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Abstract

Prokaryotes are under nearly constant attack by viral pathogens. To protect against
this threat of infection, bacteria and archaea have evolved a wide array of defense
mechanisms, singly and in combination. While immune diversity in a single organism
likely reduces the chance of pathogen evolutionary escape, it remains puzzling why
many prokaryotes also have multiple, seemingly redundant, copies of the same type of
immune system. Here, we focus on the highly flexible CRISPR adaptive immune
system, which is present in multiple copies in a surprising 28% of the prokaryotic
genomes in RefSeq. We use a comparative genomics approach looking across all
prokaryotes to demonstrate that, on average, organisms are under selection to maintain
more than one CRISPR array. We hypothesize that a tradeoff between memory span
and learning speed could select for both “long-term memory” and “short-term memory”
CRISPR arrays, and we go on to develop a mathematical model to show that such a
tradeoff could, in theory, lead to selection for multiple arrays.

Introduction 1

Just as larger organisms must cope with the constant threat of infection by pathogens, 2

so too must bacteria and archaea. To defend themselves in a given pathogenic 3

environment, prokaryotes may employ a range of different defense mechanisms, and 4

oftentimes more than one (Makarova et al., 2011b, 2013; Houte et al., 2016). While 5

having multiple types of immune systems may decrease the chance of pathogen 6

evolutionary escape (Iranzo et al., 2015), having multiple instances of the same type of 7

system is rather more puzzling. Here we explore this apparent redundancy in the 8

context of CRISPR-Cas immunity. 9

The CRISPR-Cas immune system is a powerful defense mechanism against the 10

viruses that infect bacteria and archaea and is the only known example of adaptive 11

immunity in prokaryotes (Makarova et al., 2006; Goren et al., 2012). This system allows 12

prokaryotes to acquire specific immune memories, called “spacers”, in the form of short 13

viral genomic sequences which they store in CRISPR arrays in their own genomes 14

(Mojica et al., 2005; Bolotin et al., 2005; Barrangou et al., 2007). These sequences are 15

then transcribed and processed into short crRNA fragments that guide 16

CRISPR-associated (Cas) proteins to the target viral sequences (or “protospacers”) so 17

that the foreign DNA or RNA can be degraded (Barrangou et al., 2007; Marraffini and 18

Sontheimer, 2008; Marraffini, 2015). Thus the CRISPR array is the genomic location in 19

which memories are recorded, while the Cas proteins act as the machinery of the 20

immune system, with specific proteins implicated in memory acquisition, crRNA 21

processing, or immune targeting. 22
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CRISPR systems appear to be widespread across diverse bacterial and archaeal 23

lineages, with previous analyses of genomic databases indicating that ∼ 40% of bacteria 24

and ∼ 80% of archaea have at least one CRISPR system (Makarova et al., 2011a; Sorek 25

et al., 2013; Burstein et al., 2017). These systems vary widely in cas gene content and 26

targeting mechanism, although the cas1 and cas2 genes involved in spacer acquisition 27

are universally required for a system to be fully functional (Barrangou et al., 2007; 28

Makarova et al., 2011a). Such prevalence suggests that CRISPR systems effectively 29

defend against phage in a broad array of environments. The complete story seems to be 30

more complicated, with recent analyses of environmental samples revealing that some 31

major bacterial lineages almost completely lack CRISPR systems and that the 32

distribution of CRISPR systems across prokaryotic lineages is highly uneven (Burstein 33

et al., 2016). Other studies suggest that particular environmental factors can be 34

important in determining whether or not CRISPR immunity is effective (e.g., in 35

thermophilic environments Iranzo et al. 2013; Weinberger et al. 2012b). While previous 36

work has focused on the presence or absence of CRISPR across lineages and habitats, 37

little attention has been paid to the number of systems in a genome. 38

In fact, the multiplicity of CRISPR systems per individual genome varies greatly, 39

with many bacteria having multiple CRISPR arrays and some having multiple sets of 40

cas genes as well (e.g., Horvath et al. 2009; Cai et al. 2013). CRISPR and other immune 41

systems are horizontally transferred at a high rate relative to other genes in bacteria 42

(Puigbò et al., 2017), meaning that any apparent redundancy of systems may simply be 43

the result of the selectively neutral accumulation of systems within a genome. 44

Alternatively, there are a number of reasons, discussed below, why having multiple sets 45

of cas genes or CRISPR arrays might be under selection. 46

We suspected that prokaryotes may be under selection to maintain multiple CRISPR 47

arrays, given that it is common for organisms across lineages to have multiple systems 48

(as detailed below) and, in some clades, these appear to be conserved over evolutionary 49

time (e.g. Boudry et al. 2015; Andersen et al. 2016). Because microbial genomes have a 50

deletion bias (Mira et al., 2001; Kuo and Ochman, 2009), we would expect extraneous 51

systems to be removed over time. Here we construct a test of neutral CRISPR array 52

accumulation via horizontal transfer and loss. Using publicly available genome data we 53

show that the number of CRISPR arrays in a wide range of prokaryotic lineages 54

deviates from this neutral expectation by approximately two arrays. Thus we conclude 55

that, on average, prokaryotes are under selection to have multiple CRISPR arrays. We 56

go on to discuss several hypotheses for why having multiple arrays might be adaptive. 57

Finally, we suggest that a tradeoff between the rate of acquisition of immune memory 58

and the span of immune memory could lead to selection for multiple CRISPR arrays. 59

Materials and methods 60

Dataset 61

All available completely sequenced prokaryotic genomes (all assembly levels) were 62

downloaded from NCBI’s non-redundant RefSeq database FTP site 63

(ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria, O’Leary et al. 2016) on 64

December 23, 2017. Genomes were scanned for the presence of CRISPR arrays using 65

the CRISPRDetect software (Biswas et al., 2016). We used default settings except that 66

we did not take the presence of cas genes into account in the scoring algorithm (to avoid 67

circularity in our arguments), and accordingly used a quality score cutoff of three, 68

following the recommendations in the CRISPRDetect documentation. CRISPRDetect 69

also identifies the consensus repeat sequence and determines the number of repeats for 70

each array. Presence or absence of cas genes were determined using genome annotations 71
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from NCBI’s automated genome annotation pipeline for prokaryotic genomes (Tatusova 72

et al., 2016). We discarded genomes that lacked a CRISPR array in any known 73

members of their taxon. In this way we only examined genomes known to be compatible 74

with CRISPR immunity. 75

Test for selection maintaining multiple arrays 76

Our power to detect selection hinges on our ability to differentiate between 77

non-functional (i.e., neutrally-evolving) and functional (i.e., potentially-selected) 78

