optimal behavior. 

Discussion 

Sensory neurons are optimally tuned for perception if they transmit maximal information about 
the stimuli. In contrast, offer value neurons are optimally tuned for economic decisions if they 
ensure maximal expected payoff. In this framework, we examined the activity of offer value cells 
in OFC. These neurons are believed to provide the primary input for economic decisions. We 
showed that their tuning is functionally rigid (linear responses) but parametrically plastic (range 
adaptation with optimal gain). We also showed that range adaptation is corrected within the 
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decision circuit to avoid arbitrary choice biases. Critically, range adaptation ensures optimal 
tuning even considering this correction. Confirming the theoretical predictions, we showed that 
choice variability is directly related to the range of values offered in any behavioral context. 
Finally, we showed that the benefits of range adaptation are large compared to the costs of 
functional rigidity. Importantly, our theoretical results were derived using a linear decision 
model (Eq.1)32,33. Future work should extend this analysis to other decision models27,29,31.  

Based on the present results, we cannot confirm whether offer value responses are strictly linear 
or slightly convex as predicted for optimal response functions under a uniform joint distribution. 
Thus future work should address this point and consider other joint distributions that might 
explain neuronal responses in OFC. Nonetheless, the quasi-linear nature of value coding in OFC 
is noteworthy. We previously showed that the activity of neurons associated to one good does 
not depend on the identity or value of the other good offered in the same trial34. With respect to 
range adaptation, we also showed that each neuron adapts to its own value range, independently 
of the range of values offered for the other good26. One implication of linear responses (or 
optimal response functions under a uniform joint distribution) is that the activity of neurons 
associated with one particular good does not depend on the distribution of values offered for the 
other good, or on the relative value of the two goods. Thus quasi-linearity can be seen as yet 
another way in which neurons associated with one particular good are blind to every aspect of 
the other good. This blindness, termed menu invariance, guarantees preference transitivity35,36, 
which is a fundamental trait of economic behavior. It is tempting to speculate that quasi-linear 
coding might have been selected in the course of evolution to facilitate transitive choices. 

Adaptive coding has been observed in numerous areas that represent value-related variables 
including the amygdala37, anterior cingulate cortex38 and dopamine cells39-41. Independently of 
the specific contribution of each area to behavior, adaptation necessarily poses computational 
challenges analogous to the coding catastrophe discussed in sensory systems14,26. With respect to 
offer value cells in OFC, we previously proposed that choice biases potentially introduced by 
range adaptation are corrected in the synapses between these neurons and downstream 
populations26,31. The theory of optimal coding developed here makes this same prediction, which 
should be tested in future experiments. Interestingly, framing42,43 and anchoring44 effects 
documented in behavioral economics qualitatively resemble adaptation-driven choice biases, 
although they are quantitatively more modest. In principle, these effects could be explained if 
synaptic rescaling trailed neuronal range adaptation. Similar mechanisms have been 
hypothesized in the visual system to explain illusions and aftereffects14,17.  

The rationale for this study rests on the assumption that offer value cells in OFC provide the 
primary input for the neural circuit that generates economic decisions. Support for this 
assumption comes from lesion studies45-47, from the joint analysis of choice probability and noise 
correlation32 and from the relation between choice variability and value range shown here. 
Indeed, current neuro-computational models of economic decisions embrace this view28,31,48-50. 
However, we note that causal links between the activity of offer value cells and the decision have 
not yet been demonstrated with the gold-standard approach of biasing choices using electrical or 
optical stimulation. Future work should fill this important gap. 
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Methods 

Experimental procedures 

All experimental procedures conformed to the NIH Guide for the Care and Use of Laboratory 
Animals and were approved by the Institutional Animal Care and Use Committees at Harvard 
University (Exp.1) and Washington University in St Louis (Exp.2). No subject randomization or 
blinding during data analysis was used. 

The procedures for Exp.1 have been previously described21. Briefly, one male (V, 9.5 kg) and 
one female (L, 6.5 kg) rhesus monkey participated in the experiment. Animals sat in an 
electrically insulated enclosure with the head restrained, and a computer monitor was placed in 
front of them at 57 cm distance. In each session, the monkey chose between two juices, labeled 
A and B, with A preferred. The range of quantities offered for each juice remained fixed within a 
session, while the quantity offered on any given trial varied pseudo-randomly. Across sessions, 
we used various quantity ranges for the two juices. The minimum quantity was always zero 
drops (forced choice for the other juice), while the maximum quantity varied from session to 
session between 2 and 10 drops. At the beginning of each trial, the animal fixated a center 
position on the monitor (Fig.1a). After 0.5 s, two sets of colored squares appeared on the two 
sides of the center fixation. The two sets of squares represented the two offers, with the color 
associated with a particular juice type and the number of squares indicating the juice quantity. 
The animal maintained center fixation for a randomly variable delay (1-2 s), at the end of which 
the center fixation point was extinguished (go signal). The animal revealed its choice by making 
a saccade towards one of two targets located by the offers, and maintained peripheral fixation for 
an additional 0.75 s before the chosen juice was delivered. While animals performed in the task, 
we recorded the activity of individual neurons from the central OFC (see below). 

In Exp.2, animals performed essentially the same task, except that sessions were divided into two 
blocks of trials. One male (B, 9.0 kg) and one female (L, 6.5 kg) rhesus monkey participated in 
the experiment. The task was controlled through custom-written software based on Matlab 
(MathWorks)51,52 and gaze direction was monitored with an infrared video camera (Eyelink, SR 
research). The trial structure was the same as Exp.1, except that the initial fixation lasted 1.5 s. 
Each session included two trial blocks. The minimum offered quantity for each juice was always 
set to zero (forced choice for the other juice). The maximum quantity (and thus the range) varied 
from session to session and from block to block. In the second block, we either halved or 
doubled the range for one juice (A or B) while keeping the other range unchanged. This 
procedure resulted in a 2x2 design. Each block included 110-260 trials. In each block, an "offer 
type" was defined by a pair of offers (e.g., [1A:3B]); a "trial type" was defined by an offer type 
and a choice (e.g., [1A:3B, B]). The relative value of the two juices was computed from the 
indifference point (see below). 

In principle, changes in relative value could arise from factors other than the value range. Exp.2 
was designed to minimize three potential sources of choice bias. First, in previous work, we 
often noted that the relative value of any two juices tends to increase over the course of each day, 
presumably because animals become less thirsty. To deconfound changes in relative value due to 
changes in value range from this effect, we alternated sessions in which we increased or 
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decreased the range of either juice A or juice B. The number of sessions for each of the 4 
possible combinations was not-predetermined with a statistical method but was comparable (ΔA 
→ 2ΔA, 61 sessions; ΔB → 2ΔB, 62 sessions; 2ΔA → ΔA, 49 sessions; 2ΔB → ΔB, 48 
sessions). Second, within each trial block, monkeys might experience juice-specific satiety or 
diminishing marginal returns. Thus to isolate the behavioral effects of manipulating the value 
range, we ensured that in both trial blocks the animal drank the same relative amounts of the two 
juices. For example, if the animal drank juice A and juice B in quantity ratio 3:2 in the first 
block, we kept the same ratio 3:2 in the second block (see below). Third, we previously found 
that, all other things equal, monkeys tend to choose on any given trial the same juice they chose 
in the previous trial (choice hysteresis)22. If the relative number of trials in which the animal 
chooses a particular juice varies from one block to the other, choice hysteresis could introduce a 
systematic bias. To avoid this confound, we ensured that the (relative) number of choices was the 
same in the two trial blocks.  

