
	 1	

Phytoplankton	traits	from	long-term	oceanographic	time-series	
Running	page	head:	Phytoplankton	traits	from	time-series	data	
	
Crispin	M	Mutshinda1,	Zoe	V	Finkel2,	Claire	E	Widdicombe3,	Andrew	J	Irwin1	
1	Mathematics	&	Computer	Science,	Mount	Allison	University,	Sackville,	NB,	Canada,	E4L	
1E6	
2	Environmental	Science,	Mount	Allison	University,	Sackville,	NB,	Canada,	E4L	1A7	
3	Plymouth	Marine	Laboratory,	Prospect	Place,	Plymouth,	UK,	PL1	3DH	
	
Keywords:	Phytoplankton,	time-series,	traits,	growth	rate,	grazing	rate,	English	Channel	
	
Abstract	
Trait	values	are	usually	extracted	from	laboratory	studies	of	single	phytoplankton	species,	
which	presents	challenges	for	understanding	the	immense	diversity	of	phytoplankton	
species	and	the	wide	range	of	dynamic	ocean	environments.	Here	we	use	a	Bayesian	
approach	and	a	trait-based	model	to	extract	trait	values	for	four	functional	types	and	ten	
diatom	species	from	field	data	collected	at	Station	L4	in	the	Western	Channel	Observatory.	
We	find	differences	in	maximum	net	growth	rate,	temperature	optimum	and	sensitivity,	
half-saturation	constants	for	light	and	nitrogen,	and	density-dependent	loss	terms	across	
the	functional	types.	We	find	evidence	of	very	high	linear	loss	rates,	suggesting	that	grazing	
may	be	even	more	important	than	commonly	assumed	and	differences	in	density-
dependent	loss	rates	across	functional	types,	indicating	the	presence	of	strong	niche	
differentiation	among	functional	types.	Low	half-saturation	constants	for	nitrogen	at	the	
functional	type	level	may	indicate	widespread	mixotrophy.	At	the	species	level,	we	find	a	
wide	range	of	density-dependent	effects,	which	may	be	a	signal	of	diversity	in	grazing	
susceptibility	or	biotic	interactions.	This	approach	may	be	a	way	to	obtain	more	realistic	
and	better-constrained	trait-values	for	functional	types	to	be	used	in	ecosystem	modeling.	
	
Introduction	

Phytoplankton	perform	about	half	of	global	photosynthesis,	form	the	base	of	the	
marine	food	web	and	are	important	drivers	of	biogeochemical	cycles	(Field	et	al.	1998).	
Model	projections	of	changes	in	phytoplankton	primary	production	with	climate	over	the	
next	century	are	extremely	variable	(Finkel	et	al.	2010,	Finkel	2014).	Projections	of	
changes	in	communities	and	biogeochemical	cycling	usually	depend	on	mechanistic	models	
of	phytoplankton	productivity	parameterized	with	traits	of	phytoplankton	species	(Le	
Quéré	et	al.	2005,	Litchman	et	al.	2006).	The	traits	used	in	models	vary	according	to	the	
research	questions,	but	most	commonly	include	maximum	growth	rate,	Arrhenius-like	
temperature	effects	on	growth	rate,	half-saturation	parameters	linking	the	growth	rate	to	
resource	availability,	and	grazing	susceptibility	(Litchman	et	al.	2007,	Irwin	&	Finkel	2016).	
At	present,	many	of	these	parameters	are	not	well	constrained	for	phytoplankton	
communities	(Anderson	2005,	Irwin	&	Finkel	2016).	

Phytoplankton	are	evolutionarily	and	ecologically	diverse	and	include	many	phyla	
and	tens	of	thousands	of	species	(Sournia	et	al.	1991,	de	Vargas	et	al.	2015).	This	
complexity	presents	several	challenges	for	trait-based	modeling.	Trait	values	measured	in	
the	lab	are	almost	always	determined	for	a	few	key	species,	while	their	applications	in	
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models	of	natural	communities	usually	apply	to	dozens	to	thousands	of	species.	The	
aggregation	of	similar	species	into	biogeochemically	defined	functional	types	greatly	
simplifies	models,	but	there	is	no	clear	way	to	decide	which	species	should	be	used	as	
representatives	of	each	functional	type	(Merico	et	al.	2004,	Le	Quéré	et	al.	2005,	Hood	et	al.	
2006).	Trait	values	for	species	in	the	same	functional	type	and	trait	values	used	in	models	
vary	widely,	commonly	by	a	factor	of	10-100	(Anderson	2005,	Irwin	&	Finkel	2016).	It	is	
not	clear	how	to	average	trait	values	across	species	to	represent	a	functional	type	since	
phytoplankton	growth	rate	is	a	non-linear	function	of	trait	values.	Furthermore,	species	
well	adapted	to	lab	conditions	may	not	be	representative	of	their	respective	functional	
types	growing	in	natural	communities.	A	second	set	of	challenges	concerns	the	difficulty	of	
using	lab-based	estimates	of	trait	values	in	a	field	context.	Trait	values	quantified	using	
laboratory	cultures	under	controlled	conditions	are	stable	under	repeated	measurement,	
but	there	is	a	challenge	in	identifying	the	most	appropriate	conditions	for	culture	
experiments.	For	example,	the	maximum	growth	rate	is	commonly	estimated	in	the	lab,	but	
differences	in	culture	conditions	from	one	lab	to	another	imply	that	there	is	always	some	
doubt	about	the	true	maximum	growth	rate	for	a	species	(Boyd	et	al.	2013).	Trait-values,	
including	maximum	growth	rate	and	nutrient	uptake	rates,	estimated	in	the	field	can	differ	
substantially	from	those	measured	in	the	lab	(Furnas	1991,	Laws	2013,	Lomas	et	al.	2014).	
Cultures	grown	under	equilibrium	conditions	in	the	lab	may	not	reveal	key	acclimation	
traits	or	the	consequences	of	environmental	variability	that	can	be	crucial	to	the	fate	of	
phytoplankton	in	natural	communities	(Grover	1991,	Raven	2011).	In	summary,	trait	
values	for	most	phytoplankton	species	are	not	available	and	we	do	not	currently	have	
enough	data	to	strongly	constrain	trait	values	used	in	functional	type	models	(Anderson	
2005,	Flynn	et	al.	2015).	

An	approach	that	addresses	many	of	these	challenges	for	determining	trait	values	
for	functional	types	is	to	estimate	those	values	from	long-term	time	series	of	natural	
communities	observed	in	the	field.	Our	goal	is	to	obtain	quantitative	estimates	of	trait	
values	that	define	the	dynamics	of	the	biomass	of	phytoplankton	functional	types.	These	
trait	values	will	be	affected	by	the	species	that	are	present	in	the	community,	the	range	of	
environmental	conditions	observed,	the	spectrum	of	environmental	variability,	as	well	as	
abiotic	and	biotic	interactions.	We	call	them	realized	traits	in	recognition	that	they	are	not	
the	fixed	traits	of	a	particular	species.	This	label	is	an	echo	of	the	difference	between	
fundamental	and	realized	niches,	where	the	realized	niche	is	measured	in	a	community	and	
can	differ	from	the	fundamental	niche	(Hutchinson	1957,	Colwell	&	Rangel	2009).	Here	we	
obtain	realized	trait	values	by	fitting	a	model	of	biomass	dynamics	to	time	series	of	
phytoplankton	functional	type	biomass	and	coincident	environmental	conditions.	The	
model	describes	temporal	biomass	changes	in	terms	of	net	growth	rate	modified	by	
temperature,	irradiance,	total	available	nitrogen	concentration,	and	a	density	dependent	
loss	term.	Realized	trait	values	estimated	from	field	data	may	be	quite	different	from	trait	
values	obtained	in	the	lab	and	may	vary	across	communities	in	different	locations.	The	
advantage	of	these	realized	traits	compared	to	species-level	traits	quantified	in	the	lab	is	
that	these	traits	by	definition	describe	observed	community	dynamics.		