CRISPR arrays. Since all known CRISPR systems require the presence of cas1 and 79

cas2 genes in order to acquire new spacers, we use the presence of both genes as a 80

marker for functionality and the absence of one or both genes as a marker for 81

non-functionality. Henceforth we will consider CRISPR arrays in genomes with both 82

cas1 and cas2 genes to be “functional” and CRISPR arrays in genomes lacking either 83

cas1, cas2, or both genes to be “non-functional”. This differentiation allows us to 84

consider the probability distributions of the number of CRISPR arrays i in 85

non-functional (Ni) and functional (Fi) genomes, respectively. 86

We start with our null hypothesis that in genomes with functional CRISPR systems 87

possession of a single array is highly adaptive (i.e. viruses are present and will kill any 88

susceptible host) but additional arrays provide no additional advantage. Thus these 89

additional arrays will appear and disappear in a genome as the result of a neutral 90

birth/death horizontal transfer and loss process, where losses are assumed to remove an 91

array in its entirety. This hypothesis predicts that the non-functional distribution will 92

look like the functional distribution shifted by one (Si): 93

H0 : Ni ≈ Si = Fi+1/
∞∑
j=1

Fj (1)

for i ≥ 0. We take two approaches to testing this prediction: one parametric from first 94

principles with greater power but more assumptions and one non-parametric with less 95

power but also fewer assumptions. 96

We begin by deriving a functional form for the distribution Ni from first principles 97

following a neutral process. If CRISPR arrays arrive in a given genome at a constant 98

rate via rare horizontal transfer events, then we can model their arrivals using a Poisson 99

process with rate η. Assuming arrays are also lost independently at a constant rate, the 100

lifetime of each array in the genome will be exponentially distributed with rate ν. This 101

leads to a linear birth-death process of array accumulation, which yields a Poisson 102

equilibrium distribution with rate λ = η
ν . While this rate might be constant for a given 103

taxon, it will certainly vary across taxa due to different intrinsic (e.g. cell wall and 104

membrane structure) and extrinsic factors (e.g. density of neighbors, environmental pH 105

and temperature) (Puigbò et al., 2017). We model this variation by allowing genome j 106

to have rate λj =
ηj
νj

and assuming λj ∼ Gamma(α, β), which we pick for its flexibility 107

and analytic tractability. This combination of gamma and Poisson distributions leads to 108

the number of arrays i in a random genome following a negative binomial distribution 109

Ni = NB(r, p) where r = α and p = β
1+β . 110

Now we can fit this distribution to data to find maximum likelihood estimates of r 111

and p for the distribution of array counts in both the set of non-functional genomes (Ni) 112

and the set of functional genomes as shifted under our null hypothesis (Si). This allows 113

us to construct a parametric test of multi-array adaptiveness. We expect that r̂N ≈ r̂S 114

and p̂N ≈ p̂S under our null hypothesis (where subscripts correspond to the distribution 115

to which the parameters were fit). When our null hypothesis is violated it should shift 116

the means of these distributions. Therefore we estimate and compare these means 117

µk = pkrk
1−pk , k ∈ N,S. We expect that µ̂S > µ̂N if more than one array is selectively 118
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maintained, and we bootstrap confidence intervals on these estimates to determine 119

whether the effect is significant. 120

We also construct a non-parametric test for selection by determining at what shift s 121

the mismatch between Fi+s/
∑∞
j=s Fj and Ni, measured as the sum of squared 122

differences between the distributions, is minimized: 123

s? = argmin
s

∞∑
i=0

Ni − Fi+s/ ∞∑
j=s

Fj

2

. (2)

Under our null hypothesis s? = 1, and a value of s? > 1 implies that selection maintains 124

more than one array. Our parametric test is superior to s? because it can detect if 125

selection maintains more than one array across the population on average, but not in all 126

taxa, so that the optimal shift is fractional. 127

Correcting for phylogenetic correlations in HGT 128

Differential rates of horizontal gene transfer (HGT) between lineages could produce an 129

observed correlation between cas1 and cas2 presence and array count in the absence of 130

any selection for having multiple CRISPR arrays. In other words, some genomes would 131

be functional and have many arrays due to a high arrival rate of foreign genetic 132

material, and other lineages would be non-functional and lack CRISPR arrays simply 133

because of low rates of HGT. If this were the case, then comparisons between these 134

lineages would lead to a spurious result of selection. 135

There are several ways to control for such correlation. First, we can perform our 136

parametric test on a subset of the data such that we take an equal number of functional 137

and non-functional genomes from each species to control for lineage-specific effects. 138

Second, we can also perform a species-wise parametric test. In this case, for each species 139

k we calculate ∆µk = µ̂Sk
− µ̂Nk

and then bootstrap the mean of the distribution of 140

these values (∆̄µ) to detect if there is a significant difference from zero. We also map 141

these values onto a phylogeny (SILVA Living Tree 16s rRNA tree; Yarza et al. 2008) 142

and perform a formal test for phylogenetic signal (the K statistic; Blomberg et al. 2003; 143

Revell 2012), which indicates whether or not any signal of selection is isolated to a 144

particular portion of the tree. 145

Finally, our test for selection can also be conceptualized of in terms of a regression, 146

which has standard methods for phylogenetic correction. Essentially, if we fit a model of 147

array counts per genome as predicted by functionality, our null hypothesis states that 148

the slope of the regression should be approximately one, with a slope larger than one 149

indicating that selection maintains multiple arrays. We fit a linear model of mean 150

number of arrays in a genome per species predicted by the proportion of functional 151

genomes per species. We then fit a linear model accounting for phylogeny (using the 152

phylolm R package and assuming a Brownian motion model for trait evolution; 153

Tung Ho and Ané 2014), again using the SILVA tree and limiting ourselves to species 154

present on that tree (2685 out of 6882 species). 155

Linkage between CRISPR array and cas genes 156

Often CRISPR arrays and cas genes are collocated such that loss of one may be linked 157

to loss of the other. In a theoretical sense this should not matter, as it will not alter the 158

asymptotic distribution of array counts per genome that we would expect in the case of 159

either functional or non-functional genomes. That is, while linked-loss could lower the 160

number of arrays seen in non-functional genomes in the short term, it should not change 161

the value of the eventual equilibrium array count a genome tends toward over time. 162
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Nevertheless, genomes may not be at or near their equilibrium array counts. We can 163

test this assumption directly by regressing the species-specific values of ∆µk (defined 164

above when correcting for lineage-specific trends in HGT) against the minimum distance 165

between CRISPR arrays and cas genes on a genome. If CRISPR-cas linkage were 166

driving our results, we would see a strong relationship between these values. We include 167

only completely assembled genomes in this analysis as genomic distances are needed. 168