The relative number of choices and the relative amount drunk by the animal for each juice were 
controlled by adjusting the frequency with which each offer type was presented. Specifically, 
offers were presented pseudo-randomly in mini-blocks of 20-30 trials. To fine-tune the balance 
between juice A and B, we kept track of the monkey's choices online. If the choice ratio or the 
relative amount of juice changed in the second block, the imbalance was corrected by adding 
forced choices of one of the two juices. 

Analysis of behavioral data 

Monkeys' choices generally presented a quality-quantity trade-off. If the two juices were offered 
in equal amounts, the animal would generally choose A (by definition). However, if sufficiently 
large quantities of juice B were offered against one drop of juice A, the animal would choose B. 
Choices were analyzed separately in each session (Exp.1) or in each trial block (Exp.2). The 
"choice pattern" was defined as the percentage of trials in which the animal chose juice B as a 
function of the log quantity ratio log(qB/qA), where qA and qB indicate the quantities of juices A 
and B. Each choice pattern was fitted with a sigmoid function (logistic regression): 
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The fitted parameters a0 and a1 captured the flex and the width of the sigmoid. We derived 
measures for the relative value ρ and the width of the sigmoid σ as follows: 
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Parameter a1 is referred to as "inverse temperature". The expected payoff is directly related to a1 
and inversely related to the sigmoid width σ. In some simulations, we reduced the inverse 
temperature (e.g., a1 → a1/10) while keeping the relative value constant (a0/a1 → a0/a1).  
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In Exp.1, the minimum quantity offered for each juice was always 0, and we indicate maximum 
quantities with QA and QB. We usually set QA and QB to approximately satisfy ρ QA = QB 
(symmetric condition). However, this relation did not hold strictly, partly because the relative 
value ρ was determined by the animal and fluctuated from session to session. To test the 
theoretical prediction, we thus computed the geometric mean value range Δ ≡ (ρ QA QB)1/2 and 
we examined the relation between σ and Δ. Since errors of measure affected both measures, 
standard regressions could not be used. We thus used Deming's regressions53. Variance ratios   
were computed through error propagation as follows: 
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where  , , 0a  and 1a  are errors on the respective measures, and 0a  and 1a  are obtained 

as standard errors from the logistic regressions. 

The relation between σ and Δ was also analyzed using alternative definitions for Δ including the 
simple mean Δ ≡ (ρ QA + QB)/2 and the log geometric mean Δ ≡ log(ρ QA QB)/2, adjusting 
variance ratios accordingly. All variants of the analysis provided very similar results.  

Importantly, Δ in Fig.6ab is expressed in value units of juice B and the figure pools data from 
different sessions. However, the subjective value of a unit quantity of juice B (uB) likely differs 
from session to session, and thus pooling data must be done with caution. To formalize this 
point, imagine there was a good G such that the subjective value of a unit quantity of G (uG) 
remains fixed across sessions. We could express uBs = cs uG, where s indicates the session, and 
cs is a proportionality factor. In building each panel of Fig.6, we essentially ignored the fact that 
cs may vary from session to session. More precisely, we assumed that variations in the sigmoid 
width (σ) are independent of variations in cs. This assumption seems fairly conservative. If 
anything, one might expect that when cs is smaller, the monkey is less motivated to work, and 
thus σ increases. If so, variability in cs would induce a correlation in the direction opposite to that 
observed in the data. 

Notably, Exp.1 included 208 sessions. However, in some cases the choice patterns were 
saturated (i.e., the animal did not split decisions for any offer type, a situation referred to as 
"perfect separation"). In these cases, the sigmoid fit did not provide a reliable measure for σ. 
Thus the analysis shown in Fig.5 and Fig.6 included only sessions for which choice patterns 
were not saturated (164 sessions). 

Analysis of neuronal data 

Neuronal data were collected in Exp.1. The data set included 931 cells from central OFC (area 
13). The number of cells recorded was not pre-determined using statistical methods. Firing rates 
were analyzed in seven time windows aligned with different behavioral events (offer, go, juice). 
A "neuronal response" was defined as the activity of one cell in one time window as a function 
of the trial type. Neuronal responses were computed by averaging firing rates across trials for 
each trial type. 
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In a previous study21, we conducted a series of analyses to identify the variables encoded in this 
area. First, we submitted each neuronal response to a 3-way ANOVA (factors: position x 
movement direction x offer type), and we imposed a significance threshold p<0.001. In total, 505 
(54%) neurons passed the criterion for factor offer type in at least one time window. Pooling 
neurons and time windows, 1,379 neuronal responses passed the ANOVA criterion, and 
subsequent analyses were restricted to this data set. Second, we defined a large number of 
variables including variables related to individual juices (offer value A, offer value B, chosen 
value A, chosen value B), other value-related variables (chosen value, other value, value 
difference, value ratio, total value), number-related variables (chosen number, other number, 
etc.) and choice-related variables (chosen juice). We performed a linear regression of each 
response onto each variable. If the regression slope differed significantly from zero (p<0.05), the 
variable was said to "explain" the response. Because variables were often correlated with each 
other, the same neuronal response was often explained by more than one variable. Thus for each 
response we also identified the variable that provided the best fit (i.e., the highest R2). Third, we 
proceeded with a variable selection analysis to identify a small subset of variables that best 
explained the neuronal population. We adapted two methods originally developed for multi-
linear regressions in the presence of multi-collinearity, namely stepwise and best-subset54,55. In 
the stepwise method, we identified the variable and time window that provided the highest 
number of best fits, and removed from the data set all the responses explained by that variable. 
We then repeated the procedure until when the number of responses explained by additional 
variables was <5%. While intuitive, the stepwise procedure did not guarantee optimality. In 
contrast, the best-subset procedure (an exhaustive procedure) guaranteed optimality. In this case, 
for n = 1, 2, 3, ... we computed the number of responses and the total R2 explained by each subset 
of n variables. The best subset was identified as that which explained the highest number of 
responses or the maximum total R2. In the original study, the stepwise and best-subset 
procedures identified the same 4 variables, namely offer value A, offer value B, chosen value and 
chosen juice. Fourth, we conducted a post-hoc analysis. While the explanatory power of 
variables included in the best subset was (by definition) higher than that of any other subset of 
variables, the procedure did not guarantee that this inequality was statistically significant. The 
post-hoc analysis addressed this issue by comparing the marginal explanatory power of each 
variable in the best subset with that of other, non-selected variables (binomial test). In the 
original study and subsequent work34,56,57, we found that the explanatory power of offer value A, 
offer value B, chosen value and chosen juice was statistically higher than that of any other 
variable.  

