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Abstract Rho-GTPases are master regulators of polarity establishment and cell morphology.11

Positive feedback enables concentration of Rho-GTPases into clusters at the cell cortex, from where12

they regulate the cytoskeleton. Different cell types reproducibly generate either one (e.g. the front13

of a migrating cell) or several clusters (e.g. the multiple dendrites of a neuron), but the mechanistic14

basis for uni-polar or multi-polar outcomes is unclear. The design principles of Rho-GTPase circuits15

are captured by reaction-diffusion models based on conserved aspects of Rho-GTPase16

biochemistry. Some such models display rapid winner-takes-all competition between clusters,17

yielding a unipolar outcome. Other models allow prolonged co-existence of clusters. We derive a18

“saturation rule” general to all relevant models that governs the timescale of competition, and19

thereby predicts whether the system will generate uni-polar or multi-polar outcomes. We suggest20

that the saturation rule is a fundamental property of the Rho-GTPase polarity machinery,21

regardless of the specific feedback mechanism.22

23

Introduction24

Complex cell morphologies arise, in part, through the specialization of cortical domains (e.g., the25

apical and basal domains of epithelial cells, or the front and back of migratory cells). Elaboration26

of such domains involves the local accumulation of active Rho-family GTPases, which regulate27

cytoskeletal elements to promote specific downstream events, such as vesicle trafficking, membrane28

deformation, or directed growth (Caceres et al., 2012; Etienne-Manneville and Hall, 2002; Yang,29

2008). For some cells, it is vital to establish a single specialized domain (e.g. the front of a migrating30

cell), whereas others require the establishment of multiple domains simultaneously (e.g. the31

dendrites of a neuron) (Dotti et al., 1988;Wu and Lew, 2013). The mechanistic basis for specifying32

uni- or multi-polar outcomes remains elusive.33

Rho-family GTPases switch between GTP-bound active and GDP-bound inactive forms (Figure 1A).34

Active GTPases are tethered to the inner surface of the plasma membrane, where diffusion is slow.35

In contrast, inactive GTPases are preferentially bound by guanine nucleotide dissociation inhibitors36

(GDIs), which extract the bound GTPase to the cytoplasm, where their diffusion is comparatively37

fast. Activated GTPases can promote local activation of cytosolic GTPases via positive feedback.38

This generates a membrane domain with concentrated active GTPase, concomitantly depleting39

the cytosolic GTPase pool (Figure 1B). Synthesis and degradation of GTPases occurs on a slow40
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timescale compared to activation and inactivation (for example, in budding yeast the Rho-GTPase of41

Cdc42 polarizes within 2 minutes but has a half-life of more than 20 hours) (Gladfelter et al., 2001;42

Howell et al., 2009;Wedlich-Soldner et al., 2004). Thus, the general dynamics of the system can be43

captured by mass-conserved activator-substrate (MCAS) models, with a slowly-diffusing activator44

and a rapidly-diffusing substrate (Figure 1C) (Goryachev and Pokhilko, 2008; Mori et al., 2008;45

Otsuji et al., 2007). Such models can generate local peaks of activator, reflecting the establishment46

of a polarized concentration profile of active GTPase (Figure 1D).47

Proposed MCAS models differ primarily in the formulation of the positive feedback mechanism.48

One set of models yields Turing instability (Goryachev and Pokhilko, 2008;Otsuji et al., 2007), where49

positive feedback is sufficient to amplify molecular-level fluctuations leading to peak formation.50

Classically, Turing systems can generate single or multiple peaks (Gierer and Meinhardt, 1972;51

Turing, 1952), depending on whether the size of the modeled domain is larger than a characteristic52

wavelength dependent on the reaction and diffusion parameters. However, even when multiple53

peaks emerge from the homogeneous state, most of the peaks in Turing-type MCAS models54

eventually disappear through a process called “competition”, leaving a single large peak as the55

winner (Howell et al., 2012; Otsuji et al., 2007; Wu et al., 2015). Otsuji et al. (2007) reasoned56

that competition arose due to mass-conservation, and further suggested that this might be a57

general behavior of Turing-type MCAS models. In biological systems, competition-like behavior58

was observed during polarity establishment in yeast cells, where it was suggested to underlie the59

growth of only one bud per cell cycle (Howell et al., 2012, 2009;Wu et al., 2015).60

Another set of models relies on bistable reaction kinetics to produce “wave-pinning” behavior61

(Beta et al., 2008; Mori et al., 2008, 2011; Ozbudak et al., 2005). Such models can generate mem-62

brane domains with separate phases of uniform high or low activator concentrations connected63

by a sharp “wavefront”. The wave front spreads laterally but eventually stops (gets pinned) due to64

depletion of the cytoplasmic substrate, forming stable flat-topped mesa-like concentration profiles.65

In the absence of spatial cues, wave-pinning models can generate multiple mesas when initiated66

by random fluctuations (Mori et al., 2008). Multiple mesas in the wave-pinning model appear to67

be “meta-stable” (Jilkine and Edelstein-Keshet, 2011; Mori et al., 2011) and do not readily exhibit68

competition.69

An attractive hypothesis for why some cells are uni-polar and others multi-polar would be that70

these behaviors arise from differences in the biochemical mechanisms of positive feedback, yielding71

competition in Turing-type or meta-stability in wave-pinning models. However, some Turing-type72

MCAS models appear to switch to multi-polarity when domain size (Jilkine and Edelstein-Keshet,73

2011; Otsuji et al., 2007) or protein amount (Howell et al., 2012) is increased. Thus, it could be that74

parameter values (protein concentration, catalytic activity, cell size, etc.) rather than regulatory75

feedback mechanisms dictate whether uni- and multi- polar outcomes are observed.76

Here, we investigate the transient multi-peak scenario, and show that both wave-pinning and77

Turing-type models are capable of generating uni- or multi-polar outcomes. The switch between uni-78

and multi-polarity is primarily dictated by a “saturation rule” that is general to MCAS models: Every79

biologically relevant model has an innate saturation point that sets the maximum local Rho-GTPase80

concentration. When peaks form such that peak concentrations are well below this saturation81

point, competition is effective and multi-polar conditions resolve rapidly to a uni-polar steady state.82

However, if the GTPase concentration in two or more peaks approaches the saturation point, then83

competition becomes ineffective, and the peaks become meta-stable. Because the saturation rule84

does not depend on the specifics of the biochemical reactions, our results yield general and testable85

predictions.86
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Figure 1. Polarity establishment and competition in mass conserved activator-substrate (MCAS)

models.

A) Rho-GTPases are tethered to the plasma membrane by prenylation. The inactive GDP-bound form, or

“substrate”, is preferentially bound by the GDI, masking the prenyl group and extracting the substrate to the

cytoplasm. The active GTP-bound form, or “activator”, promotes local activation of more substrate, yielding

positive feedback. B) Local activation via positive feedback and depletion of the substrate in the cytosol

generates an activator-enriched domain on the cortex. C) The interconversions of Rho-GTPases between active

and inactive forms can be modeled as a system of two reaction-diffusion equations governing the dynamics of

the slowly-diffusing activator u and the rapidly-diffusing substrate v. The model is mass-conserved: generation
of u is precisely matched by consumption of v (and vice versa) in the reaction term F (u, v). D) MCAS models
generate peaks in the profile of u, representing concentrated active Rho-GTPase on the membrane. E)
Turing-type models (Equation 4) can generate sharp peaks of different heights, while wave-pinning models
(Equation 5) can generate flat-topped mesas of different width, when total Rho-GTPase contentM increases.