CRISPR spacer turnover model 169

We develop a simple deterministic model of the spacer turnover dynamics in a single 170

CRISPR array of a bacterium exposed to n viral species (i.e., disjoint protospacer sets): 171

dCi
dt︸︷︷︸

Spacers Targeting Viral Sp. i

= ai(t, Ci)︸ ︷︷ ︸
Acquisition

−µLCi
∑
j

Cj︸ ︷︷ ︸
Loss

(3)

where µL is the spacer loss rate parameter and ai is a function of time representing the 172

viral environment. Here we let ai(t, Ci) = µAvifi(t), where µA is the spacer acquisition 173

rate, vi is a composite parameter describing the maximum density of a viral species in 174

the environment multiplied by the adsorption rate, and fi(t) is a function describing the 175

fluctuations of the viral population over time that takes values between zero and one. 176

The rate of per-spacer loss increases linearly with locus length. This assumption is 177

based on the observation that spacer loss appears to occur via homologous 178

recombination between repeats (Garrett et al., 2011; Gudbergsdottir et al., 2011; 179

Weinberger et al., 2012a), which becomes more likely with increasing numbers of spacers 180

(and thus repeats). Using this model we can determine optimal spacer acquisition rates 181

given a particular pathogenic environment. If there are multiple optima, or if optima 182

cluster in different regions of parameter space for different pathogenic environments, 183

this indicates that having multiple-arrays may be the best solution in a given 184

environment or set of environments. 185

We analyze a simple case with two viral species where there is one “background” 186

species (B) representing the set of all viruses persisting over time in the environment 187

(fB(t) = 1) and another “transient” species (T ) that leaves and returns to the 188

environment after some interval of time (fT (t) is a binary function that takes a value of 189

one if virus T is present in the environment and zero otherwise). This allows us to 190

effectively illustrate any tradeoff between the ability to maintain defenses towards a 191

constant threat and the ability to defend against threats that periodically reappear in 192

the environment. In practice we will focus on one interval in which T leaves and then 193

returns to the system in order to see if immune memory is lost, and if so how long it 194

takes to regain that memory, given a particular spacer acquisition rate (µA). We also 195

find how long it would take to acquire immunity towards a completely novel phage 196

species given a particular acquisition rate in order to assess any tradeoff between 197

learning-speed and memory-span. 198

We can also include the phenomenon of priming in our model, wherein if a CRISPR 199

array has a spacer targeting a particular viral species, the rate of spacer acquisition 200

towards that species is increased (Datsenko et al., 2012; Swarts et al., 2012). Thus 201

ai(t, Ci) = µAvifi(t)g(Ci) (4)

where 202

g(Ci) =

{
1 Ci < 1

p Ci ≥ 1
(5)
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is a stepwise function determining the presence or absence of at least one spacer towards 203

a given viral species and p > 1 is the degree of priming. For details of model analysis 204

see S1 Text. 205

There is evidence that mature crRNA transcripts from the leading end of the 206

CRISPR array are far more abundant than those from the trailing end, and that this 207

decay over the array happens quickly (most transcripts are from the first few spacers, 208

though some spacers farther down can occasionally show high representation) (Bernick 209

et al., 2012; Hale et al., 2012; Richter et al., 2012). This suggests an alternative model 210

wherein the length of an “effective” array is capped at a constant number of spacers and 211

“loss” (i.e. movement out of the zone where crRNAs are actively transcribed and 212

processed) occurs directly due to the acquisition of novel spacers. Therefore we built a 213

modified version of the model above with a hard cap on array length (S1 Text). 214

Results 215

Having more than one CRISPR array is common 216

About half of the prokaryotic genomes in the RefSeq database have at least one 217

CRISPR array (44%). Of these genomes, more than half have more than one CRISPR 218

array (63%). When restricting ourselves only to putatively functional genomes where 219

the CRISPR spacer acquisition machinery was present (cas1 and cas2 ) the proportion 220

of genomes with more than one array increases to 68%. In contrast to this result, 221

having more than one set of cas targeting genes is not nearly as common. Signature 222

targeting genes are diagnostic of CRISPR system type. We counted the number of 223

signature targeting genes for type I, II, and III systems in each genome (cas3, cas9, and 224

cas10 respectively Makarova et al. 2015). Only 5% of all genomes have more than one 225

targeting gene (either multiple copies of a single type or multiple types). Even when 226

restricting ourselves again to genomes with a CRISPR array, only 10% of genomes had 227

multiple signature targeting genes. However, of those genomes with more than one set 228

of targeting genes, many had multiple types (48%). 229

Some taxa are overrepresented in RefSeq (e.g. because of medical relevance), and we 230

wanted to avoid results being driven by just those few particular taxa. We controlled for 231

this by randomly sub-sampling 10 genomes from each taxon with more than 10 genomes 232

in the database and found broadly similar results. After sub-sampling, approximately 233

40% of genomes had at least one CRISPR array, and of these 61% had more than one. 234

Of genomes with intact spacer acquisition machinery, 62% had more than one CRISPR 235

array. Of these sub-sampled genomes, restricting to those with at least one CRISPR 236

array, 9% had more than one set of cas targeting genes. Of these multi-cas genomes, 237

many had multiple types (56%). 238

Validation of functional / non-functional classification 239

Our power to detect selection depends critically on our ability to classify genomes as 240