	
Methods	
Data	
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We	used	data	from	the	Western	Channel	Observatory	(WCO)	oceanographic	time-
series	(www.westernchannelobservatory.org.uk)	in	the	Western	English	Channel.	The	
WCO	data	include	phytoplankton,	zooplankton,	and	fish	trawls	together	with	
measurements	of	several	physical	and	chemical	environmental	parameters	such	as	
temperature,	salinity	and	nutrient	concentrations.	The	data	used	here	were	collected	at	
Station	L4	(50°	15.00′N,	4°	13.02′W)	located	about	10	km	south	of	the	Plymouth	
breakwater	with	a	water	column	depth	of	about	50	m	(Harris	2010).	We	used	349	weekly	
observations	of	taxonomically	resolved	phytoplankton	abundance,	temperature,	nitrate,	
nitrite,	and	ammonium	concentrations	sampled	at	10	m	depth	in	the	upper	mixed	layer	and	
sea-surface	irradiance	collected	over	a	7-year	period	spanning	15	April	2003	through	31	
December	2009.	Average	biovolume	measurements	were	recorded	for	each	species	
(Widdicombe	et	al.	2010)	and	converted	to	carbon	content	(Menden-Deuer	&	Lessard	
2000)	to	obtain	biomass	concentrations	(mg	C	m–3)	for	each	species.	We	used	observations	
of	193	taxonomic	categories	identified	as	138	species,	27	genera,	and	28	size-classes	for	
broader	morphological	categories.	Biomass	concentrations	were	aggregated	into	four	
functional	types:	diatoms,	dinoflagellates,	coccolithophorids,	and	phytoflagellates.	The	
phytoflagellate	type	is	taxonomically	diverse	but	is	dominated	(more	than	50%	of	the	
biomass)	by	unidentified	flagellates	less	than	5	µm	in	diameter.	Some	species	may	be	
benthic	or	tychoplanktonic.	We	added	together	the	concentrations	of	nitrate,	nitrite,	and	
ammonium	to	obtain	a	single	inorganic	nitrogen	(mg	m–3)	concentration.	Most	of	the	
variation	in	total	nitrogen	concentration	is	due	to	variation	in	nitrate	concentration.	
Irradiance	(mol	m–2	d–1)	was	measured	continuously	above	the	sea-surface	near	Station	L4	
at	Plymouth	and	averaged	over	the	day.	Data	for	missing	weeks	were	imputed	by	linear	
interpolation	using	the	na.approx	function	from	the	zoo	library	in	R	(R	Core	Team	2016).	

	
The	model		

We	describe	the	multiplicative	growth	rate	of	each	functional	type’s	biomass	as	the	
product	of	the	following	5	components:	(i)	a	net	growth	rate	reduced	by	limitation	due	to	
either	low	light	or	low	nitrogen	concentration,	(ii)	a	temperature	effect,	(iii)	a	density	
feedback	term	dependent	on	the	biomass	of	the	focal	functional	type,	(iv)	a	density	
feedback	term	dependent	on	the	biomass	of	all	phytoplankton	not	in	the	focal	functional	
type,	and	(v)	a	positive	multiplicative	noise	term.	The	change	in	biomass	from	one	week	to	
the	next	(from	week	w–1	to	week	w)	for	each	functional	type	 	is	modeled	by	multiplying	
the	biomass	in	week	w–1	by	the	(multiplicative)	growth	rate	according	to	a	stochastic	
Gompertz	model	(Saitoh	et	al.	1997,	Mutshinda	et	al.	2009,	Mutshinda	et	al.	2011).	We	
chose	to	model	the	net	growth	rate	as	a	linear	combination	of	density-independent	growth	
rate	and	density-dependent	losses,	which	is	most	appropriate	given	the	lack	of	direct	
information	about	grazing	rates,	grazer	biomass,	or	viral	abundance.	Therefore,	the	
biomass	concentration	 	(in	 3mCmg − )	of	the	ith	functional	type	for	each	week	after	the	
first	 	is	described	by	

{ } wiwiiwiiwiwiwi ZYrYY ,1,1,,1,, loglogexp ηφα −−− ++= 	 	 	 	 	 (1)	

where	Zi,w	is	the	combined	biomass	concentration	of	all	phytoplankton	not	including	the	ith	
functional	type	during	week	w.	The	growth	rate,	which	appears	in	the	exponent	of	Eq.	(1),	

i
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.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 9, 2017. ; https://doi.org/10.1101/148304doi: bioRxiv preprint 

https://doi.org/10.1101/148304
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 4	

is	composed	of	a	density-independent	component,	 ,	and	a	density-dependent	
component,	 .	Stochastic	noise	enters	the	biomass	dynamical	
model	(Eq.	1)	through	the	random	multiplicative	noise	terms	 0, >wiη 	assumed	to	be	

serially	independent	and	log-normally	distributed	with	median	one	and	mean	 ,	
so	that	the	natural	logarithms,	 ,	are	independently	zero-mean	normal	with	

respective	variances	 .	The	species-specific	error	variance	 	lumps	together	
sampling	error	and	the	variability	due	to	other	potentially	important	factors	not	included	
in	the	model.	Sampling	error	can	be	reduced	by	using	replicated	samples.	The	log-normal	
distribution	adopted	here	is	widely	used	to	describe	species	abundance	and	biomass	
patterns	(MacArthur	1960,	Sugihara	1980)	on	both	theoretical	and	empirical	grounds.	In	
an	earlier	study	(Mutshinda	et	al.	2016),	we	found	phytoplankton	biomass	at	this	site	to	be	
well	described	by	the	log-normal	distribution.	The	notation	is	summarized	in	Table	1.	

The	traits	to	be	estimated	appear	in	the	multiplicative	growth	rate.	The	density-
independent	component	of	the	growth	rate	for	functional	type	 	from	week	w-1	to	week	w,	
wir , ,	depends	on	Michaelis-Menten	functions	of	irradiance	(PAR,	mol	m–2	d–1)	and	nitrogen	

concentration	(N,	µmol	L–1),	and	a	function	of	temperature	(T,	°C),	according	to	 	

ri,w = µimin
PARw−1

KE,i +PARw−1
, Nw−1

KN ,i + Nw−1

"

#
$$

%

&
''−βi |Tw−1 − ρi | 	 	 	 (2)	

where	 iρ 	denotes	the	optimum	growth	temperature	for	the	biomass	of	functional	type	 	
and	 	is	a	temperature	sensitivity	parameter	quantifying	the	increase	in	the	density-
independent	growth	rate	 	for	a	1°C	change	in	temperature	towards	the	optimum	
temperature	 iρ 	and	vice-versa.	Saturating	functions	of	irradiance	and	nutrient	
concentration	and	their	combination	with	a	minimum	function	are	commonly	used	to	
moderate	growth	rate	(Denman	&	Peña	1999,	Healey	et	al.	2009).	The	net	growth	rate	

	is	the	density-independent	growth	rate	of	the	ith	functional	type	at	optimal	
temperature,	irradiance	and	nitrogen	concentration.	The	effects	of	irradiance	and	nitrogen	
concentration	on	the	growth	rate	are	represented	by	saturating	functions	parameterized	
by	the	half-saturation	constants	KE,i	>0	and	KN,i	>0		representing	respectively	the	irradiance	
level	and	nitrogen	concentration	at	which	the	net	growth	rate	at	optimal	temperature	
drops	to .	The	Michaelis-Menten	saturating	functions	are	combined	with	a	minimum	
function	so	that	only	the	most	limiting	resource	affects	growth	rate	at	a	time,	according	to	
Liebig’s	law	of	the	minimum	(van	der	Ploeg	&	Kirkham	1999).	During	model	development,	
we	explored	the	possibility	of	a	multiplicative	interaction	between	light	and	nutrients,	but	
we	found	the	results	to	be	more	difficult	to	interpret.	