M = 4, 6, 10 for Turing-type model andM = 30, 40, 50 for wave-pinning model. F) When two peaks of unequal
size form in Turing-type models, they compete rapidly and resolve to a single peak, whereas two mesas of

unequal size in Wave-pinning models are meta-stable. Parameter values are a = 1�m2, b = 1 s−1 and
Du = 0.01�m2s−1, Dv = 1�m2s−1 for both models, and k = 1�m2 for wave-pinning model. All models were
simulated on domain size L = 10�m.
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Results87

MCAS model behaviors88

Two-species MCAS systems consist of two partial differential equations (PDEs), governing the89

dynamics of a slowly diffusing activator (GTP-bound GTPase at the membrane) u, and a rapidly90

diffusing substrate (GDP-bound GTPase in the cytoplasm) v. In one spatial dimension, these systems91

take the general form:92

)u
)t
= Du

)2u
)x2

+ F (u, v) (1a)

)v
)t
= Dv

)2v
)x2

− F (u, v) (1b)

where the dynamics of u and v are governed by a diffusion term and a reaction term, F (u, v). To93

reflect the different compartments (membrane and cytoplasm) populated by the different species,94

the diffusion constant of u, Du, is typically two orders of magnitude smaller than Dv, so that u95

spreads much more slowly than v. F (u, v) describes the biochemical interconversions between u96

and v.97

F (u, v) = f (u)v − g(u) (2)

For GTPases, the inactive form of the GTPase v is converted to the active form u through the98

action of guanine nucleotide exchange factors (GEFs) f (u), while u is converted to v through the99

action of GTPase activating proteins (GAPs) g(u). The functions f (u) and g(u) take into account100

potential positive feedback mediated by the active GTPase. Because the inactive GTPase is not101

thought to participate in biochemical reactions other than as a substrate to produce active GTPase,102

under the assumption of mass action kinetics v appears only in the activation term. As the model103

assumes only the exchange between u and v, but not synthesis or degradation of either, the system104

is mass-conserved, so that the total abundance of the GTPaseM = ∫ (u + v)dx is a constant over105

time.106

Generation of a GTPase-enriched domain in MCAS models occurs through positive feedback107

leading to local accumulation of the activator, u, and concomitant depletion of the substrate, v.108

Locally depleted v is quickly resupplied from the whole cytoplasm due to its high mobility, resulting109

in a global depletion of v. This reduces the net rate, F (u, v), at which fresh u is generated (Equation 2),110

impeding further growth of the u-enriched domain, and the system reaches a steady state. At111

steady state, reaction and diffusion must be balanced at all local positions x:112

0 = Du
)2u
)x2

+ F (u, v) (3a)

0 = Dv
)2v
)x2

− F (u, v) (3b)

Given a total protein content M , these equations govern the steady state peak shape u(x) and113

substrate level v(x) for a single peak in an MCAS model (Further discussed in Box 1 and Methods114

section).115

Positive feedback can occur through f (u) (i.e. active GTPase locally stimulates GEF activity) or g(u)116

(i.e. active GTPase locally inhibits GAP activity). Examples of feedback via GEF activation include the117

simple Turing-type model f (u) = au2, g(u) = bu, Goryachev’s simplified model f (u) = au2 + cu, g(u) = bu118

(Goryachev and Pokhilko, 2008), and Mori’s wave-pinning model f (u) = au2

1+ku2
, g(u) = bu (Mori et al.,119

2008). Examples of feedback via GAP inhibition include f (u),= 1, g(u) = bu
(1+u)2

, which resembles120

model I in (Otsuji et al., 2007). To illustrate the behaviors of different MCAS models, we simulated121

examples of Turing-type and wave-pinning MCAS models:122

F (u, v) = au2v − bu (4)

F (u, v) = au2

1 + ku2
v − bu (5)
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With the appropriate choice of parameters, the Turing-type model (Equation 4) yields a peak123

given any spatial perturbation of the homogeneous steady state, while the wave-pinning model124

(Equation 5) requires a supra-threshold perturbation to destabilize the homogeneous state. The125

Turing-type model yields a sharp peak at steady state, while the wave-pinning model yields a flat-126

topped mesa (Figure 1E). Simulations with greater total amounts of GTPaseM yield higher peaks in127

the Turing-type model, but broader mesas (with the same peak height) in the wave-pinning model128

(Figure 1E), and simulations initiated with two unequal peaks yield rapid competition in the Turing-129

type model but apparent co-existence in the wave-pinning model (Figure 1F). These behaviors130

are all consistent with previous reports (Mori et al., 2008, 2011; Otsuji et al., 2007; Ozbudak et al.,131

2005). To understand these different behaviors, we first revisit the basis for competition.132

Competition between peaks arises froma difference in the ability of unequal peaks133

to recruit cytoplasmic GTPase.134

When two unequal peaks are present in the same domain, each peak recruits GTPase from135

the cytoplasm, thereby globally depleting cytoplasmic GTPase. As exchange of GTPase between136

each peak and the cytoplasm is dynamic, the two peaks are effectively recruiting GTPase from one137

another. If the larger peak (the one that contains more GTPase) recruits GTPase more effectively, it138

will grow at the expense of the smaller peak, eventually yielding a uni-polar outcome (Figure 2A,139

scenario 1). If instead, the smaller peak recruits GTPase more effectively, then it will grow while140

the larger peak shrinks, eventually yielding two equal peaks, as observed in some more complex141

models (Howell et al., 2012) (Figure 2A, scenario 2). If two unequal peaks recruit GTPase equally,142

then the two unequal peaks would simply coexist (Figure 2A, scenario 3).143

To understand how these considerations play out for different peaks, we need to know which144

peak will recruit more GTPase. To assess how much GTPase would be recruited to a specific peak,145

consider first the Turing-type model (Equation 4) in the limit Dv → ∞. This model combines a146

quadratic (in u) activation term with a linear inactivation term (Figure 2B). Thus, for a fixed value147

of v, there are two values of u at which activation and inactivation balance each other precisely148

(i.e. fixed points of the net activation curve F (u, v), Figure 2C). Given the concentration profile of a149

peak (Figure 2D, upper panel), F (u, v) determines whether any given location on the membrane will150

gain GTPase from the cytoplasm or lose GTPase to the cytoplasm (Figure 2D, lower panel). At the151

trough in Figure 2D (umin), u approaches the lower fixed point of F (u, v), yielding no net gain or loss of152

GTPase. On the lower flanks of the peak, u values lie between the two fixed points, and inactivation153

outpaces activation, so there is a net loss of u (Figure 2B, C and D). When u rises above the higher154

fixed point of F (u, v), up until the top of the peak (umax), there is net recruitment of GTPase from155

the cytoplasm (Figure 2B, C, and D). At steady state, the net loss from umin to the higher fixed point156

(blue area in Figure 2B, C) is balanced by the net recruitment from the higher fixed point to umax157

(red area in Figure 2B, C, Box 1). Additionally, diffusion from the center of the peak to the flanks158

balances these flows of GTPase, requiring a sharp-topped peak (where negative
)2u
)x2
counteracts net159

recruitment at the center: Equation 3) (Figure 2D). We could generate a larger peak by increasing160

the total GTPase content (M ) of the system: positive feedback would then drive more GTPase into161

the peak, so umax would increase to yield greater net activation in the center of the peak, resulting in162

more severe depletion of cytoplasmic v and hence shifting F (u, v) (Figure 2E). At steady state, the163

red and the blue areas (though each larger than for the smaller peak) would once again be equal.164

Now consider a scenario in which two unequal peaks are present in the same domain. Both221

peaks would grow until cytoplasmic v becomes sufficiently depleted. In the limit where Dv → ∞, v222

will reach this concentration, v∗, throughout the cytoplasm shared by both peaks. Therefore, the223

same net reaction curve will apply to both peaks, but they will have a different umax (Figure 2F). The224

overall recruitment or loss of GTPase for each peak u(x) sharing a common v∗ is given by:225

∫ F (u, v∗)dx (9)
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Figure 2. The basis for competition.

A) Possible outcomes when there are two unequal clusters of Rho-GTPase in the same cell. Scenario 1:

competition occurs if larger clusters recruit GTPase more efficiently than smaller clusters. Scenario 2:

equalization occurs if smaller clusters recruit GTPase more efficiently than larger clusters. Scenario 3:

co-existence occurs if both clusters recruit GTPase equally well. B-F: Turing-type model with Dv →∞. B) Rate
balance plot: activation and inactivation rates are balanced at two fixed points of F (u, v). Filled circle indicates
stable fixed point, and empty circle indicates unstable fixed point. C) Net activation (shaded red) and net

inactivation (shaded blue) from the trough (umin) to the top (umax) of the peak must be balanced at steady state
(Box 1). This determines the peak height (umax). D) Net activation at the center of the peak is balanced by
diffusion, which drives GTPase towards the flanks, where there is net inactivation. E) If total GTPase content is

raised, the model generates higher peaks (larger umax), accompanied by more severely depleted v, which lowers
F (u, v) such that the blue and red shaded areas are once again balanced. F) When two peaks are present, they
share the same v and hence the same F (u, v) curve. The larger peak will always have excess net activation, and
the smaller peak will always have excess net inactivation, so competition is inevitable. Parameter values used:

a = 1�m2, b = 1 s−1 and Du = 0.01�m2s−1, Dv = ∞. All models were simulated on domain size L = 10�m.
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Box 1. Intuitive description of the steady state solutions by analogy to

Newtonian physics.