CRISPR functional vs. non-functional. Functional CRISPR arrays should, on average, 241

contain more spacers than non-functional arrays (Gophna et al., 2015). Thus we 242

compared the number of repeats in CRISPR arrays in genomes with both cas1 and cas2 243

present (“functional”, 16.01 repeats on average) to the number of spacers in genomes 244

lacking either or both genes (“non-functional”, 12.23 repeats on average) and confirmed 245

that the former has significantly more than the latter (t = −36.516, df = 55340, 246

p < 2.2× 10−16; S1 Fig). This difference in length (3.80 repeats) is not as large as one 247

might expect, possibly because some systems are able to acquire or duplicate spacers via 248

homologous recombination (Kupczok et al., 2015) and arrays may have been inherited 249
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recently from strains with active cas machinery. The mean array length across the 250

dataset was 15.12 repeats. 251

Instantaneous array loss vs. gradual decay 252

There are two possible routes to complete CRISPR array loss: (1) an all-at-once loss of 253

the array (e.g. due to recombination between flanking insertion sequences Almendros 254

et al. 2014; Shah and Garrett 2011) and (2) gradual decay due to spacer loss. Limited 255

experimental evidence supports (1) spontaneous loss of the entire CRISPR array (Jiang 256

et al., 2013), as do comparisons between closely related genomes (Shah and Garrett, 257

2011). The distinction above is important, because if CRISPR array loss were to occur 258

primarily via (2) gradual decay, then functional genomes would have an intrinsically 259

lower rate of array loss than non-functional genomes. This is because in functional 260

genomes spacer acquisition would counteract spacer loss, reducing the rate of array 261

decay, whereas this compensation would not occur in non-functional genomes. This 262

could lead us to spuriously accept a result of selection maintaining multiple arrays. 263

If arrays were primarily lost via gradual decay we would expect a positive 264

relationship between the number of arrays in a genome and the average array length in 265

a genome, because arrays experiencing more decay (either due to increased spacer loss 266

rates or reduced acquisition rates) should be shorter and prone to eventual deletion. In 267

functional genomes with the complete spacer acquisition machinery (cas1 and cas2 ) this 268

trend would be due to the higher probability of stochastically reaching a 0-spacers state 269

in shorter arrays, and arrays will in general be shorter in genomes with lower spacer 270

acquisition rates. In non-functional genomes that lack the complete spacer acquisition 271

machinery, this trend would result from differences in time since loss of acquisition 272

machinery, where genomes that had lost that machinery farther in the past would have 273

both shorter arrays and fewer arrays on average. 274

Overall we see no relationship between mean array length and array count in a 275

genome (m = −0.001, p = 0.109, R2 = 5.55× 10−5). Surprisingly, in functional genomes 276

we find a slightly negative linear relationship between mean array length in a genome 277

and the number of arrays in a genome (m = −0.0081, p < 2× 10−16, R2 = 0.0032). In 278

non-functional genomes we see a slightly positive relationship (m = 0.0054, 279

p = 7.23× 10−10, R2 = 0.0026). While both of these relationships are significant, they 280

are extremely weak and probably spurious. Thus we reject any clear array-length vs. 281

array count relationship and accordingly rule out array loss via spacer-wise decay as a 282

major driver of the patterns we will explore later. 283

Selection maintains multiple CRISPR arrays 284

We leveraged the difference between functional and non-functional genomes, within each 285

of which the process of CRISPR array accumulation should be distinct (Fig. 1, Table 1). 286

Non-functional CRISPR arrays should accumulate neutrally in a genome following 287

background rates of horizontal gene transfer and gene loss. We constructed two point 288

estimates of this background accumulation process using our parametric model to infer 289

the distribution of the number of arrays. One estimate came directly from the 290

non-functional genomes (µ̂N , Fig. 1a). The other came from the functional genomes, 291

assuming that having one array is adaptive in these genomes, but that additional arrays 292

accumulate neutrally (µ̂S , Fig. 1b). If selection maintains multiple (functional) arrays, 293

then we should find that µ̂N < µ̂S . We found this to be overwhelmingly true, with 294

about two arrays on average seeming to be evolutionarily maintained across prokaryotic 295

taxa (∆µ = µ̂S − µ̂N = 1.09± 0.03). We bootstrapped 95% confidence intervals of our 296

estimates (Table 1) and found that the bootstrapped distributions did not overlap, 297

indicating a highly significant result (Fig. 1d) 298
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Fig 1. Selection maintains more than one CRISPR array on average across prokaryotes.
(a-b) Distribution of number of arrays per genome in (a) genomes with non-functional
CRISPR immunity and (b) genomes with putatively functional CRISPR immunity. The
tails of these distributions are cut off for ease of visual comparison (24 genomes with
> 10 arrays in (a) and 498 genomes with > 10 arrays in (b)). In (a) the black circles
show the negative binomial fit to the distribution of arrays in non-functional genomes.
In (b) black circles indicate the negative binomial fit to the single-shifted distribution
(s = 1) and pink triangles to the double-shifted distribution (s = 2). (c) The optimal
shift is s? = 2, where the difference between the two distributions is minimized. (d) The
bootstrapped distributions of the parameter estimates of µ̂S and µ̂N show no overlap
with 1000 bootstrap replicates.
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Sub-sampling overrepresented taxa altered our parameter estimates slightly, but did 299

not change our overall result (∆µ = 1.13± 0.09, S2 Fig). To control for the possibility 300

that multiple sets of cas genes in a small subset of genomes could be driving this 301

selective signature, we restricted our dataset only to genomes with one or fewer 302

signature targeting genes (cas3, cas9, or cas10 Makarova et al. 2011a, 2015) and one or 303

fewer copies each of the genes necessary for spacer acquisition (cas1 and cas2 ). Even 304

when restricting our analyses to genomes with one or fewer sets of cas genes, there is 305

selection to maintain more than one (functional) CRISPR array, though the effect size 306

is smaller ( ∆µ = 0.61± 0.02, S3 Fig; with sub-sampling of overrepresented taxa 307

∆µ = 0.19± 0.08, S4 Fig). 308

Confirming selection 309

The number of CRISPR arrays is positively related to the number of cas genes in a 310

genome (S5 Fig). To control for the potentially confounding effect of variation in the 311

rate of HGT among lineages, we performed several additional analyses. First, if we 312

further restrict our sub-sampled dataset of genomes with one or fewer sets of cas genes, 313

such that each species is represented by an equal number of functional and 314

non-functional genomes, then we still find a signature of selection on multiple arrays 315