The results of these analyses provided a classification for neuronal responses. Specifically, each 
neuronal response was assigned to the variable that explained the response and provided the 
highest R2. Thus we identified 447 offer value, 370 chosen value and 268 chosen juice responses. 
Subsequent analyses of the same data set demonstrated range adaptation23 and quantified noise 
correlations32.  

Previous work suggested that the encoding of value in OFC was close to linear21,23. In this study, 
we conducted more detailed analyses to quantify how neuronal responses departed from 
linearity. Furthermore, we compared the curvature measured in neuronal responses with that 
measured for the cumulative distribution of the encoded values. The cumulative distribution of 
encoded values was taken as an important benchmark by analogy to sensory systems2,7. For each 
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offer value response, we identified the value levels present in the session (i.e., the unique values). 
We then calculated the corresponding number of trials, divided it by the total number of trials in 
the session, and computed the corresponding cumulative distribution function (ntrialsCDF). For 
each value level, we also averaged the firing rates obtained across trials. The range of offered 
values and the range of firing rates varied considerably from session to session and across the 
population (Fig.S3). Thus to compare the results obtained for different responses, we normalized 
offer value levels, neuronal firing rates, and ntrialsCDF. Value levels were simply divided by the 
maximum value present in the session. For example, normalized values for juice B were defined 
as qB/QB. For neuronal firing rates, we performed the linear regression y = a0 + a1 x, where x are 
normalized value levels. Firing rates were thus normalized with the transformation fr → (fr − 
a0)/a1. Similarly, for ntrialsCDF, we performed the linear regression y = b0 + b1 x, and we 
normalized them with the transformation ntrialsCDF → (ntrialsCDF − b0)/b1. Examples of 
normalized firing rates and normalized ntrialsCDF are illustrated in Fig.1d,g. To estimate the 
overall curvature, we fit each normalized response function with a 2D polynomial and compared 
the quadratic coefficient (β2) with that obtained from fitting the corresponding normalized 
ntrialsCDF. To estimate the overall S shape, we fit the normalized response function with a 3D 
polynomial and compared the cubic coefficient (β3) with that obtained for the corresponding 
normalized ntrialsCDF. These measures were used for the population of offer value responses 
(Fig.2ab). Separately, we repeated these analyses for the population of chosen value responses 
(Fig.S2).  

Theoretical considerations indicated that optimal response functions in our experiments would 
have been step functions (Fig.7bc), contrary to our observations. One concern was whether 
empirical response functions were optimal on average across sessions, if not for any particular 
session. Notably, the relative value ρ varied from session to session, largely because we used a 
variety of different juice pairs. Recent work indicates that the same neurons are associated with 
different juices in different sessions, with remapping dictated by the preference ranking57. In any 
given session, the optimal offer value B response function would have been a step function with 
step at x = ρ. However, since ρ varied from session to session, the resulting optimal response 
function would have been more gradually increasing. In fact, if the distribution of ρ/QB across 
session had been uniform in the interval [0 1], the mean optimal response for offer value B 
neurons would have been linear. An important caveat is that the rationale that would justify 
linear offer value B responses did not hold for offer value A responses. In any case, we examined 
the distribution of ρ/QB (Fig.7d). For offer value B, the mean optimal response function was 
computed as the cumulative distribution function for ρ/QB. 

Importantly, the data sets included in Fig.2 and Fig.S3 were originally selected based on a 
procedures that only considered linear encoding of value21. To assess the functional form of 
neuronal responses without bias in favor of linearity, we repeated the variable selection 
procedures described above including in the analyses all the variables defined in this study. The 
variable selection analysis was still based on linear regressions. However, firing rates were 
regressed on several non-linear value variables (response functions). The analysis included linear 
response functions (offer A, offer B), cumulative distribution functions of offer values (offer A 
ntrialCDF, offer B ntrialCDF), variance-equalized versions of the cumulative distribution functions 
of offer values (offer A ntrialCDF VE, offer B ntrialCDF VE; see below), optimal response 
functions (offer A ORF, offer B ORF), mean optimal response functions across sessions (offer A 
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mean(ORF), offer B mean(ORF)), and optimal response functions obtained under the assumption 
that the joint distribution of offers is uniform (offer A ORFuniform, offer B ORFuniform; see below). 
In addition, the analysis included chosen value, the cumulative distribution function for chosen 
values (chosen value ntrialCDF), a variance-equalized version of the cumulative distribution 
function for chosen values (chosen value ntrialCDF VE), and variables other value, value 
difference, value ratio, total value and chosen juice (20 variables total).  

We restricted the variable selection analysis to responses that passed the ANOVA criterion (N = 
1,379, see above) and we regressed each neuronal response on each variable. For variance-
equalized variables, we first computed the square root of the firing rates and then performed the 
linear regressions58,59. Optimal response functions for uniform joint distribution of offers 
(ORFuniform) were computed numerically in Matlab. For variable selection we used the two 
procedures described above, and we refer to previous work for additional details21. The best-
subset method can be based either on the number of responses or on the total R2 explained by 
each subset. In previous studies, the two metrics provided similar results. Here we found that the 
results obtained based on the total R2 were more robust, probably because the present analysis 
was aimed at providing a better fit for the neuronal responses as opposed to explaining more 
responses. The best-subset procedures and post-hoc analyses were performed on collapsed 
variables21. The variable selection analyses were conducted twice. First, we included all the 
variables described above except those based on ORFuniform. In this case, linear response 
functions performed significantly better than all the other variables (Table S1). Second, we 
added in the analysis the variables based on ORFuniform. In this case, the performance of 
ORFuniform variables was better than, but statistically indistinguishable from that of linear 
variables. It was significantly better than that of all the other variables (Table S2). Both analyses 
are described in the Results. Fig.8 and Fig.9 refer to the analysis that included all 20 variables. 
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Figure Legends 