165

166167

A steady state is reached when the three fluxes, diffusion, activation (conversion of v to u) and
inactivation (conversion of u to v), reach equilibrium at all spatial positions (Equation 3). To
satisfy this condition, the total difference between the activation and inactivation curves (area

shaded from the bottom to the top of the peak in Figure 2B-E) is zero. This can be understood
as follows.

168

169

170

171

172

First, at steady state, we can rewrite Equation 3a in the form173

−F (u, v) = Du
d2u
dx2

(6)

174

175

176

177

In the general scenarioDv < ∞, v = −Du∕Dv+q (Equation 11), where q is a constant representing
the basal substrate level. In the limit Dv →∞, v = q.

178

179

This equation (Equation 6) has the same form as Newton’s second law F = ma, where −F (u, q)
is analogous to the force, Du is analogous to the mass, u is analogous to the position, and “x” is
analogous to time. The relationship between the “force” and the “position” (u) is governed by
−F (u, q). Equivalent to this equation is the condition for conservation of energy,

180

181

182

183

H =∫ Du
d2u
dx2

du + ∫ F (u, v)du (7a)

=Ek + Φ(u, q) (7b)

184

185

186

187

where the constant H is the total energy and the kinetic and potential energies are defined by

the relations

188

189

Ek =
1
2
Du

( du
dx

)2
, F (u, q) =

)Φ(u, q)
)u

190

191

192

193

respectively.194
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The concentration profile u(x) is now analogous to the spatiotemporal trajectory of a ball
rolling under gravity on a 1D potential valley defined by Φ(u, q) (B, left panel; Video 1). When
the ball is at the left edge of the valley, which corresponds to the bottom of a concentration

profile (umin), it has maximum potential energy and zero kinetic energy. As the ball rolls down,
potential energy transforms into kinetic energy, until it reaches the bottom of the valley, where

it has maximal kinetic energy and minimal potential energy. This corresponds to the waist of

the peak in the concentration profile, where the slope of u (du∕dx) is steepest. The ball slows
down as it rolls up the other side of the valley, and eventually stops at a position analogous to

the top of the concentration peak (umax).

195
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204
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Due to energy conservation, the ball must reach the same level at the right edge as at the

left edge of the valley. Since Φ is the integral of F (u, v), energy conservation in the Newtonian
analogy demands that the area between the activation curve and the inactivation curve from

the bottom to the top of the peak sums up to zero. This has been referred to as the "wave-

pinning condition" (Mori et al., 2008), but applies to other MCAS models as well.

205

206

207

208

209

∫

umax

umin

F (u, q)du = 0 (8)

210

211

212

213

With the Newtonian analogy, it follows that the flat top of a mesa corresponds to the ball

staying at umax for a long "time" x. This only occurs when the ball has just enough energy to
reach the top of the potential valley (local maximum of Φ) on the right, where the force on the
ball (F (u, q)) approaches zero (B, right panel; Video 2). Therefore, the conditions for a mesa to
occur are 1) that F (u, q) has a third fixed point, and 2) that the substrate level q is low enough
so the top of the potential valley (local maximum of Φ) reaches the same potential as the left
edge of the valley, which means that umax approaches the third fixed point of F (u, q).

214

215

216

217

218

219

220

The higher the umax of a peak, the larger the overall recruitment, demonstrating that the larger226

peak has a stronger “recruitment power” than the smaller peak (Figure 2F). Thus, in a scenario with227

unequal peaks in the same domain, the larger peak experiences a net gain of GTPase, while the228

smaller peak experiences a net loss, further exacerbating the inequality between the two peaks229

until the smaller peak is eliminated. The Turing model (Equation 4) with Dv → ∞ always competes230

to yield a uni-polar endpoint (scenario 1 in Figure 2A).231

The argument above requires only mass-conservation and non-linear positive feedback, which232

is a core requirement for polarization in general (Gierer and Meinhardt, 1972). Therefore, it would233

seem that all MCAS models should compete, regardless of the specific F (u, v). To verify this, we234

generated steady states with two symmetric peaks in a domain, and performed linear stability235

analysis to show that such steady states are unstable (See Methods section, Figure 9). Perturbations236

that destabilize the steady state yield either competition between the peaks or merging of the peaks.237

Here we focus on competition. Our analysis in the limit of Dv → ∞ indicates that given sufficient238

time, two peaks will always compete to produce a single peak. This result does not depend on the239

form of F (u, v).240

Competition slows down dramatically due to saturation.241

If competition (scenario 1 in Figure 2A) applies to all MCAS models, then why did we not observe242

competition in simulations of the Wave-pinning model (Figure 1G)? In contrast to the Turing-type243

model (Equation 4), the reaction term of theWave-pinningmodel (Equation 5) has saturable positive244

feedback, introducing a third fixed point in F (u, v) (Figure 3A). When the total protein content in245

the system is small, umax does not approach this fixed point (Figure 3B). Under these conditions,246

sharp-topped peaks compete with each other to yield a uni-polar outcome, as with the Turing-type247

model (Figure 3C). But when protein content of the peak is increased, umax approaches the third248

fixed point, and the net activation rate F (u, v) at the top of the peak approaches zero (Figure 3B).249

To satisfy the steady-state condition (Equation 3a), )2u
)x2
must also approach zero. In other words,250

the top of the peak must broaden to become a flat-topped mesa. Once this occurs, increasingM251

only negligibly increases umax, and instead of developing higher peaks the model develops broader252

mesas with comparable umax (Figure 3B). We shall call this maximum value the “saturation point”253

(usat ) of the model.254

When umax approached the saturation point usat , simulations with two flat-topped peaks did not255

show obvious competition (Figure 3D). Applying a drastic perturbation in which 50% of the GTPase256

in one peak was transferred to the other led to a rapid adjustment with both peaks returning to an257

almost identical umax but with different peak widths, after which the unequal peaks co-existed for258
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Figure 3. Competition in Wave-pinning models.

A) The wave-pinning model has a saturable activation term, introducing a third fixed point in F (u, v). Dashed line
indicates usat . Circles indicate stable (filled) and unstable (empty) fixed points. B) As total GTPase levelsM
increase, the peaks get higher until umax reaches the saturation point (the third fixed point), after which peaks
broaden into mesas. C) WithM = 40, two identical peaks were perturbed by 1% at t = 0 s. The resulting
competition led to a single-peak steady state within 100 s. D) WithM = 200, the same 1% perturbation did not
result in noticeable competition in 10000 s. E) Starting from the same two-peak steady state as in D, we
introduced a large 50% perturbation. The two mesas quickly evolved back to the original umax, and then
persisted for 10000 s. k = 0.01�m2. Other parameters same as Figure 2.

prolonged simulation times (Figure 3E) (Note that the two peaks did not “equalize”: they retained259

unequal total GTPase content.) Thus, the same model can yield rapid competition or competition260

so slow as to yield prolonged co-existence, simply as a result of varying the total amount of GTPase261

in the system.262

To investigate more broadly howmodel parameters might influence the timescale of competition263

between peaks, we simulated competition between two unequal peaks in the Wave-pinning model,264

in the limit with Dv → ∞. If we start with a two-peak steady state and noise, the two peaks will265

eventually resolve to one, given sufficient time. As a measure of competition time that should be266

insensitive to the precise degree of the noise, we tracked the time it took for unequal peaks with267

active GTPase content ratio 3:2 to evolve to a content ratio of 99:1. Parameter changes caused268

dramatic changes in competition times, color coded on a log scale in Figure 4A. Notably, increasing269

M always led to slower competition (Figure 4A, left panel). As discussed above, increasing GTPase270

content causes umax to approach the saturation point. Defining a saturation index in terms of how271

closely umax at the two-peak steady state approached the saturation point ((usat − umax)∕usat ), we found272

that the effects of varying parameters on the saturation index closely paralleled the parameter273
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effects on the timescale of competition (Figure 4A, right panel). A similar congruence was observed274

using peak width as a different measure of how closely the system approaches saturation (Figure 4-275

Figure supplement 1). These findings suggest that a large majority of the variation in competition276

times can be explained simply by the degree to which peaks in the model approach the saturation277

point.278

If we plot competition time against umax normalized to the saturation point, all of the simulations279

with different parameter values display one of two clearly distinct behaviors (Figure 4B). Parameter280

changes can alter GTPase content in the peaks (Figure 4A,B, point 1 vs 2), the saturation point (point281