(∆µ = 0.40± 0.15, S6 Fig). Unfortunately this method involves excluding a large 316

portion of the dataset. Second, our species-wise implementation of the ∆µ test that 317

controls for differences in rates of HGT between lineages also confirms a signature of 318

multi-array selection (∆̄µ = 0.70± 0.14). Because there is a low number of genomes for 319

most species and this test restricts us to only within-species comparisons, our 320

species-wise parameter-based suffers somewhat in terms of power. 321

Third, we fit a linear model accounting for phylogeny (Tung Ho and Ané (2014)) of 322

the mean number of CRISPR arrays on a genome per species versus the proportion of 323

functional genomes per species. This yielded a slope near two, indicating maintenance 324

of two arrays on average (m = 1.9283, p < 2× 10−16), and was actually higher than the 325

slope found not considering phylogeny (m = 1.69788, p < 2× 10−16). 326

In order to determine if the signature of selection on multiple arrays we observed was 327

confined to a particular set of clades, we mapped all species-specific ∆µk values onto 328

the SILVA Living Tree 16s rRNA tree (Yarza et al., 2008). Of the 623 species with at 329

least one functional and one non-functional genome, 568 were represented on the tree. 330

Positive and strongly positive (> 1) values of ∆µk were distributed across the tree, 331

indicating this phenomenon was not isolated to a particular group (S12 Fig). Formal 332

testing revealed no significant phylogenetic signal in the ∆µk values (K = 1.88× 10−9, 333

p = 0.604; Blomberg et al. 2003; Revell 2012) 334

We also regressed the species-specific ∆µk’s found above against the minimum 335

distance between CRISPR arrays and cas genes in a genome to verify that linkage was 336

not driving our result. We saw a slight positive relationship between CRISPR-cas 337

distance and our signature of multi-array selection, the opposite of what we would 338

expect if linkage were driving our results (m = 3.163× 10−7, p = 8.52× 10−6, 339

R2 = 0.009937). 340

Finally, to confirm that assembly level had no effect on our outcome, we ran our 341

parametric test restricted to completely assembled genomes in the dataset. This 342

reduced dataset still yielded a signature of selection on multiple array (6263 genomes, 343

∆µ = 0.98± 0.09) 344

Neo-CRISPR Arrays 345

Recently, Nivala et al. (2018) found that off-target spacer integration into the genome 346

can spawn novel CRISPR arrays in E. coli. This could create a spurious signature of 347
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Bootstrap Bootstrap
Only ≤ 1 cas set Sub-sampled µ̂S 2.5% 97.5% µ̂N 2.5% 97.5% ∆µ s?

No No 1.56 1.53 1.58 0.46 0.45 0.47 1.09 2
No Yes 2.26 2.19 2.34 1.13 1.08 1.17 1.14 2
Yes No 1.05 1.04 1.07 0.45 0.44 0.46 0.61 2
Yes Yes 1.26 1.19 1.32 1.07 1.03 1.12 0.19 1

Table 1. Tests for multi-array adaptiveness applied to different subsets of the RefSeq
data. See Fig 1 and S2 Fig-S4 Fig.

selection maintaining multiple arrays using our test, since the production of 348

“neo-CRISPR arrays” would only occur in functional genomes. A simple way to control 349

for this is to merge all CRISPR arrays with identical consensus repeat sequences in a 350

genome, thus removing any duplicates. Doing this, we find that the signature of 351

multi-array selection remains, albeit being somewhat less strong (∆µ = 0.46± 0.02). 352

We were considerably surprised that this signature of selection still remained after 353

merging, since such merging will also remove a large portion of arrays acquired through 354

horizontal transfer, assuming such transfers most often happen between closely related 355

individuals. In any case, while the production of neo-CRISPR arrays may be driving 356

our result in part, it cannot account for the overall signal. It is unclear if neo-CRISPR 357

arrays are commonly produced in bacteria via off-target integration, though Nivala et al. 358

(2018) found circumstantial evidence it may occur in two other species. The CRISPR 359

system of E. coli is not naturally active (Savitskaya et al., 2017) and requires artificial 360

up-regulation of the spacer acquisition machinery. 361

Validation of CRISPRDetect array predictions 362

We ran our tests for selective maintenance of multiple arrays on the same dataset 363

excluding arrays with a CRISPRDetect score lower than 6 (double the default 364

threshold). We found no qualitative differences in our results when we used this 365

increased detection threshold (∆µ = 1.00± 0.02). By default, CRISPRDetect identifies 366

arrays with repeats matching experimentally-verified CRISPR arrays as well as de novo 367

repeats. If we restrict to only arrays with a positive hit on this list we again found the 368

same pattern (∆µ = 0.76± 0.03). 369

We also downloaded the set of CRISPR arrays and array-lacking genomes available 370

on the CRISPR Database (Grissa et al., 2007a). This database uses an alternative 371

algorithm for array detection (Grissa et al., 2007b) and thus serves as an independent 372

verification of our results. This dataset showed a clear signature of selection 373

maintaining multiple arrays (∆µ = 1.49± 0.17). 374

Evidence for array specialization 375

In genomes with multiple arrays, the dissimilarity between consensus repeat sequences 376

of arrays in a single genome spanned a wide range of values (Levenshtein Distance, S7 377

Fig and S8 Fig), though the mode was at zero (i.e., identical consensus repeats). When 378

limiting our scope to only genomes with exactly two CRISPR arrays, we saw a bimodal 379

distribution of consensus repeat dissimilarity, with one peak corresponding to identical 380

arrays within a genome and the other corresponding to arrays with essentially randomly 381

drawn repeat sequences except for a few conserved sites between them (S7D Fig). We 382

also observed that among functional genomes, the area of the peak corresponding to 383

dissimilar repeat sequences was significantly higher than among non-functional genomes 384

(χ2 = 61.432, df = 1, p < 4.582× 10−15, S7 Fig). This suggests that the observed 385
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signature of adaptiveness may be related to the diversity of consensus repeat sequences 386

among CRISPR arrays in a genome. 387

We attempted to independently confirm this result using repeat sequences obtained 388

from the CRISPR Database. While the distribution of pairwise-distances between 389

repeat sequences in two-array genomes was approximately the same shape as that we 390

observed for our dataset (S8 Fig), the relationship between diversity and functionality 391

was reversed, with non-functional genomes having more diverse consensus repeats 392

among their arrays (χ2 = 4.3952, df = 1, p = 0.03604). This opposing result calls into 393

question the pattern observed in the CRISPRDetect data, though this may be due to 394

the smaller size of the CRISPR Database dataset. 395

A tradeoff between memory span and acquisition rate could 396

select for multiple arrays in a genome 397

We hypothesized that having multiple systems with different acquisition rates could 398

allow prokaryotes to respond to a range of pathogens with different characteristics (e.g. 399

residence time in the environment, frequency of recurrence). To investigate this 400

possibility we built a simple model of spacer turnover dynamics in a single CRISPR 401

array in the presence of “background” and “transient” viral species (see Methods). We 402

constructed phase diagrams of the model behavior, varying spacer acquisition rates and 403

the relative population sizes of viral species or the extent of priming, respectively (Fig. 404