To	accommodate	density-dependent	factors	including	grazing,	viral	attack,	
aggregation	and	sinking,	we	introduce	density	dependent	loss	terms.	In	the	absence	of	
direct	observations	of	these	losses,	we	parameterize	the	density-dependent	losses	with	 	
and	 	to	quantify	the	feedbacks	on	the	growth	rate	of	the	ith	functional	type	from	its	own	

wir ,
)log()log( 1,1, −− + wiiwii ZY φα

)2/exp( 2
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biomass	and	from	the	combined	biomass	of	the	other	functional	types	in	the	community,	
respectively.	The	terms	involving	 	and	 	distinguish	two	different	density-dependent	
loss	terms,	which	could	result	from	specialist	and	generalist	grazer	populations,	
respectively.	For	purposes	of	estimating	the	parameters	in	the	model,	we	rewrote	Eq.	(1)	
on	the	natural	logarithmic	scale	as	

wiwiiwiiwiwiwi zyryy ,1,1,,1,, εφα ++++= −−− 	 	 	 	 	 	 (3)	

where	 )log( ,, wiwi Yy = ,	 )log( ,, wiwi Zz = ,	and	 )log( ,, wiwi ηε = .	

We	adapted	the	functional-type	level	model	described	above	to	define	traits	at	the	
species	level.	This	task	was	challenging	for	two	reasons	namely,	the	greatly	increased	
number	of	parameters	to	be	estimated	and	the	fact	that	most	species	are	absent	from	the	
time	series	for	most	of	the	time,	either	because	they	were	absent	or	their	abundance	was	
below	the	detection	limit.	By	contrast,	missing	values	were	rare	in	the	time	series	of	
functional	type	biomasses.	We	restricted	the	species-level	analysis	to	the	10	diatoms	that	
were	observed	in	about	half	of	the	sampling	occasions	or	more.	These	species	may	not	be	
representative	of	the	functional	type	dynamics	as	a	whole	because	the	selected	species	only	
represent	11%	of	the	diatom	functional	type	biomass.	In	order	to	estimate	a	growth	rate,	
biomass	observations	for	any	particular	species	must	be	available	on	numerous	pairs	of	
successive	weeks.	We	extracted	pairs	of	observations	from	the	full	time	series	to	estimate	
the	growth	rate	from	week	w-1	to	w,	conditional	on	the	species	being	observed	during	
weeks	w-1.	The	species-level	model	differed	from	Eqns.	(1-3)	only	in	the	definition	of	the	
biomass	terms	 wiY , 	and	 wiZ , 	and	the	interpretation	of	the	density-dependent	terms	α	and	
ϕ.	To	emphasize	the	differences	between	the	functional	type	and	species-level	models,	we	
have	added	a	superscript	S	to	the	notation	for	each	trait	in	the	species-level	model.	In	the	
species	model,	 wiY , 	was	the	biomass	of	species	i	in	week	w,	and	 wiZ , 	was	the	sum	of	the	
biomass	of	all	species	in	the	same	functional	type	as	species	i,	except	for	species	i,	in	week	
w.	The	density-dependent	parameter	α	reflects	the	effect	of	species	i	on	itself	while	ϕ	
describes	the	density-dependent	effect	due	to	all	species	in	the	same	functional	type	as	
species	i,	except	for	species	i.	

The	model	is	developed	with	a	Bayesian	approach	(Gelman	et	al.	2013).	Briefly,	
Bayesian	analysis	departs	fundamentally	from	classical	statistical	methods	in	that	it	treats	
any	unknown	quantity	θ 	as	a	random	variable.	As	a	results,	Bayesian	inference	requires	
the	specification	of	a	probability	distribution	 )(θp 	called	prior	distribution	to	describe	the	
uncertainty	about	plausible	values	of	θ 	before	taking	the	data	into	inconsideration.	Upon	
observing	the	data,	 y ,	the	likelihood	function	 )|( θyp 	of	the	data	is	combined	with	the	
prior	distribution	 )(θp 	to	produce	the	posterior	distribution	 )|( yp θ 	which	results	from	
Bayes’	rule	as	

)(
)()|()|(

yp
pypyp θθ

θ = 	 .	 	 	 	 	 	 	 (4)	

The	quantity	 )(yp 	that	appears	in	the	dominator	of	Eq.	(4)	is	the	marginal	distribution	of	
the	data,	defined	as	 ∫Θ= θθθ dpypyp )()|()( ,	which	is	nothing	but	a	normalizing	constant	

iα iφ
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required	to	make	 )|( yp θ 	integrate	to	1	over	the	parameter	space	Θ 	so	that	it	is	a	proper	
probability	distribution.	Therefore	Eq.	(4)	can	be	written	as	 )()|()|( θθθ pypyp ∝ ,	where	
∝ 	stands	for	“proportional	to”.	

The	posterior	distribution	 )|( yp θ 	represents	the	data-updated	information	and	as	
such,	is	the	basis	of	Bayesian	inference	about	unknown	quantities	including	model	
parameters,	missing	values,	and	yet	unseen	data	(prediction).	Having	an	entire	distribution	
rather	than	mere	point	estimates	allows	one	to	fully	account	for	uncertainty.	Bayesian	
conclusions	are	essentially	probability	statements	based	on	the	posterior	distribution.	All	
Bayesian	computations	are	based	on	probability	rules,	resulting	in	more	intuitive	
statements	than	counterparts	in	classical	statistics.	

The	main	problem	of	Bayesian	inference	comes	from	the	difficulty	in	evaluating	
integrals	like	the	one	in	the	denominator	of	Eq.	(4).	In	most	practical	cases	the	posterior	is	
not	available	in	closed-form,	and	sampling-based	algorithms,	mostly	Markov	chain	Monte	
Carlo	(MCMC)	methods	(Gilks	et	al.	1996;	Gilks	2005)	are	typically	used	to	simulate	from	it	
and	base	posterior	inferences	on	the	simulated	samples.	MCMC	methods	indirectly	
simulate	from	a	distribution	g	when	direct	simulation	from	it	is	difficult	or	impossible.	The	
rationale	of	MCMC	sampling	is	to	set	up	a	Markov	chain	whose	stationary	distribution	is	
the	distribution	g	of	interest,	in	this	case	the	joint	posterior	distribution )|( yp θ .	
Consequently,	simulation	of	 ,..., )2()1( θθ 	from	the	chain	yields	a	series	with	the	property	
that	for	large	enough	 j ,	the	density	of	 )( jθ 	is	approximately	g.	In	other	words,	for	a	large	

enough	“burn-in”	period	n ,	 ,..., )2()1( ++ nn θθ 	can	be	regarded	as	a	dependent	series	with	
marginal	density	 g .	Therefore,	empirical	moments	of	this	series	yield	approximations	of	
the	moments	of	 g .	In	dealing	with	complex	problems,	an	extension	of	the	model	beyond	
the	simple	likelihood-prior-posterior	scheme	is	often	required,	yielding	hierarchical	
Bayesian	(HB)	models	(Gelman	et	al.	2013).		

The	model	fitting	to	the	functional	group	biomass	data	was	based	on	independent	
priors	defined	to	be	fairly	uninformative	for	most	parameters.	More	specifically,	we	
assigned	standard	normal	priors	to	the	density-dependence	parameters	 iα 	and	 iφ ,	normal	
priors	centered	at	13oC	(the	average	temperature	at	L4	Station	over	the	time	series)	with	
variance	10	to	the	optimal	temperatures	 iρ ,	standard	normal	priors	constrained	to	
positive	values	on	the	temperature	sensitivities	 iβ ,	Gamma	priors	with	mean	2	and	
variance	1	to	the	functional	group-specific	net	growth	rates,	µ ,	Gamma(1,1)	priors	on	the	
functional	group	specific	error	variances,	and	positively	truncated	normal	distributions	
centred	at	zero	with	variances	100	and	0.1	on	the	irradiance	and	nitrogen	half-saturation	
constants	KE	and	KN,	respectively.	We	imposed	relatively	informative	priors	on	 µ 	and	KN	
based	on	our	previous	experience	with	the	L4	dataset	to	facilitate	model	identifiability.	For	
the	species	model,	we	defined	the	prior	distributions	on	µ ,	KE,	KN,	and	β 	to	be	
concentrated	around	the	FG	estimates	with	relatively	small	variances.		