3 vs 4), or the shapes of the peaks (point 5 vs 6). In all cases, whenever umax is not close to saturation,282

competition occurs rapidly. Conversely, as umax approaches the saturation point, competition slows283

sharply and the two-peak situation becomes meta-stable, resembling the co-existence scenario 3 in284

Figure 2A.285

The basis for the drastically slowed competition in simulations with peaks close to saturation286

can be intuitively understood in terms of each peak’s “recruitment power” (Equation 9). When peaks287

approach saturation, unequal peaks differ in width but have almost identical umax and hence only a288

negligible difference in recruitment power (Figure 4C). At the flat tops of the peaks, F (u, v) = 0, so289

the peak tops (of any width) do not contribute to overall recruitment. For that reason, the extra290

GTPase in a broader peak does not give it a significant advantage over the narrower peak, and the291

driving force for competition is negligible.292

Analysis of the eigenvalues from linear stability analysis of this system shows that the timescale293

of competition slows exponentially as the peaks increase in width. This conclusion, again, is general294

to all MCAS models and can be applied to all formulations F (u, v) that allow a third fixed point (See295

methods section, Figure 9).296

Local cytoplasmic depletion also leads to saturation and slow competition.297

When cytoplasmic diffusion is finite (Dv < ∞), a saturation point emerges even if there is no298

explicit saturation in the reaction term. With finite Dv, increasing M in the Turing-type model299

(Equation 4) yields flat-topped peaks that become broader asM increases (Figure 5A), similar to300

that seen with the wave-pinning model (Equation 5).301

To understand this behavior, recall that at steady state, Equation 3 must hold. Adding Equa-302

tion 3a and Equation 3b, integrating and enforcing the periodic boundary condition yields a linear303

relationship between u and v, regardless of the reaction term:304

v = −
Du

Dv
u + q (10)

where q is a constant over space that represents the baseline cytoplasmic level of v, due to global305

depletion of substrate GTPase. This reflects the fact that in addition to global substrate depletion,306

activation due to positive feedback depletes v locally under a peak of u, creating a “dip” in the307

concentration of the cytoplasmic GTPase v that corresponds to the peak of u in a linear manner308

(Figure 5B).309

Local depletion results in an emergent saturation effect, because substituting Equation 10 into310

the reaction term of the Turing type model (Equation 4) gives:311

F (u, q) = au2
(

−
Du

Dv
u + q

)

− bu (11)

This new reaction term F (u, q) is a cubic in u, and can have three fixed points (Figure 5C). The upper312

fixed point reflects the u concentration at which local depletion of v precisely balances the net313

recruitment of u, yielding an emergent saturation point. Thus, even when there is no saturation314

inherent in the reaction term of the model, local depletion of v under the peak acts to limit local315

production of u, introducing a saturation effect. Given sufficient total massM , umax approaches this316

saturation point, resulting in a flat-topped peak for reasons described above with the wave-pinning317
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A) Competition time and saturation are tightly correlated. Competition time (s) is shown in color (note log scale).
Saturation index is defined here as (usat − umax)∕usat , and colored in inverse log scale (smaller saturation index
indicates peaks are closer to saturation). Basal parameters: a = 1�m2s−1, b = 1 s−1, k = 0.01�m2 and
Du = 0.01�m2s−1, Dv = ∞,M = 40, L = 20�m. Each color plot represents a 15-fold parameter variation from 0.2x
~3x of the basal parameter value. White regions indicate parts of parameter space where polarized states

collapse to homogeneous states. Numbered red dots correspond to the simulations illustrated in the inset of

panel B). B) Each of the simulations performed for panel A) is plotted as one dot. Competition time (Y axis) is

plotted against peak height umax normalized to the saturation point usat for that simulation (X axis). Inset graphs
indicate starting conditions for the selected simulations with parameters indicated by red dots in A). C) When

two mesas coexist, they share the same F (u, v) curve and almost the same umax. Thus, the wider peak has a
negligible recruitment advantage over the narrower one.

Figure 4–Figure supplement 1. Peak width, lmesa, is a robust indicator of saturation over a broad range of

system parameters. Data points collected from simulations in Figure 4A.
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Figure 5. Local substrate depletion leads to saturation and slow competition.

A) Turing-type model with Dv <∞ displays a transition between sharp peaks and flat-topped mesas with
increasedM . B) Local depletion of v in the cytoplasm beneath the peak results in a linear relationship between
the concentration profile of v and u. Inset indicates u profile. C) The effect of local depletion transforms the
reaction term of the Turing-type model from a quadratic F (u, v) to a cubic F (u, q), yielding a third fixed point. D)
The cubic reaction term F (u, q) results in a behavior similar to that of the wave-pinning model: WhenM is low, q
is high, and the peak is sharp; whenM increases, depletion of cytoplasmic substrate makes F (u, q) drop, and
umax eventually approaches a saturation point. E) Peaks saturated by local depletion are meta-stable. F)
Saturation index correlates with competition timescale. Simulations and display as in Figure 4A,B. Parameter
variations in a vs b and Du vs Dv consist of 30x30 simulations each of 0.1x ~3x of the basal parameter values.

Parameter variations inM vs L consists of 15x15 simulations of 0.2 ~3x basal parameter values. Basal
parameters are as in Figure 4A, except that Dv = 1�m2s−1. Graph shows all simulations plotted as in Figure 4B,
with illustrative simulations corresponding to numbered red dots. G) When Dv, the basal cytoplasmic substrate

concentration underneath each peak (shown in dashed lines) quickly reaches a quasi-steady state with the peak.

The stronger the recruitment power of the peak, the lower the basal cytoplasmic substrate level. This creates a

cytoplasmic gradient when two peaks have different recruitment power, resulting in a cytoplasmic flux towards

the larger peak. The gradient becomes negligible when both peaks are saturated, resulting in meta-stable

peaks.
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models.

A, B) Simulations of Turing-type (Equation 4) and Wave-Pinning model (Equation 5). u is indicated in red, v in
blue. Dashed line indicates the saturation point. M = 2, Du = 0.01�m2s−1, Dv = 1�m2s−1 for both models;
k = 0�m2 for the Turing-type model and k = 0.01�m2 for the Wave-Pinning model. C) Behaviors of the
Wave-Pinning model. Stability of the homogeneous steady state was calculated as in methods section.

Saturation index was extracted from simulated 2-peak steady states, plotted in color in log scale. Uncolored

regions indicate parameter spaces where the 2-peak steady state collapses to the homogeneous steady state.

D,E) Both the Turing and the Wave-Pinning model can manifest wave-pinning behavior. Initial conditions for

both simulations are u = 0, v =M , with a spike in u that triggers the wave. u is indicated in red, v in blue.
Parameter values are the same as in A and B, except thatM = 2.6.

model (Figure 5D). In this case, it is possible to derive a simple expression for the saturation point:318

usat =

√

2bDv

aDu
(12)

As with saturation due to the wave-pinning reaction term, saturation by local depletion also slowed319

competition dramatically, leading to meta-stable peaks (Figure 5E). Exploration of a wide parameter320

range indicated that as with saturation via the reaction term, saturation due to local depletion of321

substrate is also a dominant contributor to the timescale of competition (Figure 5F).322

When Dv < ∞, two unequal peaks no longer “see” the same level of substrate, v. Instead, the323

local v rapidly reaches a quasi steady-state with each peak (Figure 5G). When two unsaturated324

peaks coexist, the higher peak has a stronger recruitment power for reasons discussed in Figure 2F.325

This drives a greater depletion and hence lower baseline of v under the higher peak, generating a326

cytoplasmic v gradient that drives a flow of GTPase towards the higher peak, and hence competition327

(Figure 5G). In contrast, when two unequal but saturated peaks coexist, they have similar recruit-328

ment power, so there is a negligible cytoplasmic gradient, and competition occurs on a dramatically329

slower timescale.330

Unifying Turing and Wave-pinning models331

As the Turing-type and Wave-pinning models behaved similarly with regard to to competition332

and saturation, we revisited their behavior with regard to diffusion-driven instability and wave-like333
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spread. We first explored the behavior of simulations of the Wave-pinning (Equation 5) and Turing-334

type (Equation 4) models starting from the homogeneous steady state with random noise for u.335

