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Abstract

Understanding how neurons cooperate to integrate sensory inputs and guide behavior is a fun-
damental problem of neuroscience. A large body of methods have been developed to study
neuronal firing at the single cell and population levels, generally seeking interpretability as well
as predictivity. However, these methods are usually confronted with the lack of ground-truth
necessary to validate the approach. Here, using neuronal data from the head-direction system, we
present evidence how gradient boosted trees, a non-linear and supervised machine learning tool,
learns the relationship between behavioral parameters and neuronal responses with high accuracy
by optimizing the information rate. Interestingly, and unlike other classes of Machine Learning
methods, the intrinsic structure of the trees can be interpreted in relation to behavior (e.g. to recover
the tuning curves) or to study how neurons cooperate with their peers in the network. As an
example, we show how the method reveals a temporally shifted coordination in a thalamo-cortical
circuit during wakefulness and sleep, indicating a brain-state independent feed-forward circuit.
Machine learning tools thus open new avenues for benchmarking model-based characterization of
spike trains.

Introduction

Investigating how the brain operates at the neu-
ronal level is usually addressed by the specifica-
tion of neuronal responses to an experimentally
measurable variable or by the quantification of
the temporal coordination of neuronal ensem-
bles [Harris, 2005, Rieke, 1999]. Using various
methods, the responses of single neurons can
be characterized by the tuning curves based
on a single measurement (i.e. average firing
rate as function of the observed value) [Hubel
and Wiesel, 1962, O’keefe and Nadel, 1978,
Taube et al., 1990], generalized linear models
accounting for the coding of multiple variables
[Harris et al., 2003, Truccolo et al., 2005], bio-
physical models of spike train generation [Pil-
low et al., 2005] or information measures and
reverse reconstruction [Borst and Theunissen,
1999, Rieke, 1999].
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The coding of information in the brain re-
lies on the coordinated firing of neuronal pop-
ulation [Buzsáki, 2010, Harris, 2005, Pouget
et al., 2013, Yuste, 2015]. The development of
dense electrode arrays [Buzsáki, 2004, Jun et al.,
2017] and imaging techniques [Chen et al.,
2013, Dombeck et al., 2007] in awake animals
now allows us to monitor large ensembles of
neuronal activity and to address fundamental
questions about neuronal network coordina-
tion. Neuronal interactions, in relation to be-
havior or internal parameters (e.g. brain states)
are evaluated by the statistical dependencies of
spike trains, the most widely used being linear
cross-correlations [Perkel et al., 1967]. These
linear measures can be generalized to popu-
lation correlation with tools such as Principal
Component Analysis [Chapin and Nicolelis,
1999, Peyrache et al., 2010] and Independent
Component Analysis [Lopes-dos Santos et al.,
2013]. Generalized linear models were used to
build prediction of single spike trains as a func-
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tion of the peer network activity [Harris et al.,
2003] and to provide a full statistical descrip-
tion of spatio-temporal neuronal responses and
correlations [Pillow et al., 2008]. Methods from
graph theory offer ways to compare interac-
tions at the network level across experimental
conditions [Humphries, 2017]. Finally, among
the large body of available tools, evaluating
neuronal coupling by fitting spiking activity
to Ising models has provided key insights into
the nature of neuronal coordination in a pop-
ulation [Cocco et al., 2009, Schneidman et al.,
2006].

The majority of the methods enumerated
above rely on a set of assumptions regarding
the statistics of the data or the biophysics of
neuronal spiking, among others, while seeking
explanatory power. To assert the validity of
a particular approach, the usual procedure is
to divide the data set into a training set, used
to fit the model parameters, and a test set, on
which the likelihood of the model is evaluated.
However, this method, called cross-validation,
does not rule out the possibility that a partic-
ular fit of the model parameters, even when
leading to high likelihood, corresponds to the
wrong model. For example, the omission of
a key variable in the model may attribute er-
roneous contribution to the set of other vari-
ables. These limitations arise from the lack of
ground-truth data that in the most complex
(and, therefore, interesting) cases represent an
unreachable goal.