Since	the	joint	posterior	is	not	available	in	closed-form,	we	used	Markov-chain	
Monte-Carlo	(MCMC)	methods	(Gilks	et	al.	1996)	implemented	in	OpenBUGS	(Thomas	et	al.	
2006)	to	simulate	from	it.	We	ran	40	000	iterations	of	two	parallel	Markov	chains	starting	
from	dispersed	initial	values,	discarded	the	first	15	000	samples	from	each	Markov	chain	as	
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burn-in	period	and	thinned	the	remaining	25	000	samples	by	factor	of	25.	We	assessed	the	
convergence	of	the	Markov	chains	through	visual	inspection	of	traceplots	and	
autocorrelation	functions.	For	all	parameters,	the	Markov	chains	mixed	well	with	the	
sampler	jumping	freely	around	the	parameter	space	as	illustrated	by	Figs.	S1-S3	in	the	
Supplementary	Material.	We	also	conducted	a	simulation	study	to	evaluate	performance	of	
our	model	in	terms	of	inference	and	prediction.	We	extracted	from	the	L4	functional	group	
biomass	data	the	biomass	of	the	two	functional	groups	with	complete	data	over	the	time	
series	namely,	diatoms	and	phytoflagellates.	We	fitted	our	model	to	the	data	with	all	
environmental	variables	(temperature,	irradiance	and	nitrogen	concentration)	set	to	the	
observed	values	at	Station	L4	over	the	time	series.	We	considered	the	posterior	predictive	
means	as	simulated	data	from	the	hypothetical	two	functional	group	system	under	our	
model,	with	underlying	parameter	values	given	by	the	posterior	mean	estimates.	We	fitted	
the	model	back	to	the	simulated	data.	The	model	was	effective	at	retrieving	the	underlying	
parameter	values	as	indicated	by	Figs.	4S	and	5S	in	the	Supplementary	Material.	

	
Results		

The	three	environmental	drivers	of	phytoplankton	growth	rate	included	in	this	
study	(temperature,	irradiance,	and	nitrogen	concentration)	exhibit	strong,	regular	
seasonal	oscillations	over	the	seven-year	time	series	(Widdicombe	et	al.	2010,	Mutshinda	
et	al.	2016).	The	phytoplankton	biomass	for	each	of	four	functional	types	each	exhibit	
distinctive	patterns	of	intra-annual	variation	(Fig.	1).	Diatoms	bloom	first,	increasing	
steadily	in	biomass	from	day	60	to	day	180.	Dinoflagellates	and	coccolithophorids	bloom	
slightly	later,	reaching	a	maximum	biomass	at	approximately	day	225.	The	amplitude	of	
dinoflagellate	biomass	is	the	greatest	across	the	four	types	and	their	sustained	maximum	
growth	and	loss	rates	are	also	the	largest.	Phytoflagellates	have	the	least	inter-annual	
variability,	with	two	minor	biomass	peaks	at	approximately	day	110	and	day	215.	Our	
model	was	able	to	reproduce	the	temporal	patterns	in	the	biomass	of	all	functional	groups	
with	narrow	posterior	predictive	intervals	relative	to	the	total	variation	in	the	data	(Fig	1).	
There	was	insufficient	temporal	resolution	in	the	data	to	observe	short-term	acclimation	to	
changing	conditions,	so	our	focus	remained	on	steady-state	traits	similar	to	those	usually	
used	in	phytoplankton	community	models.	

	
Functional-type	level	analysis	

The	maximum	net	growth	rate	trait,	 ,	is	the	largest	growth	rate	of	functional	type	
	under	any	irradiance	and	nutrient	conditions,	at	its	optimal	temperature	for	growth,	not	
including	density-dependent	grazing,	but	incorporating	linear	grazing	rates.	There	is	
substantial	variability	in	maximum	net	growth	rates	between	functional	types	(whiskers	on	
Fig.	2a).	As	a	group,	diatoms	have	the	largest	net	growth	rate	with	mean	doubling	time	2.5	
days,	followed	by	dinoflagellates	and	coccolithophorids	with	mean	doubling	times	3.5	and	
4	days,	respectively.	Phytoflagellates	have	the	lowest	net	growth	rate	with	approximate	
mean	doubling	time	5	days.	

The	estimated	optimal	temperatures	for	growth	for	diatoms,	dinoflagellates,	
coccolithophorids	and	phytoflagellates	are	15°C,	20°C,	20°C	and	11°C,	respectively,	
implying	that	higher	temperature	conditions	would	favor	dinoflagellates	and	
coccolithophorids	biomass	accumulation	(Fig.	2b).	As	a	group,	dinoflagellates	are	the	most	
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responsive	to	temperature	changes	with	a	temperature	sensitivity	parameter	roughly	twice	
those	of	diatoms	and	coccolithophorids.	On	the	other	hand,	phytoflagellates	are	essentially	
insensitive	to	temperature	changes	at	Station	L4	with	temperature	sensitivity	parameter	
estimated	to	be	close	to	zero	(Fig.	2c).	

The	nitrogen	(nitrate,	nitrite,	plus	ammonia)	half-saturation	constants,	 NK ,	for	all	
groups	are	comparable	to	those	found	in	lab	studies	and	used	in	models	(Fig.	2d).	
Phytoflagellates	have	the	smallest	half-saturation	constants	for	irradiance,	which	is	
consistent	with	their	relatively	small	amplitude	of	biomass	variation	over	the	time	series.	
The	irradiance	half-saturation	constants	for	the	other	three	functional	groups	are	not	
credibly	different	from	one	another	(Fig.	2e).	

The	half-saturation	constants	for	nitrogen	concentration	(posterior	means	ranging	
from	0.008	to	0.04	µmol	L–1)	are	quite	close	to	the	minimum	values	of	the	corresponding	
environmental	data	observed	over	the	time-series	(0-15	µmol	L–1),	suggesting	that	this	trait	
may	not	be	informative	for	predicting	the	biomass	growth	rate	of	these	functional	types	at	
this	location	for	most	of	the	year.	Conversely,	the	half-saturating	constants	for	sea-surface	
irradiance	(posterior	medians	ranging	from	8	to	23	mol	m–2	d–1)	span	most	of	the	lower	
half	of	the	inter-annual	variation	in	irradiance	(10-50	mol	m–2	d–1),	indicating	that	
phytoplankton	growth	rates	vary	with	irradiance	(light	is	sub-saturating)	for	much	of	the	
year	(Fig.	2e).	

All	four	phytoplankton	functional	types	are	affected	by	density-dependent	loss	rates	
(Fig.	2f).	These	losses	have	the	largest	effect	at	high	biomass	concentrations	and	can	
explain	the	maximum	biomass	concentration	for	each	functional	type,	but	they	are	also	
active	at	low	biomass	concentrations	and	are	responsible	for	decreases	in	biomass	when	
growth	conditions	are	unfavorable.	Density-dependent	losses	are	a	combination	of	grazing,	
viral	attack,	and	aggregation	and	sinking	following	bloom	collapse.	For	each	functional	
type,	we	distinguished	between	density-dependent	feedback	due	to	the	functional	type’s	
own	biomass	(α)	and	the	feedback	due	to	the	aggregate	biomass	of	all	the	other	functional	
types	(ϕ).	If	the	density-dependent	loss	terms	are	primarily	due	to	grazing,	we	could	
interpret	α	as	representing	the	losses	due	to	grazers	specializing	on	one	functional	type	
and	ϕ	as	representing	losses	due	to	generalist	grazers	supported	by	populations	of	the	
other	functional	types.	Since	 0<α 	for	all	functional	types	(and	ϕ	≈	0),	the	biomass	of	each	
functional	type	is	largely	regulated	by	specialist	grazers	and	generalist	grazers	have	weak	
density-dependent	effects.	