Figure 1. Quasi-linear coding of offer values, individual responses. a. Task design (see 
Methods). b. Example of choice pattern. The x-axis represents different offer types, ranked by 
the ratio qB:qA. Black dots represent the percent of "choice B" trials. c. Example offer value A 
response. Black dots represent the choice pattern. The histogram illustrates the number of trials 
presented for each offer type. Red symbols represent firing rates ± SEM (diamonds and squares 
for "choice A" and "choice B", respectively). The y-axis on the left refers to firing rates. The y-
axis on the right refers both to the number of trials (histogram) and to the choice pattern (black 
symbols). d. Comparing firing rates and ntrialsCDF. Same response as in (c). The x-axis 
represents normalized quantity levels of juice A (Methods). The histogram illustrates the percent 
of trials for each quantity level. This session included 247 trials, and juice A was offered at 
quantity levels 0 (39 trials, 16%), 1 (169 trials, 68%), 2 (19 trials, 8%), and 3 (20 trials, 8%). 
Note that low quantity levels were over-represented. Blue circles represent the cumulative 
distribution function (ntrialsCDF). The y-axis on the right refers both to the number of trials 
(histogram) and to ntrialsCDF (blue circles). Red circles represent firing rates. Here each neuronal 
data point is an average across all the trials with given quantity level (not across a single trial 
type). The y-axis on the left refers to normalized firing rates. Limits on the y-axes were set such 
that the same line (black) represents the linear fit for firing rates and for ntrialsCDF. (Since all 
measures are normalized, this is the identity line.) e. Curvature of firing rates and ntrialsCDF. 
Same data points as in (d). Continuous and dotted lines are the result of the quadratic and cubic 
fit, respectively. f-h. Example offer value B response. 

Figure 2. Quasi-linear coding of offer values, population analysis (N = 447). a. Quadratic term. 
Each data point in the scatter plot represents one response. The x-axis and y-axis represent β2, 

firing rate and β2, ntrials CDF, respectively. The dotted line represents the identity line, and the 
responses illustrated in (b-g) are highlighted. Since low values were always over-represented, 
generally β2, ntrials CDF<0. In contrast, measures for β2, firing rate were broadly scattered above and 
below zero (see histogram). b. Cubic term. Same conventions as in (a). Generally, β3, ntrials CDF>0. 
In contrast, measures for β3, firing rate were broadly scattered above and below zero. Note that on 
average across the population, measures for β2, firing rate were close to, but significantly above zero 
(mean(β2, firing rate) = 0.28; p<10-6, t-test). Conversely, measures for β3, firing rate were close to, but 
significantly below zero (mean(β3, firing rate) = -1.42; p<10-12, t-test). We return to this point in the 
last section of the paper. 

Figure 3. Range adaptation is corrected within the decision circuit. ab. Uncorrected range 
adaptation induces arbitrary choice biases. Panel (a) shows the schematic response functions of 
two neurons encoding the offer value A (left) and the offer value B (right). Panel (b) shows the 
resulting choice patterns under the assumption that decisions are made by comparing the firing 
rates of these two cells. We consider choices in two conditions, with the range ΔA = [0 2] kept 
constant. When ΔB = [0 6], the offer 1A elicits the same firing rate as the offer 3B (ρ = 3). When 
ΔB = [0 10], offer value B cells adapt to the new value range. Now the offer 1A elicits the same 
firing rate as the offer 5B (ρ = 5). Thus if range adaptation is not corrected, changing either value 
range induces a choice bias. c. Relative values measured in Exp.2. The two panels refer to the 
two animals. In each panel, the axes represent the relative value measured when QA/QB = 2X (x-
axis) and that measured when QA/QB = X (y-axis). Each data point represents data from one 
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session, and different symbols indicate different protocols (see legend). If decisions were made 
by comparing uncorrected firing rates, data points would lie along the red dotted line. In contrast, 
data points lie along the black dotted line (identity line). In other words, the relative value 
measured in the two trial blocks were generally very similar, indicating that range adaptation was 
corrected within the decision circuit. Panels ab are reproduced from [26]. 

Figure 4. Possible adaptation scenarios. a. Indifference line. We indicate qA and qB the quantities 
of good A and good B, respectively. Across trials, qA varies in the range [0, QA], while qB varies 
in the range [0, QB]. In the plane defined by qA and qB, we define the "indifference curve" as the 
set of offers for which the animal splits decisions equally between the two goods. We assume 
that the indifference curve is a straight line on this plane. Thus the relative value between the two 
goods, referred to as ρ, is defined by the slope of the indifference curve. b. Choice pattern. Given 
offers of goods A and B, a choice pattern can be represented as a sigmoid surface, in which the 
z-axis represents the likelihood of choosing good B. For each pair of offers, one of the two 
options provides a higher payoff, depending on whether it is above or below the indifference 
curve. However, unless the sigmoid is a step function, in some trials the animal fails to choose 
that option (choice variability). c. Adaptation scenarios. In this cartoon, offer values in the 
current context vary in the range [0 10]. The light line represents a hypothetical scenario in 
which there is no range adaptation (see Results). The darker lines represent the scenarios with 
partial and complete range adaptation. 

Figure 5. Relation between choice variability and value range. a. Monkey V (73 sessions). For 
each session, the sigmoid fit provided measures for ρ and σ (Eq.5), and we computed the 
geometric mean value range Δ. In this plot, different sigmoid functions are aligned at the flex (x-
axis) and ranked based on Δ, from bottom (large Δ) to top (small Δ). For each sigmoid, the thick 
colored line (green-blue) depicts the result of the fit in a standard interval [-2 2]. The thin black 
line highlights the range of values actually used in the corresponding session. Different shades of 
color (from blue to green) indicate the ordinal ranking of sessions according to Δ. Notably, 
sigmoid functions at the bottom of the figure (larger Δ) were shallower (higher choice 
variability) than sigmoid functions at the top of the figure. Thus the payoff was inversely related 
to the value ranges. b. Monkey L (91 sessions). Same format as in (a). 

Figure 6. Relation between sigmoid width and value range, scatter plots. ab. Panels a and b refer 
to monkey V (73 sessions) and monkey L (91 sessions), respectively. In each panel, the x-axis 
represents the geometric mean value range Δ ≡ (ρ QA QB)1/2, the y-axis represents the sigmoid 
width (σ) and each data point represents one session. The black line represents the result of 
Deming's regression. For both animals, the two measures were significantly correlated (corr coef 
= 0.63 and 0.37) and the regression slope was significantly above zero (p<10-8 and p<10-3).  

Figure 7. Optimal response functions. a. One good offered in fixed quantity (ρ = 2). Gray dots 
represent offer types presented in the session and the dotted line represents the indifference line. 
Good A is always offered in quantity 1 while good B varies in the range [0 5]. Optimal response 
functions are shown in the lower panels. b. Idealized experimental session (ρ = 2). For each 
good, quantities vary in the range [0 5], but in each offer type at least one good is offered in 
quantity 1. Lower panels show the optimal response functions (ORF, step functions). c. Idealized 
experimental session (ρ = 3). d. Optimal mean response functions. The histogram represents the 
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distribution of ρ/QB, where ρ is the relative value and QB is the maximum quantity of juice B 
offered. Lower panels show the mean optimal response functions, mean(ORF). For offer value B, 
the response function is computed as the cumulative distribution function for ρ/QB. e. Idealized 
session with uniform distribution and equal value ranges (a.u.). Lower panels show the 
corresponding optimal response functions (ORFuniform). Note that the curvature of ORFuniform is in 
the same direction as that observed on average in the neuronal population (Fig.2a, histogram).  