2a, S9 Fig). We found that for very high spacer acquisition rates, the system is able to 405

maintain immunity to both background and transient viral populations (“short-term 406

memory”/“fast-learning”). High rates of spacer acquisition are unrealistic as they lead 407

to high rates of autoimmunity (S2 Text, Wei et al. 2015; Kumar et al. 2015; Yosef et al. 408

2012; Levy et al. 2015; Stern et al. 2010). Our analysis also reveals that there is a region 409

of parameter space with low spacer acquisition rates in which immunity is maintained 410

(“long-term memory”/“slow-learning”). This is the region where low spacer turnover 411

rates allow immune memory to remain in the system over longer periods of time (Fig. 412

2a). 413

The “long-term memory”/“slow-learning” region of parameter space is separated 414

from the “short-term memory”/“fast-learning” region of parameter space by a 415

“memory-washout” region in which spacer turnover is high so that memory is lost but 416

acquisition is not rapid enough to quickly re-acquire immunity towards the transient 417

virus (Fig. 2a). The relative densities of the different viral species modulate the relative 418

importance of fast-acquisition versus memory span. Thus for a range of pathogenic 419

environments two distinct CRISPR immune strategies exist with respect to the spacer 420

acquisition rate (“long-term memory” vs. “fast-learning”). We also note that high levels 421

of priming expand the “washout” region separating the two strategies, as high spacer 422

uptake from background viruses will crowd out long term immune memory (S9 Fig). 423

A single CRISPR array fulfilling one of the two CRISPR strategies is sufficient in 424

the case shown in Fig 2a, although only one of those strategies is likely accessible due to 425

limits on spacer acquisition rates. When a third, novel viral species enters the system, a 426

two-array solution may become necessary due to the memory span vs. learning speed 427

tradeoff (Fig 2b). Extremely high spacer acquisition rates might allow the host to 428

rapidly respond to both novel and returning threats, but, as noted above, such rates are 429

unrealistic due to physical constraints on the speed of adaptation as well as the 430

evolutionary constraint of autoimmunity (S2 Text, Wei et al. 2015; Kumar et al. 2015; 431

Yosef et al. 2012; Levy et al. 2015; Stern et al. 2010). CRISPR adaptation is rapid, but 432

it is not instantaneous, and infected hosts with arrays lacking an appropriate spacer will 433

often perish before a spacer can be acquired (Hynes et al., 2014). This means that the 434

region of rapid immune response to both transient and novel threats by a single array, 435
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Fig 2. Immune memory is maximized at intermediate and low spacer acquisition rates,
creating a tradeoff with the speed of immune response to novel threats. (a) Phase
diagram of the behavior of our CRISPR array model with two viral species, a constant
“background” population and a “transient” population that leaves and returns to the
system at some fixed interval. The yellow region indicates that immunity towards both
viral species was maintained. The green region indicates where immune memory was
lost towards the transient phage species, but reacquired almost immediately upon phage
reintroduction (tI < 10−5, where tI is the time to first spacer acquisition after the
return of the species to the system following an interval of absence). The light blue
region indicates that only immunity towards the background species was maintained
(i.e., immune memory was rapidly lost and tI > 10−5). Dark blue indicates where
equilibrium spacer content towards one or both species did not exceed one despite both
species being present in the system (S1 Text). (b) The tradeoff between memory span
and learning speed. The speed of immune response to the transient viral species (as in
(a), with vB/vF = 1) is plotted against the speed of response to a novel viral species to
which the system has not been previously exposed (so that there are no spacers
targeting this species), over a range of µA values (µA ∈ [10−3.5, 1]). The speed of
immune response to the transient species is defined as 1/(1 + tI) (where tI = 0 if
memory is maintained). The speed of response to the novel species is similarly defined
as 1/(1 + tN ) where tN is the time to first spacer acquisition towards this species. For
specifics on calculating tI and tN see S1 Text.
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shown in the top-right corner of Fig 2b, is probably inaccessible. Thus, in order to 436

maximize novel spacer acquisition and memory span simultaneously, a two-system 437

solution will be required. 438

An alternative model with fixed-length arrays, corresponding to a situation in which 439

only the first few spacers in an array are processed into mature crRNAs (Bernick et al., 440

2012; Hale et al., 2012; Richter et al., 2012), demonstrated qualitatively similar behavior 441

to the model described above (S1 Text, S10 Fig). 442

Taxon-specific signatures of selection 443

Several taxa in the dataset were represented by a large number of genomes (> 1000), 444

with at least one each of functional and non-functional genomes. We performed our test 445

for adaptiveness on each of these taxa individually (Table 2). We found that among 446

Staphylococcus aureus, Klebsiella pneumoniae, Shigella sonnei, and Listeria 447

monocytogenes genomes there was a strong signal of selection maintaining multiple 448

arrays. 449

Table 2. Species specific values of ∆µ

Species ∆µ

Staphylococcus aureus 1.15± 0.37
Klebsiella pneumoniae 0.76± 0.06

Shigella sonnei 0.72± 0.17
Listeria monocytogenes 0.67± 0.08

Mycobacterium tuberculosis 0.41± 0.05
Pseudomonas aeruginosa 0.35± 0.16
Campylobacter jejuni −0.12± 0.05

Escherichia coli −0.20± 0.04
Salmonella enterica −0.54± 0.06

Surpisingly, genomes of Campylobacter jejuni, Eschericia coli, and Salmonella 450

enterica show evidence for selection against having a CRISPR array in the presence of 451

functional cas machinery. Previous work has shown that CRISPR in E. coli and S. 452

enterica appears to be non-functional as an immune system under natural conditions 453

(Touchon and Rocha, 2010; Touchon et al., 2011). All of these taxa are human 454

pathogens, and can occupy a diverse set of environmental niches on the human body. It 455

is unclear at this time what is causing the differences in the adaptive landscape each 456

taxon experiences. 457

A very small portion of the genomes used in our analyses were from archaea (< 1%). 458

We ran our analyses on these genomes alone to see if they differed qualitatively from 459

their bacterial counterparts. Archaeal genomes showed a clear signal of selection 460

maintaining multiple arrays, although the confidence interval around our statistic is 461

rather broad (∆µ = 1.05± 0.56). We note that the large majority of archaeal genomes 462

had CRISPR arrays and were also functional, making our approach less powerful (S11 463