 
Species-level	analysis	

Diatom	species’	net	growth	rates	were	smaller	than	the	functional	type	counterpart	
for	all	ten	species	examined	(Fig.	3a).	For	all	species,	the	half-saturation	constants	for	
nitrogen	were	roughly	twice	as	large	as	the	functional	group	estimates,	and	the	
temperature	sensitivity	parameters	(the	βS)	were	close	to	0.10	week–1	°C–1	(which	is	within	
the	95%	credible	interval	of	functional	group	estimate),	except	the	two	Pseudo-nitzschia	
strains	which	stood	out	with	temperature	sensitivity	parameters	twice	as	large	(Fig.	3b).	
The	optimal	growth	temperatures	were	extrapolated	outside	the	range	(7.5-18.8°C)	of	
observed	temperatures	for	most	species	(not	shown).	The	species’	half-saturation	
constants	for	irradiance	(not	shown)	varied	from	25	to	30	mol	m–2	d–1.	For	the	species	
model,	the	density	dependent	loss	terms	were	redesigned	to	identify	species-specific	
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density-dependent	loss	rates	and	generic	functional	type	density-dependent	loss	rates.	The	
posterior	distributions	of	density	dependent	parameters	αS	and	ϕS	(Fig.	3d),	imply	a	
stronger	negative	feedback	on	each	diatom’s	biomass	growth	from	its	own	biomass	than	
that	from	the	combined	biomass	of	other	diatoms	( ss φα < ),	consistent	with	niche	
differentiation	within	functional	types	(Mutshinda	&	O’Hara	2011).	Some	of	the	αS	and	ϕS	
for	diatoms	were	positive,	suggesting	the	presence	of	mutually	beneficial	or	commensal	
effects	in	some	species.		

	
Discussion	

Trait-based	models	of	phytoplankton	productivity	promise	to	deliver	robust	
projections	of	phytoplankton	community	dynamics	under	future	climate	scenarios.	
Phytoplankton	traits	are	estimated	in	the	lab	one	species	at	a	time	but	are	commonly	
aggregated	into	functional	types	for	ocean	biogeochemical	models	(Anderson	2005,	Le	
Quéré	et	al.	2005,	Litchman	et	al.	2006).	There	are	several	challenges	that	arise	in	the	
estimates	of	phytoplankton	traits	for	trait-based	models.	Most	species	in	diverse	
communities	have	not	been	systematically	studied	in	the	lab.	Trait	values	vary	across	
species,	even	within	functional	types,	and	it	is	not	clear	how	to	produce	an	average	trait	
value	for	modeling	functional	types.	In	addition,	there	is	considerable	phenotypic	plasticity	
in	traits.	Furthermore,	grazing	rates,	viral	and	parasitic	loss	rates,	sinking	rates	and	biotic	
interactions,	such	as	allelopathy	or	mutualisms,	can	be	complex	and	highly	variable	from	
species	to	species.	It	is	difficult	to	get	good	estimates	of	loss	terms,	such	as	grazing	rate	and	
viral	lysis,	that	are	inherently	species	specific	and	patchy	in	time	and	space,	and	we	are	just	
starting	to	learn	about	the	consequences	of	the	many,	complex	biotic	interactions	between	
phytoplankton	and	their	microbial	communities	(Sher	et	al.	2011,	Amin	et	al.	2015).	It	may	
be	possible	to	overcome	some	of	these	myriad	challenges	using	phytoplankton	traits	
estimated	directly	from	field	data	or	by	combining	lab-based	traits	with	niches	estimated	
from	the	field	(Edwards	2016).	Here	we	extract	functional	type	and	species-level	
phytoplankton	traits	from	time-series	data	from	a	well-studied	coastal	temperate	
phytoplankton	community	in	the	Western	English	Channel	(Harris	2010,	Widdicombe	et	al.	
2010).	The	variability	in	trait	values	we	extracted	from	field	data	likely	reflects	in	part	true	
variability	due	to	acclimation	of	species	within	communities	to	changing	environmental	
conditions	and	changing	community	composition	through	the	seasons.	While	some	of	the	
traits	estimated	here	are	consistent	with	laboratory	estimates	based	on	single	species	
analyses,	many	are	not,	indicating	more	work	is	needed	to	understand	how	phytoplankton	
respond	in	natural	communities.	

Our	estimates	(posterior	means)	of	maximum	net	growth	rate	for	the	phytoplankton	
functional	types	range	from	0.9	to	1.8	week-1	(a	mean	doubling	time	of	5	to	2.5	days)	and	
for	the	10	individual	diatom	species	from	0.5	to	1.5	week-1	(a	mean	doubling	time	of	10	to	3	
days).	Our	growth	rate	estimates	are	consistently	lower	than	lab-based	estimates	of	growth	
rate	from	unialgal	cultures	and	in	situ	field	estimates	of	growth	rate	of	individual	species	
(grazers	excluded)	that	can	double	more	than	once	a	day	(Furnas	1990,	1991,	Raven	et	al.	
2005).	Maximum	in	situ	growth	rates	for	three	of	our	ten	diatom	species	have	been	
estimated	from	daily	counts	during	April	in	the	Irish	Sea:	Pseudo-nitzchia	sp.,	0.24	d–1;	
Guinardia	delicatula,	0.18	d–1;	Lauderia	annulata	1.42	d–1	(McKinney	et	al.	1997).	Their	
growth	rate	estimates	are	significantly	larger	than	ours.	Weekly	counts,	used	in	our	study,	
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are	likely	to	lead	to	smaller	maximum	net	growth	rates	than	daily	counts	because	the	
coupling	between	growth	and	loss	processes	will	be	tighter	when	averaged	over	a	week	
instead	of	a	day.	Additionally,	we	expect	our	estimates	of	maximum	growth	rates	to	be	
lower	than	traditional	estimates	of	individual	species	growth	rates	in	the	lab	and	field	
because	our	growth	rate	estimates	include	linear	loss	terms	due	to	grazing,	viral	and	
parasitic	loss	and	are	therefore	similar	to	a	net	phytoplankton	community	growth	rate.	Our	
values	for	net	growth	rate	are	consistent	with	satellite-based	estimates	of	monthly	median	
phytoplankton	growth	rates	in	temperate	regions	with	strong	seasonal	blooms,	0.35	to	4.2	
week–1	(Westberry	et	al.	2008).	Microzooplankton	grazing	at	Station	L4	and	elsewhere	has	
been	estimated	to	account	for	about	two-thirds	of	phytoplankton	growth	(Fileman	et	al.	
2002,	Calbet	&	Landry	2004,	Chen	et	al.	2009,	Bernard	et	al.	2012).	Given	our	estimates	of	
maximum	growth	rates	tend	to	be	much	lower	than	estimates	of	growth	rate	from	lab	
studies,	this	suggests	loss	rates	due	to	grazing	and	parasitoid	and	viral	attack	may	be	
higher	than	often	assumed.	

It	would	be	plausible	for	there	to	be	no	relationship	between	our	field	based	
estimates	of	maximum	growth	rates	across	the	functional	types	even	if	there	are	
differences	in	maximum	net	growth	rate	since	the	grazing	and	other	linear	loss	terms	
represent	such	a	large	fraction	of	maximum	net	growth	rate.	We	find	the	rank	order	in	our	
estimates	of	net	growth	rates	for	the	functional	types	(diatoms	>	dinoflagellates	>	
coccolithophorids	>phytoflagellates)	are	generally	consistent	with	growth	rates	reported	
from	laboratory	culture	work	and	field	observations	(Furnas	1991,	Cermeño	et	al.	2005,	
Raven	et	al.	2005,	Laws	2013).	In	the	Western	English	Channel,	we	find	diatoms	have	the	
largest	maximum	net	growth	rate	followed	by	dinoflagellates	and	coccolithophorids,	
whereas	phytoflagellates	have	the	smallest	net	growth	rate	(Fig.	2a).	These	results	indicate	
that	lab-based	maximum	growth	rates	combined	with	a	constant	loss	rate	used	by	many	
models	may	be	a	reasonable	proxy	for	net	growth	rates	in	natural	communities.		