Figure 8. Population analysis of neuronal responses. Each neuronal response that passed an 
ANOVA criterion was regressed against each variable. If the regression slope differed 
significantly from zero, the variable was said to explain the response (Methods). a. Explained 
responses. Rows and columns represent, time windows and variables, respectively. In each 
location, the number indicates the number of responses explained by the corresponding variable. 
For example, in the post-offer time window, the variable offer A (linear response function) 
explained 78 responses. The same numbers are also represented in grayscale. Each response 
could be explained by more than one variable. Thus each response might contribute to multiple 
bins in this panel. b. Best fit. In each location, the number indicates the number of responses for 
which the corresponding variable provided the best fit (highest R2). For example, in the post-
offer time window, offer A (linear response function) provided the best fit for 7 responses. The 
same numbers are also represented in grayscale. In this panel, each neuronal response contributes 
at most to one bin. Qualitatively, the dominant variables appear to be offer A ORFuniform, offer B 
ORFuniform, chosen value and chosen juice. Indeed the variable selection procedures identified 
these variables as the ones with the highest explanatory power (Fig.9). 

Figure 9. Variable selection analysis. a. Stepwise selection. The top panel is as in Fig.8b. At 
each iteration, the variable providing the maximum number of best fits in a time window was 
selected and indicated with a * in the figure. All the responses explained by the selected variable 
were removed from the pool and the procedure was repeated on the residual data set. Selected 
variables whose marginal explanatory power was <5% were eliminated (Methods) and indicated 
with a • in the figure. In the first four iterations, the procedure selected variables chosen juice, 
chosen value, offer A ORFuniform and offer B ORFuniform, and no other variables were selected in 
subsequent iterations. b. Stepwise selection, percent of explained responses. The y-axis 
represents the percentage of responses explained at the end of each iteration. The total number of 
task-related responses (1378) corresponds to 100%. The number of responses explained by at 
least one of the variables included in the analysis (1245/1378 = 90%) is indicated with a dotted 
line. 
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Supplementary Tables 

Variable X Variable Y R2X R2Y pval 
offer A|B linear offer A|B ntrialCDF 88.8 27.4 <10-8 

offer A|B linear offer A|B ntrialCDF VE 86.1 27.8 <10-8 
offer A|B linear offer A|B ORF 69.6 29.2 <10-5 
offer A|B linear offer A|B mean(ORF) 48.0 27.5 0.009 

Table S1. Variable selection, post-hoc analysis. The variable selection analyses were conducted 
twice. This table refers to the analysis that did not include variables based on ORFuniform 
(Methods). Both stepwise and best-subset methods selected variables offer A linear, offer B 
linear, chosen value and chosen juice. The table indicates the results of the post-hoc analysis 
based on collapsed variables (Methods). To test whether the explanatory power of offer A|B 
linear (column X) was statistically higher than that of other variables examined in the analysis 
(column Y), we calculated the marginal explanatory power of each variable. For example, 
considering variables X and Y, the marginal explanatory power of X (column R2X) was defined 
as the total R2 explained by X but not by Y. The two variables were then compared with a 
binomial test. The results (p value in the right column) indicate that the explanatory power of 
linear offer value variables was significantly higher than that of any competing variable.  

 

 

Variable X Variable Y R2X R2Y pval 
offer A|B ORFuniform offer A|B linear 37.7 32.5 0.270 
offer A|B ORFuniform offer A|B ntrialCDF 114.3 47.8 <10-7 

offer A|B ORFuniform offer A|B ntrialCDF VE 111.4 48.0 <10-7 
offer A|B ORFuniform offer A|B ORF 93.2 47.7 <10-4 
offer A|B ORFuniform offer A|B mean(ORF) 78.0 52.5 0.013 

Table S2. Variable selection, post-hoc analysis. This table refers to the analysis that included all 
the variables, including those based on ORFuniform. Both stepwise and best-subset methods 
selected variables offer A ORFuniform, offer B ORFuniform, chosen value and chosen juice (see 
Fig.9). Same format as Table S1. Note that all comparisons are statistically significant except 
that between offer A|B ORFuniform and offer A|B linear. 
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Supplementary Figure Legends 

Figure S1. Linearity of neuronal responses, control analyses. ab. Individual monkeys. Both 
panels illustrate the same data shown in Fig.2ab, and different colors indicate neuronal responses 
from the two monkeys. cd. Sign of the encoding. The neuronal encoding of value could be 
positive (higher firing rates for higher values, or slope>0) or negative (higher firing rates for 
lower values, or slope<0). In this case, different colors indicate neuronal responses with the two 
slope signs. ef. Individual time windows. In Fig.2ab, we pooled data from different time 
windows. Here different colors indicate responses from individual time windows. For clarity, we 
included in panels (ef) only responses from the four primary time windows. Thus some data 
points present in the other panels are missing here. gh. Number of offer values. The number of 
offer values varied for different responses, and was typically lower for offer value A than for 
offer value B responses (see Fig.1). Here different colors indicate that the number of value 
offered was low (≤5) or high (≥6).  

Figure S2. Linearity of chosen value responses. a-d. Example. Same format as in Fig.2. ef. 
Population analysis (N = 370). Same format as in Fig.2. 

Figure S3. Range adaptation in OFC. ab. Individual responses and population averages. Each 
line in (a) represents one neuronal response. Responses were baseline-subtracted and color-coded 
according to the range of values offered for the encoded juice. Responses with positive encoding 
(increasing firing rates for increasing values) and negative encoding (decreasing firing rate for 
increasing values) were pooled. Each color group presented a wide distribution of firing rates. 
However, range adaptation became clear once responses were averaged different within each 
group (panel b). c. Distribution of activity ranges. Each histogram illustrates the distribution of 
activity ranges recorded with the different value ranges. de. Mean tuning slope. In (d), each 
symbol represents the tuning slope (y-axis) averaged across all the neuronal responses recorded 
with a given value range (x-axis). The three colors indicate different groups of cells (see legend). 
In (e), the same data points are plotted against the inverse value range (x-axis). Reproduced from 
[23]. 

Figure S4. The theoretical argument showing that range adaptation ensures maximum payoff 
assumes that noise correlations (ξ in Eq.2) do not depend on the slope of the encoding. In other 
words, we assumed that range adaptation would not affect noise correlations. Noise correlations 
in Exp.1 were analyzed in a previous study, where we found a weak but significant relation 
between the baseline firing rates and noise correlations (Fig.4c in [32]). In other words, pairs of 
neurons with higher firing rates were slightly more correlated. However, this finding is not 
directly relevant to the issue of interest here, namely whether noise correlation depends on the 
firing rates given a pair of cells. To address this issue, we re-examined the same data set focusing 
on pairs of offer value cells recorded simultaneously, associated with the same juice and with the 
same coding sign (N = 41 pairs; see [32] for detail). For each cell pair, we divided trials based on 
whether the offer value was above or below the median offer value in that session. (Trials in 
which the value was exactly equal to the median were excluded.) We then computed the noise 
correlation separately for the two groups of trials. The scatter plot illustrates the results obtained 
for this population. Each data point represents one cell pair, and the x- and y-axes represent the 
noise correlation measured in low-value trials (ξlow) and in high-value trials (ξhigh), respectively. 