Fig). Further, if those few non-functional genomes lost their cas spacer acquisition 464

machinery recently, then our power would be reduced even more because these genomes 465

might still bear the remnants of past selection. 466

Type-specific signatures of selection 467

While we do not have direct information on system type for the majority of arrays in 468

our dataset, we can subdivide genomes into those containing the signature cas targeting 469

genes for type I,II, or III CRISPR systems (cas3, cas9, and cas10 respectively), 470
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assuming that this is a reliable indicator of system type (Makarova et al., 2015). The 471

number of arrays per genome differed significantly between each of these pairs (S13 Fig), 472

though the largest difference was between genomes with class I targeting proteins which 473

had around 2 arrays on average (type I and type III, 2.10 and 1.96 respectively) and 474

class II targeting proteins which only had one array on average (type II, 1.05). We 475

excluded genomes with multiple types of targeting genes for this analysis. 476

We cannot run our test for selection directly on these subsets of the data, since they 477

exclude genomes without arrays or cas genes. Instead we classified species into types if 478

the only observed targeting gene type among all representatives of that species 479

corresponded to a a particular type. Thus we can test for our signature of selection 480

among species that “favor” a particular type of CRISPR system. All types showed a 481

signature of multi-array selection (∆µ = 1.09± 0.05, 0.62± 0.02, 1.79± 0.06 482

respectively). In particular type III “species” had a particularly strong signal, and 483

organisms in this group may be under selection to maintain three arrays. 484

Discussion 485

Selection maintains multiple CRISPR arrays across prokaryotic 486

taxa 487

On average, prokaryotes are under selection to maintain more than one CRISPR array. 488

This surprising result holds controlling for both overrepresented taxa and the influence 489

of multiple sets of cas genes. However, the degree of selection appears to vary between 490

taxa, likely as a function of the pathogenic environment each experiences based on its 491

ecological niche. 492

The number of CRISPR arrays in a genome appears to follow a negative binomial 493

distribution quite well (Figs 1b and 1a, S2 Fig-S4 Fig), consistent with our theoretical 494

prediction. This pattern is robust to sub-setting of the data in a variety of ways. We 495

note that, due to the large size of this dataset, formal goodness-of-fit tests to the 496

negative binomial distribution always reject the fit due to small but statistically 497

significant divergences from the theoretical expectation. 498

Our test for selection is conservative to the miscategorization of arrays as 499

“functional”or “non-functional”. Miscategorizations could occur because intact targeting 500

machinery still allows for preexisting spacers to confer immunity, some CRISPR arrays 501

may be conserved for non-immune purposes (e.g. Touchon and Rocha 2010; Li et al. 502

2016), or intact acquisition machinery is no guarantee of system functionality. That 503

being said, our test is conservative precisely because of such miscategorizations, as they 504

should increase µ̂N and decrease µ̂S respectively. Selection against having a CRISPR 505

array in genomes lacking spacer acquisition machinery could produce a false signature of 506

selection maintaining arrays in genomes with acquisition machinery. This is unlikely 507

because there is no reason a non-functional CRISPR array should be under strong 508

negative selection given the low or nonexistent associated costs. 509

Our test should also be robust to false positive or negative array discovery rates. 510

Because we used CRISPRDetect settings such that cas-gene presence was not taken into 511

account when scoring arrays, CRISPRDetect followed identical procedures for detecting 512

arrays in functional and non-functional genomes. Thus an elevated false-positive or 513

false-negative rate should have no effect on our tests for selection, because these tests 514

rely on relative differences between array counts in functional and non-functional 515

genomes, not their actual values. We further confirmed this by changing our 516

CRISPRDetect score threshold and comparing to the distribution of arrays per genome 517

in the CRISPR Database (Grissa et al., 2007a). 518

Finally, we note that µN and µS take on a range of values depending on what subset 519
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of taxa/genomes is considered. This is to be expected as each set of species will occupy 520

a distinct environment in terms of both the rate of horizontal gene transfer and the 521

usefulness of CRISPR immunity. Nevertheless, our qualitative result of multi-CRISPR 522

adaptiveness is robust to this quantitative variability. 523

Why have multiple CRISPR-Cas systems? 524

Possibly, multiple arrays could be selectively maintained even in the absence of any 525

fitness advantage if each array acquired complementary spacer content towards distinct 526

viral targets by chance. If arrays share acquisition machinery such complementarity is 527

unlikely because priming will ensure both arrays contain spacers towards any target 528

encountered, meaning that the content of the two arrays will be largely redundant. We 529

note that this argument only holds for type I and II systems which demonstrate priming 530

(Datsenko et al., 2012). Type III systems are unprimed, have slow spacer acquisition 531

rates, and can target even mutated viral sequences (Pyenson et al., 2017). Thus type III 532

systems may be maintained via spacer complementarity, perhaps explaining why species 533

favoring type III systems appear to experience selection maintaining three rather than 534

just two CRISPR arrays. 535

Even in type I and II systems, if each array is associated with a separate set of 536

spacer acquisition machinery, then cross-priming will be less likely and complementarity 537

could arise. Nevertheless, this does not explain the multi-array conservation we see in 538

genomes with only a single set of cas genes. Thus we consider here several potential 539

adaptive explanations for the selection that maintains multiple arrays. 540

Our data show significant numbers of both functionally similar and dissimilar 541

CRISPR systems within the same genome, so either could potentially be adaptive. 542

While CRISPR systems are generally highly flexible, a prokaryote might still gain an 543

advantage in the former case if multiple similar systems lead to improved immunity 544

through redundancy and in the latter case if multiple dissimilar systems allow for 545

specialization towards multiple types of threats. The relevance of the different 546

advantages depends on whether an individual has multiple sets of cas genes, CRISPR 547

arrays, or both. 548

In the case of similar systems, immunity could be improved by (a) an increased 549

spacer acquisition rate, (b) an increased rate of targeting, or (c) a longer time to 550

expected loss of immunity. Duplication of cas genes could, in principle, increase uptake 551

(a) and targeting rates (b) through increased gene expression, but our data show that 552

multiple sets of cas genes are rare, which suggests this is, at best, a minor force. 553