This lack of ground-truth data when per-
forming data analysis is particularly unavoid-
able in neuroscience [Harris et al., 2016]. It
has thus become necessary to establish stan-
dard, model-free methods that, even if they
do not contribute to our understanding of the
data, set levels of performance that may be
used to benchmark model-based approaches
[Benjamin et al., 2017, Truccolo and Donoghue,
2007]. Machine learning provides a large ar-
ray of techniques to classify dataset that have
demonstrated high level of performance in
fields ranging from image processing to as-
trophysics [LeCun et al., 2015]. Our approach
is to apply a supervised classifier, the so-called

gradient boosting, to determine an upper bound
of performance for model-based, interpretable
methods in neuronal data analysis [Benjamin
et al., 2017, Truccolo and Donoghue, 2007]. We
tested the validity of the approach on data
of the head-direction system [Peyrache et al.,
2015, Taube, 2007, Taube et al., 1990], a sensory
pathway whose member neurons, the so-called
head-direction cells, emit spike trains that can
be explained with high accuracy simply by the
direction of the head of the animal in the hor-
izontal plane. Decision trees maximized their
branching in input ranges where Fisher Infor-
mation was maximal. We then determined the
optimal parameters of the method for our data
set. Finally, we applied this method to simul-
taneously recorded neurons in the thalamo-
cortical network of the head-direction system,
namely in the antero-dorsal nucleus of the tha-
lamus (ADn) and the Post-subiculum (PoSub),
and demonstrated that thalamic neurons lead
cortical neurons in all brain states.

Methods

Gradient boosted trees

Machine learning literature defines boosting
as the combination of many weak classifiers
with limited prediction performances in order
to build a stronger classifier. The first boost-
ing algorithm is AdaBoost (Adaptive Boosting)
[Freund and Schapire, 1995] which trains weak
learners using a distribution of weight over the
training set. This distribution of weight is up-
dated after the convergence of a weak learner
in order for the next weak learner to focus on
the difficult examples i.e. the points that are
hard to classify.

Boosting algorithms come in different fla-
vors for the type of learners or the updating
of the weights [Ferreira and Figueiredo, 2012,
Schapire, 2003]. Here we focused on the boost-
ing using the decision tree model as the weak
learner. The goal of the gradient boosted trees
algorithm is to determine the optimal succes-
sive partition of features space in order to as-
sign a weight or a label to a subset of the train-
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ing examples.
Focusing on supervised learning, we thus

defined the training set [(x1, y1), . . . , (xm, ym)]
where xi ∈ Rd is the i-th training example with
d different features and yi is the target value.
The goal of the learner reduces to: how to
make an accurate prediction ŷi given xi and
the correct value yi. A target value yi for a
given training example xi is a spike count over
a finite time bin for one neuron. Using Poisson
distribution, we thus defined the prediction of
the model as :

p(yi = k|xi; θ) =
λk

k!
exp−λ (1)

for a given set of parameters θ. We defined
ŷi for each training example as the prediction
of the learning algorithm. This value corre-
sponds to the mean of the predicted Poisson
distribution.

feature

Figure 1: Predicting the firing rate of a cell with gradient
boosted trees. Each row corresponds to the learning of one
tree by the algorithm. The tuning curve is sequentially
split as shown on the left figures (vertical lines; blue
line displays the actual tuning curve and black lines
correspond to the prediction). Thus, intervals between
each pair of splits are assigned a different target value.
The first two trees are shown on the right and the exact
values of each leaf are indicated in the square boxes.

The measure of the performance of the

model is made through an objective function
O(θ) = L(θ)+Ω(θ) that sums the training loss
L and the regularization term (penalty for com-
plexity) Ω. The training loss to be minimized
is then defined as the negative log-likelihood
over the full set :

−L(θ) = −∑
i
[yilog(ŷi)− ŷi] (2)

also known as the Poisson loss.
For the regularization term Ω, the complex-

ity of the tree set was defined as

Ω( f ) = γT +
1
2

λ̄
|Leaves|

∑
j=1

w2
j (3)

where wj is the vector of scores on leaves and
γ, λ̄ are free parameters.