In both cases, multiple peaks formed and then rapidly competed. As the winning peaks grew to336

approach the saturation point, competition slowed dramatically (Figure 6A). Linear stability analysis337

of the wave-pinning model (see Methods section) confirmed that there is a parameter regime in338

which this model is Turing unstable (Figure 6C).339

Wave-pinning dynamics are thought to depend on a bi-stable system (Mori et al., 2008, 2011).340

As we showed that Turing-type models can exhibit bi-stability due to local depletion of cytoplasmic341

substrate, they too should be able to manifest wave-pinning dynamics. Indeed, if we start a342

simulation with one large spike of u and all other material as v, the spike triggers positive feedback343

and expands in a wave-like manner. As the wave spreads, v is depleted, until eventually the344

wave-pinning condition Equation 8 is satisfied, and the wave stops when the top of the peak345

corresponds to the saturation point usat of each model. This behavior is seen in both Turing-type346

and Wave-pinning models without discernible qualitative differences.347

In summary, MCAS models may exhibit Turing instability or Wave-pinning dynamics, and may348

compete effectively or co-exist, depending on parameters. The "typical" behaviors of Turing and349

Wave-pinning models simply represent behaviors of MCAS models in specific parameter subspaces.350

This view is consistent with a recent review (Goryachev and Leda, 2017).351
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Figure 7. Effect of domain size on competition

time.

Effect of expanding the domain size on

competition time. Gray: overall concentration was

set to constant as L increases (proportional

increase of total protein content in the systemM ;
peaks saturate). Blue: overall protein content

constant (peaks shrink to feed the larger

cytoplasm). Red: protein content in the peaks is

maintained constant (identical peak shape).

During competition, GTPase is transferred353

from the “losing” peak to the “winning” peak354

through the cytoplasm. Thus, increased distance355

between the peaks or a decreased diffusion con-356

stant in the cytoplasm would be expected to slow357

the transfer and hence slow competition (an ef-358

fect not seen when Dv → ∞). To assess how359

effective increased distance could be in slow-360

ing competition, we initially considered the ef-361

fect of increasing cell size while keeping overall362

GTPase concentration constant (Figure 7, gray363

line). Competition slowed dramatically as do-364

main size L was increased, but this does not365

distinguish whether increasing distance between366

peaks or increasing total GTPase contentM (mov-367

ing the peaks closer to saturation) is responsible368

for the slowing. Increasing L without changing369

M resulted in GTPase dilution and hence smaller370

peaks that competed more rapidly despite the371

increased distance between peaks (Figure 7, blue372

line). To maintain equivalent peaks, we increased373

L while adding the exact amount of GTPase required to fill the cytoplasm in the extended domain374

so that the amount of GTPase in the peaks remained constant. This scenario allowed us to quantify375

the effect of increasing distance between peaks without confounding changes in peak size. The376

result was that competition became slower in a sub-linear manner with distance (Figure 7, red line).377

Thus, distance between peaks can slow competition, but does so in a much more gradual manner378

than the approach to saturation.379

Other MCAS models also link competition timescale to saturation380

Our analysis has focused on specific illustrative models, but many other forms of F (u, v) in381

Equation 2 can also support polarization. For example, positive feedback strength may vary,382
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Figure 8. Other MCAS models also link competition timescale to saturation.

Competition time as a function of saturation for other MCAS models. Insets: peak shape upon reaching

saturation. Red dashed lines indicate saturation point. A) weak positive feedback, F (u, v) = u1.2v − u; B) strong
positive feedback, F (u, v) = u3v − u; C) additional negative feedback F (u, v) = (u2 − 0.01u4)v − u; D) Goryachev’s
simplified model F (u, v) = (u2 + u)v − u (Goryachev and Pokhilko, 2008); E) Otsuji’s model 1
F (u, v) = a1v − a1(u + v)∕[a2(u + v) + 1]2 with the original parameters described in (Otsuji et al., 2007). In each
instance, competition time slows down dramatically as peaks saturate. F) In Otsuji’s model 2 with the original

parameters, F (u, v) = a1(u + v)[(Du∕Dvu + v)(u + v) − a2] (Otsuji et al., 2007), saturation is avoided by allowing
negative values of u or v.

yielding different exponents for the activation term (e.g. f (u) = u1.2 with weak feedback, or f (u) = u3383

with strong feedback). Or, positive feedback may operate by reducing inactivation rather than by384

increasing activation (e.g. f (u) = 1, g(u) = u∕(1 + u2)). Or, positive feedback may be accompanied385

by negative feedback, as proposed for the yeast polarity circuit (Howell et al., 2012; Kuo et al.,386

2014) (e.g. f (u) = u2 − cu4). As local cytoplasmic depletion is a universal mechanism of saturation,387

we would expect that competition time slows down as the system approaches saturation in all of388

these models. Indeed, all of these variations displayed a saturation point, leading to a transition389

from sharp peaks to mesas asM was increased. And in each case, the change in peak shape was390

accompanied by a dramatic slowing of competition (Figure 8A-E). This suggests that our findings391

are broadly applicable to MCAS models.392

The only counterexample we have encountered so far is model II from Otsuji et al. (2007), where393

394

F (u, v) = a1(u + v)
[(

Du

Dv
u + v

)

(u + v) − a2

]

(13)

Unlike other reaction terms based on mass action kinetics (Equation 2), this reaction term is not395

dependent on v, but rather on the combined concentration of u and v. Thus, activation in this model396

is no longer restricted by v depletion as in the other models mentioned above, and v can assume397

negative values when u is high, avoiding saturation (Figure 8F). This eliminates the effect of local398
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depletion: When v is substituted with −Du
Dv
u + q, F (u, q) is a curve lacking a third fixed point (and399

hence lacking saturation). However, as concentrations of u or v cannot be negative in cells, this400

model is not physiologically relevant.401

Discussion402

Competition between peaks obeys a “saturation rule”403

Early studies onMCAS systems emphasized that different models can display different behaviors,404

including Turing instability and wave-pinning dynamics. In the parameter regimes examined,405

Turing-type model peaks displayed rapid competition, while wave-pinning model peaks co-existed,406

suggesting that competition might be linked to model architecture. However, our findings do not407

support a categorical distinction between model types. Indeed, a classical wave-pinning model can408

exhibit Turing instability depending on parameters, and a classical Turing-type model can exhibit409

wave-pinning behavior when the total GTPase amount is increased (Figure 6) (Goryachev and Leda,410

2017).411

Instead of categorizing MCAS models into different types, our findings lead us to propose that412

the dynamics of competition between peaks obey a “saturation rule”. We suggest that competition413

between activator peaks for the shared pool of cytoplasmic substrate (scenario 1 in Figure 2A)414

is universal for all biologically relevant MCAS models. However, each model encodes a calcula-415

ble, parameter-dependent saturation point, such that the peak activator concentration cannot416

exceed that level at a polarized steady state. As the peak activator concentration approaches417

the saturation point, the difference between unequal peaks in terms of their ability to recruit418

cytoplasmic substrates becomes negligible, leading to dramatically slower competition and effective419

co-existence between peaks (scenario 3 in Figure 2A). Varying parameters affects competition time420

predominantly by affecting the degree to which competing peaks approach the saturation point.421

Biological implications of the saturation rule422

The models considered in this report represent a drastically simplified system compared to any423

biological system. Three simplifying assumptions are particularly noteworthy. First, we considered424

only a single spatial dimension, whereas cell membranes are two-dimensional and the cytoplasm425

is three-dimensional. Higher dimensions introduce additional factors such as curvature (Mori426

et al., 2011; Ramirez et al., 2015) that may also affect competition. Second, because polarization427

phenomena often employ stable proteins and occur on rapid timescales compared to cell growth,428

MCAS models assume a constant domain size and constant protein amount. This may not always429

apply. Third, we modeled two-component systems, whereas all known polarity systems have430

multiple components. More realistic multi-component models of the budding yeast polarity circuit431

exist (Goryachev and Pokhilko, 2008; Howell et al., 2009; Kuo et al., 2014; Wu et al., 2015) and432

preliminary simulations indicate that they too behave according to the saturation rule. However,433

adding additional components can yield emergent behaviors not seen in the two-component434

systems (Marcon et al., 2016; Otsuji et al., 2010). Thus, predictions of the saturation rule will need435

to be tested experimentally to assess whether the insights derived from simple MCAS models are436

translatable to biological systems.437

The most obvious prediction stemming from the saturation rule is that systems should transition438

between uni- and multi-polarity regimes as total GTPase contents change: lower levels should439

yield uni-polarity, while higher levels sufficient to allow activator concentrations to approach the440

saturation point should yield multi-polarity.441

In the tractable budding yeast Saccharomyces cerevisiae, the master polarity regulatory GTPase,442