Alternatively, duplication of CRISPR arrays could increase targeting (b) via an 554

increased number of crRNA transcripts or increase memory duration (c) through spacer 555

redundancy. However, the effectiveness of crRNA may actually decrease in the presence 556

of competing crRNAs (Stachler and Marchfelder, 2016; Stachler et al., 2017) and, since 557

a single array can have multiple spacers with the same target, there is a diminished 558

advantage to having multiple arrays in terms of memory span (S3 Text). Redundant 559

arrays might also be a form of bet-hedging since CRISPR functionality is lost at a high 560

rate in some prokaryotes (Jiang et al., 2013; Weissman et al., 2018). 561

In the case of dissimilar systems, immunity could be aided if diverse features are 562

advantageous. For example some viruses encode proteins that deactivate Cas targeting 563

proteins (Bondy-Denomy et al., 2013; Pawluk et al., 2014; Rauch et al., 2017). Diverse 564

cas genes may allow hosts to evade the action of these anti-CRISPR proteins, which are 565

often extremely broadly acting (Bondy-Denomy et al., 2013; Pawluk et al., 2014). 566

Alternatively, it has recently been shown that promiscuous type III Cas proteins are 567

often encoded alongside type I systems and can function as a “backup”, using spacers 568

from the same array to target phages that have mutated the protospacer-adjacent 569

motifs necessary for type I targeting (Silas et al., 2017). Many genomes with multiple 570
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cas signature genes also had multiple types of such genes, possibly indicating some 571

diversifying force. The inclusion of these multi-cas genomes also increased the effect size 572

of our test for adaptiveness, despite low representation in the dataset. In any case, while 573

these hypotheses remain interesting candidates to explain CRISPR multiplicity in some 574

prokaryotes, the majority of the genomes in the dataset have only one set of cas genes 575

and thus these mechanisms cannot explain the signature for multi-array adaptiveness 576

observed in the majority of the dataset. 577

The theoretical model we present demonstrates one possible explanation for selective 578

maintenance of multiple CRISPR arrays. Rate variation is an attractive hypothesis since 579

it can explain the signature of selective maintenance we observe even in the absence of 580

multiple sets of cas genes. Additionally, rates vary between systems, and rate variation 581

among arrays on a single genome has been observed in a diverse set of organisms (e.g. 582

(Paez-Espino et al., 2015; Westra et al., 2015)). Arrays with slightly different, or even 583

identical, consensus repeat sequences may differ in length, despite sharing a set of cas 584

genes (Zeng et al., 2017). It has even been shown directly that acquisition rates can 585

vary among CRISPR arrays with identical consensus repeat sequences sharing a single 586

set of cas genes (Staals et al., 2016). The factors influencing acquisition rate appear to 587

be idiosyncratic, perhaps related to the genomic position of the CRISPR array. 588

We do not provide empirical evidence that rate variation drives the observed 589

signature of selection of multiple arrays. Such verification is not currently possible, and 590

will require the characterization of spacer acquisition and loss rates across a large 591

number of taxa. Nevertheless, we develop this hypothesis as a promising candidate and 592

illustrate how factors intrinsic to the mechanism of CRISPR immunity can create strong 593

tradeoffs between memory span and learning speed. We show how such tradeoffs can 594

lead to selection for both high acquisition rate (i.e., short term memory) and low 595

acquisition rate (i.e., long-term memory) systems, depending on the pathogenic 596

environment of the host. As an array increases in length (i.e., the number of repeats 597

increases) the rate of spacer loss should also increase because loss occurs via homologous 598

recombination. Thus a length-dependent spacer loss rate causes high acquisition rate 599

systems to also have high loss rates, producing the aforementioned tradeoff. 600

Our primary model demonstrates that array-length dependent spacer loss can 601

produce a “learning” versus “memory” tradeoff. Nevertheless, in some systems spacer 602

loss may occur at a very low rate, making our proposed mechanism less relevant. There 603

is some evidence of spacers that persist in a population over a timespan of years (Tyson 604

and Banfield, 2008), though such conservation is possibly due to selection on the 605

population rather than a low mechanistic loss rate. A slightly modified model that 606

imposes a hard cap on the number of “effective” spacers in an array (S1 Text) and 607

would not require a strong spacer loss vs. acquisition rate link produced qualitatively 608

similar results. We based this model on evidence that the abundance of mature crRNA 609

transcripts from the leader end greatly exceeds that of those from the trailing end 610

(Bernick et al., 2012; Hale et al., 2012; Richter et al., 2012), implying that only the first 611

few spacers in an array will provide effective immunity. Thus CRISPR immunity may 612

face a memory-learning tradeoff due to multiple, distinct mechanisms, but in both cases 613

spacer acquisition rate variation among systems can lead to an optimal solution for the 614

host. 615

We note that when partial spacer-target matches exist, variability in spacer 616

acquisition rates among arrays will be largely irrelevant since priming will ensure rapid 617

acquisition of new spacers. On the other hand, when no match exists, either due to 618

spacer loss or the introduction of a truly novel viral species into the environment, 619

primed spacer uptake will not occur. Thus the rate at which a host encounters novel 620

threats will determine the relative importance of the baseline spacer acquisition rate 621

versus the primed acquisition rate. In environments where novel viruses are frequently 622

16/21

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 23, 2018. ; https://doi.org/10.1101/148544doi: bioRxiv preprint 

https://doi.org/10.1101/148544
http://creativecommons.org/licenses/by/4.0/


encountered, small differences in acquisition rate can be important for host fitness, 623

whereas in environments where host and virus pairs consistently coevolve over time 624

priming will be the more important phenomenon. 625

As more genome sequences from environmental samples become available, it will be 626

possible to explicitly link particular array configurations to specific features of the 627

pathogenic environment or host lifestyle. Even then, open questions remain. One 628

phenomenon that we do not address here is that a small, but non-trivial number of 629

genomes have greater than 10 arrays. It is difficult to imagine so many arrays 630

accumulating neutrally in a genome. If high array counts are a product of high 631

horizontal transfer rates, then genomes with extremely high array counts should also be 632

larger due to accumulation of foreign genetic material. This was not the case (S14 Fig), 633

indicating that rates of horizontal transfer alone cannot explain these outliers. 634

Finally, our examination of immune configuration is likely relevant to the full range 635

of prokaryotic defense mechanisms. In contrast to previous work focusing on 636

mechanistic diversity (e.g. Iranzo et al. 2013, 2015; Kumar et al. 2015; Westra et al. 637

2015), we emphasize the importance of the multiplicity of immune systems in the 638

evolution of host defense. As we suggest, a surprising amount of strategic diversity may 639

masquerade as simple redundancy. 640
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