The	effect	of	temperature	on	phytoplankton	species	growth	rates	is	commonly	
described	using	the	Q10	approximation,	which	is	the	multiplicative	effect	of	a	10°C	change	
in	temperature	on	growth	rate.	This	value	is	typically	about	2,	ranging	from	1.88	to	2.3	for	
phytoplankton	(Eppley	1972,	Bissinger	et	al.	2008).	The	range	of	temperatures	at	Station	
L4	(about	8-19°C)	is	narrow	compared	to	the	width	of	many	phytoplankton	temperature	
niches	(Irwin	et	al.	2012,	Boyd	et	al.	2013),	so	we	used	a	linear	model	to	describe	the	effect	
of	temperature	on	growth	rate	(see	Montagnes	et	al.	2003	for	additional	rationale	for	using	
a	linear	model).	The	temperature	sensitivity	of	the	functional	types,	β,	is	about	0.12	week–1	
°C–1	for	dinoflagellates,	0.07	week–1	°C-1	for	diatoms	and	coccolithophorids,	and	0.02	week–1	
°C–1	for	phytoflagellates	(Fig.	2c).	These	estimates	suggest	that	on	average,	growth	rate	
would	increase	from	1	week-1	to	roughly	1.72	week-1	for	diatoms,	1.42	week-1	for	diatoms	
and	coccolithophorids	and	1.12	week-1	for	phytoflagellates,	with	an	increase	in	
temperature	of	6°C	(half	the	annual	amplitude	in	temperature),	starting	and	ending	below	
their	temperature	optima.	Analysis	of	the	change	in	maximum	growth	rate	with	
temperature	from	unialgal	lab	cultures	(Montagnes	et	al.	2003)	found	slopes	of	0.11	to	0.54	
week–1	°C–1	for	dinoflagellates,	consistent	with	the	posterior	mean	(0.12	week–1	°C–1)	found	
in	this	study	(Fig.	2c),	and	0.084	to	0.97	week–1	°C–1	for	diatoms,	which	is	larger	than	the	
posterior	mean	(0.07	week–1	°C–1)	found	here.	For	phytoflagellates,	our	estimate	of	the	
temperature	sensitivity	trait,	β,	is	approximately	0.02	week–1	°C–1	which	is	close	to	zero	
with	a	narrow	credible	interval,	so	we	conclude	that	temperature	has	essentially	no	effect	
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on	the	growth	rate	of	this	functional	type	at	this	site.	Possible	interpretations	for	this	result	
are	that	the	phytoflagellates	have	broad	temperature	optima	for	growth	rate	or	the	
functional	type	is	composed	of	many	species	with	specialized	optimal	growth	temperatures	
spread	across	the	range	of	observed	temperatures	(Eppley	1972,	Boyd	et	al.	2013).	This	
does	not	appear	to	be	the	case	for	the	other	three	functional	groups,	even	if	there	is	species	
turnover	during	the	year,	there	is	still	a	fairly	strong	imprint	of	temperature	on	the	growth	
rate	of	the	functional	type	as	a	whole.	An	alternative	explanation	is	that	an	increase	in	
water	column	stability	favors	dinoflagellate	and	coccolithophorid	biomass	accumulation	
(Margalef	1978,	1997).	The	optimal	temperature	for	growth	at	the	functional	type	level	
varies	as	expected.	Phytoflagellates	have	the	lowest	and	coccolithophorids	and	
dinoflagellates	the	highest	optimal	temperatures	for	growth.	However,	the	optimal	
temperature	for	dinoflagellates	which,	as	coccolithophorids	bloom	later	than	diatoms	in	
the	season,	exhibit	more	variability	(Fig.	2b)	implying	that	dinoflagellates		have	a	wider	
temperature	niche	than	the	other	functional	groups.	Since	temperature	is	correlated	with	
stability	and	we	don’t	have	an	independent	measure	of	stability,	our	model	is	unable	to	
distinguish	between	the	direct	effects	of	temperature	and	the	effect	of	water	column	
stability	on	the	growth	rate	of	phytoplankton.	

Temperature	optima	estimates	for	individual	diatom	species	were	not	identified	
within	the	range	of	observed	temperatures.	We	interpret	this	result	as	consistent	with	wide	
temperature	response	curves,	relative	to	the	narrow	temperature	range	at	Station	L4,	for	
the	species	under	study	(Boyd	et	al.	2013).	The	estimated	temperature	sensitivity	
parameters	for	individual	diatom	species	(βS)	are	larger	than	the	functional	type	
counterpart	(Fig.	3b),	which	is	to	be	expected	as	aggregating	species	into	functional	types	
should	reduce	the	effective	strength	of	temperature	on	growth	rate	averaged	over	the	
portion	of	the	community	belonging	to	each	functional	type.	

Light	and	nitrogen	limitation	of	net	growth	rate	is	determined	by	Michaelis-Menten	
half-saturation	trait	values,	KN	and	KE.	Three	sources	of	inorganic	nitrogen:	nitrate,	nitrite,	
and	ammonium	are	considered	in	our	estimate	of	KN		for	inorganic	nitrogen.	As	a	result	our	
estimate	of	KN	at	the	functional	type	level	is	largely	determined	by	the	inorganic	nitrogen.	
Nitrogen	half-saturation	constants	for	phytoplankton	species	can	vary	from	0.08	to	8.4	
µmol	L–1	in	the	lab	(Litchman	et	al.	2006).	Our	estimates	(posterior	means)	of	nitrogen	half-
saturation	constants	for	individual	diatom	species,	many	with	large	cell	size,	ranged	from	
0.08	to	0.12	µmol	L–1	which	is	with	this	range.	Our	values	for	functional	types	range	from	
about	0.008	to	0.04	µmol	L–1		and	are	either	on	the	lower	end	or	smaller	than	typical	
literature	values	for	unialgal	cultures.	The	half	saturation	constants	for	inorganic	nitrogen	
for	functional	types	at	this	site	are	also	low	relative	to	all	nitrogen	concentrations	observed	
in	seawater	at	this	site	(ranging	from	0.1-16	µmol	L–1),	indicating	that	nitrogen	limitation	is	
only	a	significant	factor	affecting	growth	rates	of	functional	types,	particularly	diatoms	and	
dinoflagellates,	in	the	warmest	part	of	the	summer.	One	reason	KN	may	be	lower	in	the	field	
relative	to	laboratory	studies	is	that	organic	nitrogen	may	be	an	important	source	of	
nitrogen	for	some	species,	particularly	the	dinoflagellates	and	phytoflagellates,	but	also	
some	diatoms	such	as	Pseudo-nitzschia	delicatissima	(Loureiro	et	al.	2009).	If	organic	
sources	are	important	for	these	groups,	for	example	following	the	crash	of	a	diatom	bloom	
when	inorganic	nitrogen	concentrations	are	low,	estimated	KN	may	be	artificially	low	since	
organic	sources	were	not	included	in	the	model.	Alternatively,	since	nitrogen	is	taken	up	
rapidly	when	available,	bulk	estimates	of	reactive	nitrogen	concentration	sampled	weekly	
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may	be	relatively	uninformative	at	physiological	scales	(Laws	2013).	The	phytoflagellates	
have	the	lowest	KN	of	approximately	0.008 1Lµmol − ,	which	is	much	less	than	the	values	for	
the	other	three	functional	groups,	namely	0.03	 1Lµmol − 	for	dinoflagellates	and	0.04	

1Lµmol − 	for	diatoms	and	coccolithophores.	The	phytoflagellates	category	is	taxonomically	
diverse,	but	over	half	the	biomass	is	found	in	unidentified	cells	smaller	than	5µm 	in	
diameter.	The	most	significant	feature	of	our	results	is	that	the	phytoplankton	dynamics	at	
Station	L4	is	consistent	with	very	low	KN		compared	to	values	estimated	from	laboratory	
cultures	(Litchman	et	al.	2007).	The	KN		at	Station	L4	are	5-10	fold	smaller	than	half-
saturation	constants	for	nitrate	often	employed	in	ecosystem	models	(Gregg	et	al.	2003,	
Merico	et	al.	2004).	The	intermediate	complexity	marine	ecosystem	model	constructed	by	
Moore	et	al	(2002)	is	an	exception;	this	model	uses	a	very	low	KN	for	ammonium	of	

1Lµmol004.0 − 	for	small	cells,	much	lower	than	our	values	for	Station	L4	(Moore	et	al	2002).	
Generally	KN	values	for	ammonium	are	smaller	than	for	nitrate	(Litchman	et	al.	2007;	
Merico	et	al.	2004).	