 23

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 8, 2017. ; https://doi.org/10.1101/147900doi: bioRxiv preprint 

https://doi.org/10.1101/147900
http://creativecommons.org/licenses/by-nc-nd/4.0/


Notably, noise correlations did not differ systematically between the two groups of trials 
(median(ξhigh - ξlow) = 0.001; p = 0.62, paired t-test). Similar results were obtained by inverting 
the axes for pairs of cells with negative encoding (median(ξhigh - ξlow) = 0.006; p = 0.47, paired t-
test) any by excluding pairs of cells from the same electrode (median(ξhigh - ξlow) = 0.003; p = 
0.33, paired t-test).  

Figure S5. Relation between inverse temperature and value range. This figure is equivalent to 
Fig.6, except that the y-axis represents the inverse temperature (a1 in Eq.4). Black lines 
represents the result of Deming's regressions (fitted parameters indicated above each panel).  

Figure S6. Sigmoid widths measured in Exp.2. Sessions in which we varied the range of juice A 
and sessions in which we varied the range of juice B are pooled. For each session, the two axes 
represent the sigmoid width measured with a large value range (x-axis) and that measured with a 
small value range (y-axis). Each data point represents one session and data from the two 
monkeys are pooled. Different symbols represents the block order (see legend). Data points are 
broadly scattered, but overall they tend to lie below the identity line (p = 0.04, sign test). In other 
words, the sigmoid was shallower (lower payoff) when value ranges were larger. This effect was 
statistically significant when the analysis was restricted to sessions in which we varied the range 
of juice B (p = 1.5 10-4, sign test), but not when the analysis was restricted to sessions in which 
we varies the range of juice A (p > 0.05, sign test). Sessions that presented perfect separation 
(saturated choice patterns) were excluded from this analysis.  

Figure S7. Joint distributions of offers in Exp.1. The six panels illustrate the joint distribution of 
offers for six representative sessions (out of 208). For each session, gray dots represent offer 
types presented in the session and the dotted line represents the indifference line (ρ calculated 
with the sigmoid fit). The radius of each dot is proportional to #trials/max(#trials), where #trials 
is the number of trials for the corresponding offer type and max(#trials) is the maximum of 
#trials across offer types. For the six sessions, max(#trials) was equal to 1,429 (session 1), 441 
(session 41), 347 (session 81), 400 (session 121), 362 (session 161), and 228 (session 201). Note 
that the range of offer values and the relative multiplicity of trials for different offer types varied 
from session to session. Each session included forced choices for either juice. In the other trials, 
one of the two juices was always offered in quantity 1.  