Cdc42, becomes concentrated at polarity sites. Initial peaks of Cdc42 appear to compete on a 1443

minute timescale to leave only one winning peak. Moderate overexpression of Cdc42 did not change444

this behavior (Howell et al., 2012). Simultaneous overexpression of Cdc42 and its GEF blocked445

polarization (Ziman and Johnson, 1994), presumably because active GTPase spread throughout the446
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cell cortex. This phenomenon has been explored in Turingmodels: when component concentrations447

are too high, the system no longer polarizes, but instead evolves to a stable steady state with high448

levels of activator uniformly distributed all over the surface (Howell et al., 2012).449

One way to avoid uniform activation is to increase cell volume as well as total protein content450

in parallel, maintaining overall concentrations unchanged, which is analogous to the gray line in451

Figure 6. Yeast cells occur naturally as haploids and diploids, and cells with higher ploidy can be452

constructed. It is also possible to block cytokinesis, generating larger cells due to failed cell division.453

It appears that cell volume and total protein amount scale with ploidy for most proteins, so that total454

protein concentrations remain generally unchanged. If we were to keep the activator and substrate455

concentrations at the homogeneous steady state of an MCAS model constant, then a model with456

a larger domain size would provide a larger pool of substrate, allowing greater local enrichment457

of the activator, so that peak activator concentrations would approach the saturation point. This458

predicts that as cells become larger they should eventually switch from uni- to multi-polarity.459

For some filamentous fungi, like Ashbya gossypii, development proceeds through a cell enlarge-460

ment process in which a single shared cytoplasm houses more and more nuclei. This provides a461

natural system that samples a large range of cell sizes. Cell polarity in A. gossypii is thought to be462

governed by the same Cdc42-centered circuit employed in S. cerevisiae, but these cells transition463

from always having a single polarity site when they are small (following germination), to having464

two (and then more) polarity sites as they grow larger, leading to hyphal branching (Knechtle et al.,465

2003). Sporadic septation (division separating parts of a single large cell into two smaller ones)466

can restore a single polarity site to the cell, but continued growth then leads to additional polarity467

site(s) again. This behavior is consistent with a switch from uni- to multi-polarity according to the468

saturation rule. A prediction for this system would be that reducing total content of polarity proteins469

should delay the switch from uni-polar to multi-polar behavior, so that it would take a larger cell to470

initiate a hyphal branch.471

Conclusions472

We have examined the behavior of a family of simplified mathematical models that capture key473

aspects of the behavior of the Rho-GTPases that regulate the formation of cortical domains in cells.474

Our analysis suggests that all biologically relevantmodels of this type (and there are several varieties)475

display reproducible transitions in system behavior as parameters vary. In particular, each model476

has a saturation point that depends on model parameters. With low amounts of GTPase, the system477

forms sharp peaks of active GTPase, but as GTPase levels increase, the peak GTPase concentration478

approaches the saturation point and the concentration profiles broaden into flat-topped mesas. If479

there are two or more peaks of GTPase, the peaks will compete with each other until one emerges480

as the single stable winner. However, the time scale of competition slows dramatically as the peaks481

broaden, so in practice the systems transition from a situation with rapid cut-throat competition to482

one in which competition is so languid that peaks co-exist on biologically relevant timescales. Local483

depletion of the cytoplasmic substrate provides a mechanism of saturation that is universal to all484

activator-substrate systems, so regardless of the specific biochemical feedback mechanism, a cell485

that polarizes through local activation and substrate depletion should be able to switch between uni-486

or multi-polar outcomes by regulating system parameters. The discovery of this intrinsic property487

of the Rho-GTPase system suggests hypotheses testable in the context of various different cell488

types.489

Methods490

Model simulation491

Simulations of the MCAS models were done on MATLAB with parameters described in the492

main text. All models were simulated on 1-dimensional domains with fixed spatial resolution of493

500 grid points, except the simulations with long L, where number of grid points was increased494
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proportionately. The linear diffusion term was implemented by the implicit finite difference method,495

and the non-linear reaction term by the explicit Euler method every time step. For simulations in the496

limit Dv → ∞, the mean of v was taken every time step. Simulations proceeded with adaptive time497

stepping according to relative error in the reaction term. The MATLAB code used for simulations is498

provided in Source Code Files.499

Calculation of competition time500

Simulations of competition is generally generated as follows: Two-peak steady states were501

first generated by simulating the evolution of the homogeneous steady state with an added sine502

wave. Perturbations were then introduced by increasing the amplitude of the concentration profiles503

u(x) v(x) at regions that we call the first peak by a given percentage (e.g. a 20% increase), and504

decreasing the amplitude of the second peak by the same percentage (e.g. a 20% decrease). The505

resulting two unequal peaks were then allowed to compete.506

For simulations used in Figure 4A and Figure 5F, we recorded the measurements of the peak507

height (umax) to calculate the saturation index, and the competition time. The steady state umax was508

obtained from the two-peak steady state. The two peaks were then perturbed by increasing the509

protein content of the left half-domain and decreasing the protein content of the right half-domain,510

so that each half has 60% and 40% of the originalM , respectively. For more accurate measurements511

of the competition time, the two halves were first simulated individually to their own steady states512

in isolation. Upon the start of competition, the two half-domain were allowed to communicate513

through diffusion, and the competition time was calculated by measuring the resolution time of514

two unequal peaks from 60% and 40% at the beginning to 99% and 1%.515

Non-dimensionalization of MCAS Models516

We consider themass-conserved activator-substrate (MCAS) model in a one-dimensional domain517

with periodic boundary conditions,518

)u
)t

= Du
)2u
)x2

+ F (u, v) (14a)

)v
)t

= Dv
)2v
)x2

− F (u, v) (14b)

where the diffusion of v is much faster than u, as set by Dv ≫ Du.519

This model is a mass-conserved version of an activator-substrate model, where u is the activator520

and v is the substrate. As the activator concentration u increases at certain locations, the substrate521

v is depleted at the same rate, therefore, the massM is a constant conserved for all time,522

M = ∫

L

0
(u + v) dx. (15)

The reaction terms of these models, given by F (u, v), generally contain a v-dependent activation523

term with nonlinear positive-feedback, and a v-independent inactivation term.524

F (u, v) = f (u)v − g(u) (16)

For example, the model proposed by Mori et al. (2008). has an f (u) with a saturable non-linear525

term and a linear g(u),526

F (u, v) =
(

k0 +
au2

K2 + u2

)

v − bu (17)

We assume negligible k0, and rewrite this system with dimensionless variables ũ, ṽ, x̃, t̃, by scaling
the length by the domain size L, and time by T and u and v by U ,

x̃ = x
L
, t̃ = t

T
, ũ = u

U
, ṽ = v

U
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yielding527

)ũ
)t̃

=
DuT
L2

)2ũ
)x2

+ F̃ (ũ, ṽ) (18a)

)ṽ
)t̃

=
DvT
L2

)2ṽ
)x2

− F̃ (ũ, ṽ) (18b)

where the nondimensionalized reaction terms are now

F̃ (ũ, ṽ) = T
U

(

a U 2ũ2

K2 + U 2ũ2
Uṽ − bUũ

)

and the non-dimensional mass M̃ is

M̃ = M
U
= ∫

1

0
(ũ + ṽ) dx̃

Setting the timescale and concentration scale as

T = 1
b
, U = K

√

b
a

and dropping the tildes, puts the system into the form528

)u
)t

= � )
2u
)x2

+ F (u, v) (19a)

)v
)t

= r� )
2v
)x2

− F (u, v) (19b)

where529

F (u, v) = u2

1 + �u2
v − u (20)

and the dimensionless parameters are

� =
Du

bL2
, r =

Dv

Du
, � = U

K
= b
a
.