Light	limitation	is	frequently	parameterized	by	a	half-saturation	coefficient,	KE,	or	
the	irradiance	at	which	light	saturates	growth,	Ek.	For	comparison	between	the	two,	we	
divide	Ek	by	2	to	roughly	approximate	KE.	In	natural	populations	in	coastal	regions,	Ek	
varies	from	40-500	 12 smµmol −− 	(Kirk	2010),	corresponding	to	KE	of	about	2-22	mol	m–2	d–
1.	Estimates	of	KE	in	unialgal	cultures	range	from	3.5-7.8	mol	m–2	d–1	(Litchman	et	al.	2006),	
and	varies	with	steady	state	irradiance	(Gregg	et	al.	2003,	Kirk	2010).	At	Station	L4,	our	
estimates	of	KE	for	functional	groups	range	from	8	to	23	mol	m–2	d–1,	but	these	are	based	on	
sea-surface	irradiance	and	thus	are	larger	than	they	would	be	based	on	average	in	situ	
irradiances.	Individual	diatom	species	have	KE	ranging	from	25	to	30	 12 dmmol −− .	These	
results	suggest	that	irradiance	at	Station	L4	is	limiting	for	diatoms,	dinoflagellates	and	
coccolithophorids	during	much	of	the	year,	since	sea-surface	PAR	ranges	from	10-50	

12 dmmol −− 	and	only	exceeds	Ek	≅	2KE	≅	40	 12 dmmol −− 	for	these	groups	during	short	
periods	in	the	summer.	By	contrast,	phytoflagellates	have	KE	near	the	minimum	levels	of	
PAR	and	so	they	experience	saturating	irradiance	for	most	of	the	year.	One	possible	
hypothesis	is	that	their	small	size	confers	a	low	pigment	package	effect,	meaning	they	have	
high	light	absorption	per	unit	of	pigment,	giving	them	an	advantage	over	functional	types	
with	larger	cells	under	low	light	conditions	(Finkel	&	Irwin	2000,	Finkel	2001,	Finkel	et	al.	
2004).	Furthermore,	if	some	of	the	phytoflagellates	use	alternative	energy	sources,	they	
may	require	less	chlorophyll	and	be	less	sensitive	to	changes	in	irradiance.	While	some	
dinoflagellates	are	known	to	be	heterotrophic	and	mixotrophic	(Stoecker	1999),	unlike	
phytoflagellates	their	growth	rate	is	strongly	affected	by	low	temperatures	in	winter,	
reducing	their	growth	rate	in	winter	relative	to	phytoflagellates	(Fig.	1).	Phytoflagellates	
appear	to	be	able	to	acclimate	to	very	low	light,	giving	them	a	competitive	advantage	over	
other	functional	types,	especially	in	winter.	

Many	studies	of	zooplankton	grazing	focus	on	the	linear	grazing	rate	(Landry	&	
Hassett	1982,	Calbet	&	Landry	2004,	Zheng	et	al.	2015),	which	in	our	model	is	combined	
with	gross	phytoplankton	growth	rate	to	obtain	the	maximum	net	growth	rate	trait,	µ,	
which	is	assumed	to	be	constant	for	each	phytoplankton	functional	type.	More	complex	
formulations	of	zooplankton	grazing	rates	permit	diel	and	seasonal	variation	in	grazing	
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rates	and	non-linear	grazing	rates	(Tsai	et	al.	2005)	or	describe	prey	switching	or	
selectivity	by	grazers	(Gentleman	et	al.	2003,	Vallina	et	al.	2014),	but	we	do	not	consider	
these	mechanisms.	Our	model	incorporates	density-dependent	loss	terms	to	describe	
consumption	of	phytoplankton	by	grazers	along	with	other	loss	processes.	

All	four	functional	types	exhibit	strong	density-dependent	loss.	Assuming	the	loss	
term	is	primarily	attributable	to	grazing,	all	functional	groups	are	primarily	grazed	by	
specialists	( 0<α ,	Fig.	2).	However,	while	diatoms,	dinoflagellates	and	phytoflagellates	are	
virtually	unaffected	by	generalist	grazers	(ϕ	≅	0),	coccolithophorids	are	affected	by	both	
specialist	and	generalist	grazers.	Each	functional	group	is	more	negatively	affected	by	its	
own	biomass	than	by	the	combined	biomass	of	other	functional	groups,	which	provides	
evidence	for	niche	differentiation	between	functional	groups.		

The	results	at	the	species	level	are	more	variable.	Five	of	our	ten	diatom	species	
(Guinardia	delicatula,	Pseudo-nitzschia	delicatissima,	M	menbracea,	C.	Pelagica	and	Pseudo-
nitzschia	seriata)	exhibit	positive	density-dependent	effects	(ϕ	S	>	0,	Fig.	3c)	with	increased	
biomass	of	all	other	diatoms.	This	could	be	an	indication	that	these	species	experience	less	
grazing	pressure	when	the	biomass	of	other	diatoms	is	high	(“kill	the	winner”,	Vallina	et	al	
2014).	Two	species,	Guinardia	delicatula	and	Pseudo-nitzschia	seriata,	have	positive	
density-dependent	effects	resulting	from	their	own	biomass	(αS	>	0),	indicating	that	
increases	in	their	biomass	can	increase	their	own	growth	rates.	Many	strains	of	Pseudo-
nitzschia	have	been	shown	to	produce	the	neurotoxin	domoic	acid	(Bates	et	al.	1998,	
Fehling	et	al.	2004),	suggesting	this	positive	density-dependence	may	be	a	result	of	
allelopathy,	although	G.	delicatula	does	not	produce	toxins	and	Pseudo-nitzschia	
delicatissima	has	αS	<	0.	Finally,	three	species	Nitzschia	closterium,	P.	sulcata	and	
Pleurosigma	sp.	have	strong	negative	density-dependent	feedbacks	from	their	own	biomass	
(αS	<	0).	Nitzschia	closterium	is	known	to	produce	mucus	that	may	increase	its	export	at	
high	densities,	which	is	consistent	with	this	result	(Najdek	et	al.	2005).	

Our	analysis	of	ten	diatom	species	demonstrates	the	potential	and	challenges	of	this	
approach	for	determining	trait	values	and	modeling	dynamics	of	individual	species.	These	
species	were	the	most	frequently	observed	in	the	population,	but	account	for	only	11%	of	
the	total	biomass,	on	average.	Species	with	fewer	observations	are	less	likely	to	yield	
informative	estimates	of	trait	values	due	to	a	lack	of	data,	but	account	for	the	vast	majority	
of	the	biomass.	Since	our	ten	species	sample	is	a	minority	component	of	the	diatom	
community	and	represents	species	present	much	of	the	year	in	contrast	to	species	present	
for	only	a	few	weeks	at	a	time,	there	is	no	reason	to	expect	the	trait	values	of	these	species	
to	be	representative	of	the	functional	type	as	a	whole.	In	fact,	we	observed	systematic	
differences	between	trait	values	for	these	species	and	the	diatom	functional	type:	the	
species-specific	maximum	growth	rates	are	lower	and	the	half-saturation	constants	for	
light	and	nitrogen	are	higher	relative	to	the	functional	group	type	estimates.	Even	if	we	had	
a	random	sample	of	species	with	trait	values	representative	of	the	full	distribution,	
determining	functional-type	level	trait	values	by	averaging	over	species	with	different	
traits	and	changing	contributions	to	the	total	population	can	lead	to	errors	due	to	
Simpson’s	paradox	(Chuang	et	al.	2009,	Williams	&	Hastings	2011).	The	uncertainties	
across	the	diatom	species	are	large	enough	to	suggest	that	the	trait	values	may	be	largely	
indistinguishable	across	many	species,	in	particular	the	irradiance	half-saturation	
constants.	An	independent	analysis	showed	that	diatoms	species	at	Station	L4	exhibit	
neutral	dynamics	within	the	diatom	functional	type	most	of	the	time,	indicating	that	
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predicting	biomass	dynamics	of	individual	species	may	be	much	harder	than	predicting	the	
dynamics	of	the	aggregated	biomass	of	a	functional	type	(Mutshinda	et	al.	2016).	While	it	is	
appealing	to	estimate	trait	values	for	functional	types	from	knowledge	of	individual	
species,	it	may	be	more	prudent	to	deemphasize	species-level	details	and	use	realized	traits	
estimated	from	biomass	dynamics	aggregated	to	the	functional-type	level.	
	