Figure S8. Analysis of lost value. a. Distribution of percent errors across sessions. On average 
across sessions, mean(percent errors) = 8.6%. b. Distribution of fractional lost value across 
sessions. On average across sessions, mean(FLV) = 0.05. c. Expected versus actual fractional 
lost value. Each data point represents one session. The expected fractional lost value (EFLV; y-
axis) was almost identical to the fractional lost value (FLV; x-axis). On average across sessions, 
mean(EFLV) = 0.05. d. Effects of decreasing the inverse temperature on the sigmoid. The range 
on the x-axis is realistic for our experiments. The blue line is obtained with the mean inverse 
temperature measured in Exp.1 (mean(a1)). The red, yellow and purple lines were obtained by 
dividing mean(a1) by 2, 10 and 50, respectively. 
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Figure 1. Quasi-linear coding of offer values, individual responses. a. Task design (see Online Methods).
b. Example of choice pattern. The x-axis represents different offer types, ranked by the ratio qB:qA.
Black dots represent the percent of "choice B" trials. c. Example offer value A response. Black dots
represent the choice pattern. The histogram illustrates the number of trials presented for each offer type.
Red symbols represent firing rates ± SEM (diamonds and squares for "choice A" and "choice B",
respectively). The y-axis on the left refers to firing rates. The y-axis on the right refers both to the number
of trials (histogram) and to the choice pattern (black symbols). d. Comparing firing rates and ntrialsCDF.
Same response as in (c). The x-axis represents normalized quantity levels of juice A (Online Methods).
The histogram illustrates the percent of trials for each quantity level. This session included 247 trials, and
juice A was offered at quantity levels 0 (39 trials, 16%), 1 (169 trials, 68%), 2 (19 trials, 8%), and 3 (20
trials, 8%). Note that low quantity levels were over-represented. Blue circles represent the cumulative
distribution function (ntrialsCDF). The y-axis on the right refers both to the number of trials (histogram)
and to ntrialsCDF (blue circles). Red circles represent firing rates. Here each neuronal data point is an
average across all the trials with given quantity level (not across a single trial type). The y-axis on the left
refers to normalized firing rates. Limits on the y-axes were set such that the same line (black) represents
the linear fit for firing rates and for ntrialsCDF. (Since all measures are normalized, this is the identity
line.) e. Curvature of firing rates and ntrialsCDF. Same data points as in (d). Continuous and dotted lines
are the result of the quadratic and cubic fit, respectively. f-h. Example offer value B response.
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Figure 2. Quasi-linear coding of offer values, population analysis. a. Quadratic term (N = 447). Each 
data point in the scatter plot represents one response. The x-axis and y-axis represent β2, firing rate and 
β2, ntrials CDF, respectively. The dotted line represents the identity line, and the responses illustrated in (b-g)
are highlighted. Since low values were always over-represented, generally β2, ntrials CDF<0. In contrast,
measures for β2, firing rate were broadly scattered above and below zero (see histogram). b. Cubic term.
Same conventions as in (a). Generally, β3, ntrials CDF>0. In contrast, measures for β3, firing rate were broadly
scattered above and below zero. Note that on average across the population, measures for β2, firing rate were
close to, but significantly above zero (mean(β2, firing rate) = 0.28; p<10-6, t-test). Conversely, measures for
β3, firing rate were close to, but significantly below zero (mean(β3, firing rate) = -1.42; p<10-12, t-test). We
return to this point in the last section of the paper.
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Figure 3. Range adaptation is corrected within the decision circuit. ab. Uncorrected range adaptation
induces arbitrary choice biases. Panel (a) shows the schematic response functions of two neurons
encoding the offer value A (left) and the offer value B (right). Panel (b) shows the resulting choice
patterns under the assumption that decisions are made by comparing the firing rates of these two cells.
We consider choices in two conditions, with the range ΔA = [0 2] kept constant. When ΔB = [0 6], the
offer 1A elicits the same firing rate as the offer 3B (ρ = 3). When ΔB = [0 10], offer value B cells adapt to
the new value range. Now the offer 1A elicits the same firing rate as the offer 5B (ρ = 5). Thus if range
adaptation is not corrected, changing either value range induces a choice bias. c. Relative values
measured in Exp.2. The two panels refer to the two animals. In each panel, the axes represent the relative
value measured when QA/QB = 2X (x-axis) and that measured when QA/QB = X (y-axis). Each data
point represents data from one session, and different symbols indicate different protocols (see legend). If
decisions were made by comparing uncorrected firing rates, data points would lie along the red dotted
line. In contrast, data points lie along the black dotted line (identity line). In other words, the relative
value measured in the two trial blocks were generally very similar, indicating that range adaptation was
corrected within the decision circuit. Panels ab are reproduced from [26].
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Figure 4. Possible adaptation scenarios. a. Indifference line. We indicate qA and qB the quantities of
good A and good B, respectively. Across trials, qA varies in the range [0, QA], while qB varies in the
range [0, QB]. In the plane defined by qA and qB, we define the "indifference curve" as the set of offers
for which the animal splits decisions equally between the two goods. We assume that the indifference
curve is a straight line on this plane. Thus the relative value between the two goods, referred to as ρ, is
defined by the slope of the indifference curve. b. Choice pattern. Given offers of goods A and B, a choice
pattern can be represented as a sigmoid surface, in which the z-axis represents the likelihood of choosing
good B. For each pair of offers, one of the two options provides a higher payoff, depending on whether it
is above or below the indifference curve. However, unless the sigmoid is a step function, in some trials
the animal fails to choose that option (choice variability). c. Adaptation scenarios. In this cartoon, offer
values in the current context vary in the range [0 10]. The light line represents a hypothetical scenario in
which there is no range adaptation (see Results). The darker lines represent the scenarios with partial and
complete range adaptation.
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Figure 5. Relation between choice variability and value range. a. Monkey V (73 sessions). For each
session, the sigmoid fit provided measures for ρ and σ (Eq.5), and we computed the geometric mean
value range Δ. In this plot, different sigmoid functions are aligned at the flex (x-axis) and ranked based
on Δ, from bottom (large Δ) to top (small Δ). For each sigmoid, the thick colored line (green-blue)
depicts the result of the fit in a standard interval [-2 2]. The thin black line highlights the range of
values actually used in the corresponding session. Different shades of color (from blue to green) indicate
the ordinal ranking of sessions according to Δ. Notably, sigmoid functions at the bottom of the figure
(larger Δ) were shallower (higher choice variability) than sigmoid functions at the top of the figure. Thus
the payoff was inversely related to the value ranges. b. Monkey L (91 sessions). Same format as in (a).
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Figure 6. Relation between sigmoid width and value range, scatter plots. ab. Panels a and b refer to
monkey V (73 sessions) and monkey L (91 sessions), respectively. In each panel, the x-axis represents
the geometric mean value range Δ ≡ sqrt(ρ QA QB), the y-axis represents the sigmoid width (σ) and
each data point represents one session. The black line represents the result of Deming's regression. For
both animals, the two measures were significantly correlated (corr coef = 0.63 and 0.37) and the
regression slope was significantly above zero (p<10-8 and p<10-2). 
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Figure 7. Optimal response functions. a. One good offered in fixed quantity (ρ = 2). Gray dots represent
offer types presented in the session and the dotted line represents the indifference line. Good A is always
offered in quantity 1 while good B varies in the range [0 5]. Optimal response functions are shown in the
lower panels. b. Idealized experimental session (ρ = 2). For each good, quantities vary in the range [0 5],
but in each offer type at least one good is offered in quantity 1. Lower panels show the optimal response
functions (ORF, step functions). c. Idealized experimental session (ρ = 3). d. Optimal mean response
functions. The histogram represents the distribution of ρ/QB, where ρ is the relative value and QB is the
maximum quantity of juice B offered. Lower panels show the mean optimal response functions,
mean(ORF). For offer value B, the response function is computed as the cumulative distribution function
for ρ/QB. e. Idealized session with uniform distribution and equal value ranges (a.u.). Lower panels show
the corresponding optimal response functions (ORFuniform). Note that the curvature of ORFuniform is in the
same direction as that observed on average in the neuronal population (Fig.2a, histogram). 
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Figure 8. Population analysis of neuronal responses. Each neuronal response that passed an ANOVA
criterion was regressed against each variable. If the regression slope differed significantly from zero, the
variable was said to explain the response (Methods). a. Explained responses. Rows and columns represent,
time windows and variables, respectively. In each location, the number indicates the number of responses
explained by the corresponding variable. For example, in the post-offer time window, the variable offer A
(linear response function) explained 78 responses. The same numbers are also represented in grayscale.
Each response could be explained by more than one variable. Thus each response might contribute to
multiple bins in this panel. b. Best fit. In each location, the number indicates the number of responses for
which the corresponding variable provided the best fit (highest R2). For example, in the post-offer time
window, offer A (linear response function) provided the best fit for 7 responses. The same numbers are
also represented in grayscale. In this panel, each neuronal response contributes at most to one bin.
Qualitatively, the dominant variables appear to be offer A ORFuniform, offer B ORFuniform, chosen value and
chosen juice. Indeed the variable selection procedures identified these variables as the ones with the
highest explanatory power (Fig.8).
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Figure 9. Variable selection analysis. a. Stepwise selection. The top panel is as in Fig.7b. At each 
iteration, the variable providing the maximum number of best fits in a time window was selected and 
indicated with a * in the figure. All the responses explained by the selected variable were removed from
the pool and the procedure was repeated on the residual data set. Selected variables whose marginal
explanatory power was <5% were eliminated (Methods) and indicated with a • in the figure. In the first
four iterations, the procedure selected variables chosen juice, chosen value, offer A ORFuniform and
offer B ORFuniform, and no other variables were selected in subsequent iterations. b. Stepwise selection,
percent of explained responses. The y-axis represents the percentage of responses explained at the end of
each iteration. The total number of task-related responses (1378) corresponds to 100%. The number of
responses explained by at least one of the variables included in the analysis (1245/1378 = 90%) is
indicated with a dotted line.
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Figure S1. Linearity of neuronal responses, control analyses. ab. Individual monkeys. Both panels
illustrate the same data shown in Fig.2ab, and different colors indicate neuronal responses from the two
monkeys. cd. Sign of the encoding. The neuronal encoding of value could be positive (higher firing rates
for higher values, or slope>0) or negative (higher firing rates for lower values, or slope<0). In this case,
different colors indicate neuronal responses with the two slope signs. ef. Individual time windows. In
Fig.2ab, we pooled data from different time windows. Here different colors indicate responses from
individual time windows. For clarity, we included in panels (ef) only responses from the four primary time
windows. gh. Number of offer values. The number of offer values varied for different responses, and was
typically lower for offer value A than for offer value B responses (see Fig.1). Here different colors indicate
that the number of value offered was low (≤5) or high (≥6).
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Figure S2. Linearity of chosen value responses. a-d. Example. Same format as in Fig.1. ef. Population
analysis (N = 370). Same format as in Fig.1.