Setting � to zero, we obtain a "Turing-type” system with530

F (u, v) = u2v − u. (21)

Steady state solutions for the Dv ≫ Du limit531

We first consider the simplified case where r → ∞. The solutions u, v are expanded as regular532

perturbation series with respect to inverse powers of r,533

v = v0 +
1
r
v1 + O(r−2) u = u0 +

1
r
u1 + O(r−2), (22)

and substituted into (19ab). The leading order equation for u0 at O(1)mirrors (19a),534

)u0
)t

= �
)2u0
)x2

+ F (u0, v0), (23a)

while at O(r), the leading order equation for v0 becomes v0,xx = 0. Subject to the periodic boundary535

conditions, this forces v0 to be spatially uniform, but it can depend on time, v0 = v0(t). In order to536

obtain an equation defining the evolution of v0 we proceed to the next term in the expansion. At537

O(1) we find that in order for a solution for v1 to exist, the inhomogeneous terms in the equation538

must satisfy a solvability condition. Set by the Fredholm alternative theorem, this condition gives539

the evolution for v0(t) in terms of the reaction rate averaged over the domain,540

dv0
dt

= −∫

1

0
F (u0, v0) dx. (23b)

This equation effectively describes the evolution of the average substrate concentration in the541

well-mixed limit. Moving forward, we will drop the zero-subscripts and focus on solving this leading542

order system.543
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At steady state, the solution (uss(x), vss) satisfies the system of equations544

0 = �
d2uss
dx2

+ F (uss, vss) (24a)

0 = −∫

1

0
F (uss, vss) dx (24b)

and the constraint on the total mass

M = vss + ∫

1

0
uss dx.

To understand the properties of the solutions it is helpful to integrate (24a) with respect to du to
obtain

H = ∫ �
d2uss
dx2

du + ∫ F (uss, vss) du

= ∫ �
d2uss
dx2

du
dx

dx + ∫ F (uss, vss) du

= �
2

(

duss
dx

)2

+ ∫ F (uss, vss) du

= Ek + Φ(uss, vss) (25)

whereH is a constant and

Ek =
�
2

(

duss
dx

)2

Φ(uss, vss) = ∫ F (uss, vss) du.

Solutions uss(x) can be found that have any number of peaks, n, with corresponding spatial period545

P = 1
n
. These steady states are spatially periodic multi-peak solutions, with all peaks being all546

identical and are equally spaced within each solution (Figure 9-Figure supplement 1).547

The local extrema, umin and umax, occur where duss∕dx = 0. A direct consequence of this is that for548

a given value ofH , the integral of F (u, v) from umin to umax must be zero to satisfy (25). This condition549

has been referred to as the wave-pinning condition (Mori et al., 2008), and is general to all MCAS550

models,551

Φ(umin, v) − Φ(umax, v) = 0. (26)

There also exists a special value of the cytoplasmic concentration v, which we call vsat at which552

F (umin, vsat) = F (umax, vsat) = 0 (27)

We refer to this condition as the saturation condition, which is crucial for later discussion of553

competition time scale. At saturation, umin = 0 and we label the value of umax as usat , which is the554

largest value of umax possible.555

Stability Analysis of Multipeak Steady States556

The key question of whether competition happens between two peaks can be answered math-557

ematically by assessing the stability of the two-peak steady state solution (uss(x), vss). Consider558

the multi-peak steady state when peak number n = 2, a steady state solution (uss(x), vss) has two559

identical peaks centered at x = 1
4
, x = 3

4
. Each peak is reflectionally symmetric about its maximum560

and the overall solution is also symmetric about x = 1
2
(see Figure 9-Figure supplement 2.).561

The stability of the two-peak solution is studied by assuming small perturbations of the form

u(x, t) = uss(x) + �U (x)e�t v(t) = vss + �V e�t

where � and (U (x), V ) satisfy the linearized eigenvalue problem562

� d
2U
dx2

+ )uF (uss(x), vss)U (x) + V )vF (uss(x), vss) = �U (x) (28a)

−∫

1

0
)uF (uss(x), vss)U (x) dx − V ∫

1

0
)vF (uss(x), vss) dx = �V . (28b)
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The solution (uss(x), vss) is unstable if there exists at least one eigenvalue with Re(�) > 0.563

To approach this question it is sufficient to restrict attention to a particular form of eigenmode,564

one with U (x) being antisymmetric with respect to x = 1
2
, namely U (x + 1∕2) = −U (x). Since uss(x) is565

symmetric with respect to x = 1
2
, the integrand of the first integral in (28b) is antisymmetric and566

hence the integral on the whole domain must vanish. Consequently, for this type of eigenmode,567

V = 0 solves (28b) and the system reduces to568

� d
2U
dx2

+ C(x)U (x) = �U (x) where C(x) = )F
)u

|

|

|

|uss(x),vss
. (29)

To solve (29) on the full domain x ∈ [0, 1] with periodic boundary conditions, it is sufficient to569

solve the equation on a quarter domain, x ∈ [0, 1
4
], with boundary conditions570

U1(0) = 0, U ′
1(
1
4
) = 0 (30)

or571

U ′
2(0) = 0, U2(

1
4
) = 0. (31)

The periodic function U (x) is then constructed by extending U1(x) symmetrically with respect to572

x = 1
4
, U1(

1
2
− x) = U1(x) (Figure 9-Figure supplement 3A), or by similarly extending U2(x) anti-573

symmetrically, U2(
1
2
− x) = −U2(x) (Figure 9-Figure supplement 3B).574

We give a shooting argument to show that there is a positive eigenvalue �1 > 0 for solutions575

having the form given by (30). Differentiating the steady state equation (24a) with respect to x, we576

obtain577

�
d2u′ss
dx2

+ )F
)u
u′ss = 0 (32)

Therefore, U (x) = u′ss(x) solves (29) with � = 0. Note that in this case u′ss(0) = U (0) = 0 and578

u′′ss(
1
4
) = U ′( 1

4
) < 0 (there is a finite curvature at umax) and hence the second condition in (30) is not579

satisfied. If � > max(C(x)), we can re-write (29) as �U ′′ = (�−C(x)), U > 0 and U (x)will be monotonely580

growing and U ′( 1
4
) > 0. Since we have constructed solutions achieving positive and negative values581

for U ′( 1
4
), by continuity, there exists an eigenvalue in the range 0 < �1 < max(C(x)) that will yield582

an eigenmode satisfying (30) (Figure 9-Figure supplement 4B). Similarly, there exists a second583

eigenmode of the U2(x) (31) form with eigenvalue in the range 0 < �2 < max(C(x)) (Figure 9-Figure584

supplement 4B).585

To summarize, there exist �1, �2 > 0, thus the two-peak steady state is not stable. Further,586

the eigenfunction U1 corresponds to one peak growing and the other shrinking, i.e. competition587

(Figure 9A). The eigenvalue �1 corresponds to the timescale for competition. On the other hand,588

the eigenfunction U2 corresponds to neighboring sides of each peak growing while the other sides589

shrink such that peaks merge with each other. The eigenvalue �2 corresponds to the timescale for590

merging (Figure 9B).591

The eigenvalues for competition and merging592

As two-peak steady states are always unstable, the distinction between competition and co-593

existence of two peaks (Figure 3C-E) does not reflect a change in stability, but rather, a change in594

the time scale on which competition occurs. As it has been reported that mesas are meta-stable,595

we inquired how the eigenvalues of competition and merging change with increasing width of the596

peaks in a two-peak steady state. We will show that597

�compete ≈ A1e
−
√

c
� lmesa �merge ≈ A2e

−
√

1
� lvalley (33)

where � is the diffusion constant of u, and A1, A2, c are constants. lmesa and lvalley are defined as in598

Figure 9C with lmesa + lvalley =
1
2
. Our derivation proceeds in the following steps:599

1. Approximate the steady state as a step function for C(x) in (29), one segment of which is600

approximated using umin for and the other using umax. The two segments are connected with a601

mid-point boundary condition at x = l (Figure 9-Figure supplement 4).602
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Figure 9. Linear Stability Analysis reveals two unstable modes: competition and merging.

The two eigenmodes U1 and U2 constructed from the linear stability analysis represents competition (A) and
merging (B) of the two peaks in the full domain. C) The eigenvalue for competition �1 decreases exponentially
with increasing peak width lmesa, and the eigenvalue for merging �2 increases exponentially with decreasing
distance between peaks lvalley. The eigenvalues for competition and merging were calculated by the shooting
method for each steady state solution with varyingM from 10 to 32 at an increment of 0.5. The lengths of the
valley and the mesa are equivalent to 2l and 1

2 − 2l, with l defined as the position of half max.

Figure 9–Figure supplement 1. An MCAS system with a given set of parameters can yield solutions of different

periodicities n.