Conclusions	

This	study	enables	a	comparative	analysis	of	trait	values	used	in	biogeochemical	
models	of	phytoplankton	communities	and	the	trait	values	estimated	from	lab	studies	on	
individual	phytoplankton.	The	realized	traits	we	quantified	could	be	different	from	those	
estimated	in	the	lab	because	they	are	functional-type	level	aggregates	and	include	factors	
such	as	phenotypic	plasticity	and	biotic	interactions	that	may	vary	across	species	and	
communities.	At	Station	L4	in	the	Western	English	Channel,	we	found	that	diatoms	have	the	
highest	maximum	net	growth	rates,	intermediate	temperature	sensitivity,	and	high	
specialist	density-dependent	loss	rates.	Dinoflagellates	have	intermediate	maximum	net	
growth	rates	and	high	temperature	optimum	and	sensitivity.	Coccolithophorids	have	high	
temperature	optimum,	intermediate	temperature	sensitivity,	and	are	negatively	affected	by	
both	specialist	and	generalist	density-dependent	feedbacks.	The	phytoflagellates	have	the	
lowest	maximum	net	growth	rate,	low	optimum	temperatures	and	sensitivities,	and	low	
half-saturation	constants	for	light	and	nitrogen	concentration.	The	relative	differences	in	
maximum	net	growth	rate,	specifically	the	relatively	high	rates	for	diatoms,	are	consistent	
with	differences	estimated	in	the	lab	and	the	field,	but	the	absolute	magnitudes	of	the	rates	
are	considerably	lower	because	our	maximum	growth	rates	include	linear	loss	terms.	A	
comparison	of	our	results	with	traits	estimated	in	the	lab	and	used	in	models	yields	a	few	
insights.	Grazing	and	other	linear	loss	rates,	as	reflected	in	a	reduction	of	the	gross	growth	
rate,	appear	be	even	more	important	than	usually	appreciated.	We	see	evidence	of	complex	
biotic	interactions	that	are	difficult	to	assess	in	the	lab:	all	functional	types	are	more	
susceptible	to	specialist	loss	rates,	perhaps	indicating	specialist	grazers	or	viruses.	At	the	
species	level,	there	appears	to	be	evidence	of	species	interactions	increasing	the	net	growth	
rate	of	individual	diatom	species.	The	half-saturation	constants	for	nitrogen	are	lower	than	
typical	lab	estimates,	consistent	with	the	use	of	a	wide	range	of	reactive	nitrogen	sources	
and	widespread	mixotrophy.	There	is	considerable	variation	in	our	estimates	of	the	trait	
values	within	phytoplankton	functional	types,	which	could	be	due	to	real	physiological	
changes	arising	from	acclimation	to	environmental	conditions	over	time,	variation	across	
species	within	a	functional	type,	or	a	consequence	of	insufficient	data.	Time-series	of	field	
data	combined	with	our	analysis	gives	us	insight	into	the	mechanisms	affecting	the	
dynamics	of	species	and	whole	functional	types	in	natural	populations	that	may	improve	
our	ability	to	scale-up	results	from	species-level	studies	in	the	lab	to	community	dynamics	
in	the	ocean.	
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Table	1.	
Key	symbols	for	data	and	traits	in	the	models.	Traits	for	diatom	species	(as	opposed	to	
functional	types)	have	a	superscript	S	added.	
	
Symbol	 Units	 Interpretation	
Yi	,	yi		 mg	C	m–3	 Biomass,	log	biomass	of	functional	types	or	species	in	week	i	
Ti	 °C	 Temperature	in	week	i	
Ni	 mg	N	m–3	 Total	inorganic	N	in	week	i	
PARi	 mol	m–2	d–1	 Sea-surface	irradiance	in	week	i	
µ,	µS	 week–1	 Maximum	net	growth	rate	for	a	functional	type,	species	
r,	rS	 week–1	 Realized	net	growth	rate	for	a	functional	type,	species	
KN,	KNS	 mg	N	m–3	 Half-saturation	constant	for	growth	as	a	function	of	N	

concentration	
KE,	KES	 mol	m–2	d–1	 Half-saturation	constant	for	growth	as	a	function	of	irradiance	
β,	βS		 week–1	°C–1	 Magnitude	of	linear	increase	in	net	growth	rate	with	temperature,	

temperature	sensitivity	
ρ ,	 Sρ 	 °C	 Temperature	with	maximum	growth	rate	

α,	αS	 	 Density	dependent	loss	coefficient	within	functional	type,	diatom	
species	

ϕ,	ϕS	 	 Density	dependent	loss	coefficient	due	to	other	functional	types,	
other	diatom	species	
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Figure	1.		
Observed	(black	line)	and	predicted	(shaded	region)	log10	carbon	biomass	(mg	C	m–3)	of	
each	functional	type	(diatoms,	dinoflagellates,	coccolithophorids,	and	phytoflagellates)	at	
Station	L4.	The	prediction	region	is	the	95%	credible	range	of	biomass	from	the	functional	
type	model.	
	
Figure	2.	
Posterior	distributions	of	traits	governing	growth	rate	at	the	functional	type	level.	(a)	
Maximum	net	growth	rate,	µ	(week–1),	(b)	the	optimal	temperature	for	growth	ρ 	(°C),	(c)	
temperature	sensitivity,	β	(week–1	°C–1),	(d)	the	half-saturation	constants	for	nitrogen,	KN	
(µmol	L-1),	(e)	the	half-saturation	constants	for	irradiance,	KE	(mol	m–2	d–1),	and	(f)	density-
dependent	effects	on	the	growth	rate	of	each	functional	type	attributed	to	their	own	
biomass	(α,	solid	circle)	and	to	the	total	biomass	of	the	other	functional	types	in	the	
community	(ϕ,	open	squares).	Box	plots	show	median	(thick	line),	the	interquartile	range	
(box)	and	the	full	range	of	the	data	or	1.5	times	the	interquartile	range,	whichever	is	
smaller	(whiskers).	In	panels	(c)	and	(f)	error	bars	indicate	95%	credible	intervals	on	the	
posterior	means	and	are	used	because	posterior	distributions	are	approximately	normal.	In	
(f),	the	horizontal	dashed	line	indicates	no	density-dependence.	The	vertical	scale	in	(d)	is	
logarithmic	to	facilitate	the	display	of	the	wide	range	of	values.	
	
	
Figure	3.	
Species-level	trait	values	for	ten	diatom	species.	Species	are	arranged	in	order	of	the	
number	of	weeks	they	are	present	in	the	time-series	from	Nitzschia	closterium	(93%	of	
weeks)	to	Lauderia	annulata	(48%).	(a)	Maximum	net	growth	rate,	µS	(week–1),	(b)	
temperature	sensitivity,	β	(week–1	°C–1)	(c)	density-dependent	effects	on	the	growth	rate	of	
each	species	attributed	to	their	own	biomass	(αS,	solid	circle)	and	to	the	total	biomass	of	
the	other	species	in	the	same	functional	type	(ϕS,	open	squares).	Box	plots	show	median	
(thick	line),	the	interquartile	range	(box)	and	the	full	range	of	the	data	or	1.5	times	the	
interquartile	range,	whichever	is	smaller	(whiskers).	In	panels	(b)	and	(c)	error	bars	
indicate	95%	credible	intervals	on	the	posterior	means	and	are	used	because	posterior	
distributions	are	approximately	normal.		
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