0:
1

1:
3

1:
2

1:
1

2:
1

3:
1

4:
1

6:
1

2:
0

 %
 B

 choices, # of trials

Fi
rin

g 
ra

te
 (s

p/
s)

Offers (qB:qA)

0

100
1A = 2.4B

10

20

N
or

m
al

iz
ed

 fi
rin

g 
ra

te

%
 of trials

0.2 0.4 0.6 0.8 1

Normalized chosen value

0

50

100

0

0.5

1

cba

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

80

# 
re

sp
on

se
s

β2, firing rate

β2
, n

tri
al

sC
D

F

-5 -4 -3 -2 -1 0 1 2 3 4 5
-3

-2

-1

0

1
a-c

-30 -20 -10 0 10 20 30
0

80

# 
re

sp
on

se
s

β3, firing rate

β3
, n

tri
al

sC
D

F
-30 -20 -10 0 10 20 30

-5

0

5

10

15

20

25ed

N
or

m
al

iz
ed

 fi
rin

g 
ra

te

0.2 0.4 0.6 0.8 1

Normalized chosen value

0

0.5

1

β2 (fr) = -0.48
β2 (ntr) = -1.77
β3 (fr) = 0.09
β3 (ntr) = 7.18

0.5

1

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 8, 2017. ; https://doi.org/10.1101/147900doi: bioRxiv preprint 

https://doi.org/10.1101/147900
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S3. Range adaptation in OFC. ab. Individual responses and population averages. Each line in (a)
represents one neuronal response. Responses were baseline-subtracted and color-coded according to the
range of values offered for the encoded juice. Responses with positive encoding (increasing firing rates
for increasing values) and negative encoding (decreasing firing rate for increasing values) were pooled.
Each color group presented a wide distribution of firing rates. However, range adaptation became clear
once responses were averaged different within each group (panel b). c. Distribution of activity ranges.
Each histogram illustrates the distribution of activity ranges recorded with the different value ranges. de.
Mean tuning slope. In (d), each symbol represents the tuning slope (y-axis) averaged across all the
neuronal responses recorded with a given value range (x-axis). The three colors indicate different groups
of cells (see legend). In (e), the same data points are plotted against the inverse value range (x-axis). 
Reproduced from [23].
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Figure S4. The theoretical argument showing that range adaptation ensures maximum payoff assumes that
noise correlations (ξ in Eq.2) do not depend on the slope of the encoding (t in Eq.2). In other words,
we assumed that range adaptation would not affect noise correlations. Noise correlations in Exp.1 were
analyzed in a previous study, where we found a weak but significant relation between the baseline firing
rates and noise correlations (Fig.3c in [32]). In other words, pairs of neurons with higher firing rates were
slightly more correlated. However, this finding is not directly relevant to the issue of interest here, namely
whether noise correlation depends on the firing rates given a pair of cells. To address this issue, we re-
examined the same data set focusing on pairs of offer value cells recorded simultaneously, associated with
the same juice and with the same coding sign (N = 41 pairs; see [32] for detail). For each cell pair, we
divided trials based on whether the offer value was above or below the median offer value in that session.
(Trials in which the value was exactly equal to the median were excluded.) We then computed the noise
correlation separately for the two groups of trials. The scatter plot illustrates the results obtained for this
population. Each data point represents one cell pair, and the x- and y-axes represent the noise correlation
measured in low-value trials (ξlow) and in high-value trials (ξhigh), respectively. Notably, noise correlations
did not differ systematically between the two groups of trials (median(ξhigh - ξlow) = 0.001; p = 0.62, paired
t-test). Similar results were obtained by inverting the axes for pairs of cells with negative encoding 
(median(ξhigh - ξlow) = 0.006; p = 0.47, paired t-test) any by excluding pairs of cells from the same
electrode (median(ξhigh - ξlow) = 0.003; p = 0.33, paired t-test). 
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Figure S5. Relation between inverse temperature and value range. This figure is equivalent to Fig.6,
except that the y-axis represents the inverse temperature (a1 in Eq.4). Black lines represents the result
of Deming's regressions (fitted parameters indicated above each panel). 
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Figure S6. Sigmoid widths measured in Exp.2. Sessions in which we varied the range of juice A and
sessions in which we varied the range of juice B are pooled. For each session, the two axes represent the
sigmoid width measured with a large value range (x-axis) and that measured with a small value range
(y-axis). Each data point represents one session and data from the two monkeys are pooled. Different
symbols represents the block order (see legend). Data points are broadly scattered, but overall they tend to
lie below the identity line (p = 0.04, sign test). In other words, the sigmoid was shallower (lower payoff)
when value ranges were larger. This effect was statistically significant when the analysis was restricted to
sessions in which we varied the range of juice B (p = 1.5 10-4, sign test), but not when the analysis was
restricted to sessions in which we varies the range of juice A (p > 0.05, sign test). Sessions that presented
perfect separation (saturated choice patterns) were excluded from this analysis. 
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Figure S7. Joint distributions of offers in Exp.1. The six panels illustrate the joint distribution of offers for
six representative sessions (out of 208). For each session, gray dots represent offer types presented in the
session and the dotted line represents the indifference line (ρ calculated with the sigmoid fit). The radius
of each dot is proportional to #trials/max(#trials), where #trials is the number of trials for the
corresponding offer type and max(#trials) is the maximum of #trials across offer types. For the six
sessions, max(#trials) was equal to 1,429 (session 1), 441 (session 41), 347 (session 81), 400 (session
121), 362 (session 161), and 228 (session 201). Note that the range of offer values and the relative
multiplicity of trials for different offer types varied from session to session. Each session included forced
choices for either juice. In the other trials, one of the two juices was always offered in quantity 1.
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Figure S8. Analysis of lost value. a. Distribution of percent errors across sessions. On average across
sessions, mean(percent errors) = 8.6%. b. Distribution of fractional lost value across sessions. On
average across sessions, mean(FLV) = 0.05. c. Expected versus actual fractional lost value. Each data
point represents one session. The expected fractional lost value (EFLV; y-axis) was almost identical to
the fractional lost value (FLV; x-axis). On average across sessions, mean(EFLV) = 0.05. d. Effects of
decreasing the inverse temperature on the sigmoid. The range on the x-axis is realistic for our
experiments. The blue line is obtained with the mean inverse temperature measured in Exp.1
(mean(a1)). The red, yellow and purple lines were obtained by dividing mean(a1) by 2, 10 and 50,
respectively. 
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