Figure 9–Figure supplement 2. Construction of the two forms of the eigenmode U (x) using even and odd

extensions of the quarter-domain solutions U1(x) (A) and U2(x) (B) for a two-peak solution uss(x).

Figure 9–Figure supplement 3. Schematic representations of the shooting method constructions for the �1
(shooting from x = 0 to x = 1

4 ) (A), and the �2 (shooting from x = 3
4 to x =

1
2 ) eigenmodes (B), which represent

competition and merging modes respectively.

Figure 9–Figure supplement 4. Construction of the approximateU1(x) eigenfunction using hyperbolic functions

with a midpoint boundary condition (36) at position l.
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2. Calibrate themid-point boundary condition using the translational eigenmodeU (x) = u′ss(x), � =603

0.604

3. Solve the approximated version of (29) for the competition eigenvalue subject to the competi-605

tion boundary condition (30) and the mid-point boundary condition calculated in the previous606

step.607

4. Similarly, solve (29) for the merging eigenvalue subject to the merging boundary condition608

(31).609

Approximating the steady state solution610

Without loss of generality, let F (u, v) be the non-dimensionalized wave-pinning model (20),

F (u, v) = f (u)v − u where f (u) = u2

1 + �u2
.

For near-saturation two-peak solutions that have a mesa shape, v is chosen such that (27) is met,611

thus at u = umax,612

F (umax, v) = 0 = f (umax)v − umax ⟹ v =
umax

f (umax)
. (34)

We try to approximate the eigenvalue problem (29) on a quarter domain by a step function. The613

two segments U (x) and Ũ (x) satisfy (29) with uss(x) approximated by u(x) = umin and u(x) = umax614

respectively. The length of U and Ũ are the length of the valley l = 1
2
lvalley and the width of the615

mesa l̃ = 1
4
− l = 1

2
lmesa, respectively. As f ′(umin) = 0, we can re-write (29) into the step function616

⎧

⎪

⎨

⎪

⎩

�U ′′ = (� + 1)U 0 ≤ x ≤ l

�Ũ ′′ = (� + c)Ũ l ≤ x ≤ 1
4

(35)

where

c = 1 −
umaxf ′(umax)
f (umax)

with themid-point boundary conditions617

U (l) = Ũ (l) (36a)

Ũ ′(l) − Ũ ′(l) = ΓU∗(l) (36b)

Solving the mid-point boundary condition618

Since U = u′ss(x) is the translational eigenmode for � = 0 , we first use this solution and (35) to
determine Γ in (36b). The piecewise solutions of (35) are given by

U (x) = sinh(
√

1
�
x) Ũ (x) = A sinh(

√

c
�
( 1
4
− x)),

and then (36) takes the form619

sinh(
√

1
�
l) = A sinh(

√

c
�
l̃)

√

1
�
cosh(

√

1
�
l) −

√

c
�
A cosh(

√

c
�
l̃) = Γ sinh(

√

1
�
l)

yielding620

Γ = 1
√

� tanh(
√

1
�
l)
−

√

c
√

� tanh(
√

c
�
l̃)
. (37)
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Approximating the competition eigenvalue621

To satisfy the competition boundary condition (30), the solutions U, Ũ are chosen in (35) as622

U = sinh(
√

�+1
�
x) Ũ = A cosh(

√

�+c
�
( 1
4
− x)). (38)

Then midpoint boundary condition (36b) can be rewritten with Γ as623

sinh(
√

�+1
�
l) = A cosh(

√

�+c
�
l̃)

√

�+1
�
cosh(

√

�+1
�
l) −

√

�+c
�
A sinh(

√

�+c
�
l̃) = Γ sinh(

√

�+1
�
l)

This yields the equation624

√

�+1
�

1

tanh(

√

�+1
�
l)
−
√

�+c
�
tanh(

√

�+c
�
l̃) = 1

√

� tanh(
√

1
� l)

−
√

c
√

� tanh(
√

c
� l̃)
. (39)

After rearranging terms and making use of simplifications for small �, this equation can be reduced625

to626

�
2
− �
2
√

c
+ 2

√

ce−2l̃
√

c∕� ≈ 0, (40)

which finally yields627

�compete ≈ A1e
−
√

c
� lmesa with A1 =

4c
1 −

√

c
. (41)

Approximating the merging eigenvalue628

Similarly, to satisfy themerging boundary condition (31), the solutions U, Ũ are chosen as629

U = cosh(
√

�+1
�
x) Ũ = A sinh(

√

�+c
�
( 1
4
− x)) (42)

Substituting these solutions into the midpoint boundary conditions (36b) yields630

cosh(
√

�+1
�
l) = A sinh(

√

�+c
�
l̃)

√

�+1
�
sinh(

√

�+1
�
l) −

√

�+c
�
A cosh(

√

�+c
�
l̃) = Γ cosh(

√

�+1
�
l)

This system of equations can then be reduced to the condition

√

�+1
�
tanh(

√

�+1
�
l) −

√

�+c
√

� tanh(

√

�+c
�
l̃)
= 1

√

� tanh(
√

1
� l)

−
√

c
√

� tanh(
√

c
� l̃)

Again, neglecting smaller terms in the limit that � is small, we obtain

�
2
− 2e−2l∕

√

� − �
2
√

c
= 0

which finally yields631

�merge ≈ A2e
−
√

1
� lvalley with A2 =

4
√

c
√

c − 1
, (43)

and recall that lvalley =
1
2
− lmesa. We can numerically calculate two-peak steady-states over a range632

of values for lmesa by varying the total massM . The computed results for �compete and �merge for the633

two-peak steady states confirm these analytical predictions (Figure 9C).634

The width of a mesa is an indicator that perfectly correlates with how close to saturation a peak635

is. Defining a saturation index as (usat − umax)∕usat , and lmesa as normalized by
√

b∕Du, we find that two636

peak steady states of the dimensional model (Equation 5) plotted in Figure 4 collapse into a perfect637

correlation, no matter what parameter we change (Figure 4-Figure supplement 1). The relationship638

between lmesa shows that the wider the mesa, the more saturated the two peak steady states are,639

and thus the less efficient competition will be.640
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Turing stability of the Wave-pinning model641

We investigate the stability of the wave-pinning model below, and find that with appropriate642

parameters, the Wave-pinning model is indeed Turing unstable.643

The reaction term of the wave-pinning model (20) has three roots. One is the trivial solution,

which is always Turing stable:

u = 0, v =M (44)

The non-trivial solutions can be obtained from

uv
1 + �u2

− 1 = 0 → (� + 1)u2 −Mu + 1 = 0.

This yields two solutions644

u =
M ±

√

M2 − 4(� + 1)
2(� + 1)

v = u −M (45)

under the condition

M >
√

4(� + 1).

The condition for Turing instability inMCASmodels reads as follows (Mori et al., 2008; Rubinstein645

et al., 2012):646

rFu − Fv > 0 (46)

where r = Dv∕Du and Fu and Fv are the derivatives of F (u, v) with respect to u,

Fu =
2uv

(1 + �u2)2
− 1, Fv =

u2

1 + �u2
.

Since the homogeneous steady states satisfy

uv
1 + �u2

− 1 = 0

then condition (46) becomes

2r − u2

1 + �u2
− r > 0 → 2r − u2 > (1 + �u2)r.

Therefore, the Turing unstable condition in the non-dimensional system (19, 20) reads:647

u2
(

� + 1
r

)

< 1. (47)

In the Turing-type model at when k is small, the system is easily Turing unstable due to large ratio r648

between the two diffusion constants.649
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Figure 4–Figure supplement 1. Peak width, lmesa, is a robust indicator of saturation over a broad

range of system parameters. Data points collected from simulations in Figure 4A.
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Figure 9–Figure supplement 1. An MCAS system with a given set of parameters can yield solutions

of different periodicities n.
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Figure 9–Figure supplement 2. Construction of the two forms of the eigenmode U (x) using even
and odd extensions of the quarter-domain solutions U1(x) (A) and U2(x) (B) for a two-peak solution
uss(x).
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Figure 9–Figure supplement 3. Schematic representations of the shooting method constructions

for the �1 (shooting from x = 0 to x = 1
4
) (A), and the �2 (shooting from x = 3

4
to x = 1

2
) eigenmodes

(B), which represent competition and merging modes respectively.
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Figure 9–Figure supplement 4. Construction of the approximate U1(x) eigenfunction using hyper-
bolic functions with a midpoint boundary condition (36) at position l.
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