To minimize the objective function, the learn-
ing algorithm must find the optimal set of split
values and the optimal set of leaf values for
each tree. An efficient strategy is thus to opti-
mize trees sequentially i.e. the input of a tree
is the output of the previous tree. After opti-
mizing t − 1 trees, the prediction at tree t is
ŷt

i = ŷt−1
i + ft(xi).

By taking advantage of the fact that the same
score is assigned to all the points that fall into
the same leaf, the objective function can be
transformed from a sum over the training set
to a sum over the leaves set:

Ot ≈
|Leaves|

∑
j=1

[(∑
i∈Ij

gi)wj +
1
2
(∑

i∈Ij

hi +λ)w2
j ]+γ|Leaves|

(4)
The index function Ij = {i| f (xi) = wj} maps
each training point xi to the corresponding
leaf j while gi and hi are respectively the first
order and second order derivatives of the loss
function. In the case of Poisson regression, the
gi and hi are defined as :

gi = eŷi − yi (5)

hi = eŷi (6)

Finally, the sum of wj and w2
j in equation 4 is

quadratic which allows us to compute the op-
timal w∗j and the corresponding best objective
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value

O∗(w∗j ) = −
1
2

|Leaves|

∑
j=1

G2
j

Hj + λ
+ γ|Leaves| (7)

which is only a measure of how good a tree
structure is.

The best tree structure is then found by se-
quentially splitting the features space, with
each splitting position corresponding to the
maximum gain:

Gain =
1
2
(

G2
L

HL + λ
+

G2
R

HR + λ
−

G2
R + G2

L
HR + HLλ

)−γ

(8)
with Gj = ∑i∈Ij

gi and Hj = ∑i∈Ij
hi. The gain

for one split is a measure of fit improvement. It
is the difference between the scores of the new
leaves (right leaf and left leaf) after the split
and the score of the previous leaf. Details of
the derivative steps and full explanations of the
algorithm can be found in Chen and Guestrin
[2016].

An example of the gradient boosted trees
algorithm is shown in Fig. 1 for a non-linear
tuning curve (blue curves Y). For each tree
sequentially optimized (1,2 and 10 shown), the
algorithm splits the tuning curve at different
positions (X0, X1, X2, X3, . . .) and assigns a
leaf score between each splits. When iterating
this procedure, the predicted firing rate (black
curves Ŷ) will progressively converge to the
actual firing rate.

Scoring function

To estimate the quality of a model, we used the
pseudo-R2 score :

pR2 = 1− (y log y− y)− (y log ŷ− ŷ)
(y log y− y)− (y log ȳ− ȳ)

(9)

with y the target firing rate, ŷ the prediction, ȳ
the mean firing rate [Cameron and Windmeijer,
1997]. A value of 1 indicates a perfect model
that reproduces entirely the dataset while a
value of 0 indicates a model that is no better
than the average value of the training set.

To compute the pR2 score, the data set was
divided into a training set and a test set, a pro-
cedure known as cross-validation that prevents

the model from over-fitting the training set. For
all the predictions of firing rates, we used a 8-
fold cross-validation, i.e the training set was
divided into 8 discontinuous partitions with
each one serving successively as the testing set.
For each spiking activity predicted for one neu-
ron, this procedure yields eight pR2 that were
averaged. This mean pR2 served as a measure
of performance of the gradient boosted trees
technique.

Model comparison

To benchmark the performance, we compared
the mean pR2 from mean pR2 obtained from re-
spectively the model-based tuning curve of the
neuron and a linear regression model. In both
cases, the same 8-fold cross-validation proce-
dure was used. For the model-based algorithm,
the tuning curve of one head-direction neuron
was constructed over 60 angular bins between
0 and 2π using the training set. This tuning
curve was then used to predict the firing rate
of the test set.

Fisher Information

Fisher Information is directly related to the
variance of the most optimal decoder and
can be computed, under the assumption of
a Poisson Process, directly from the tuning
curve [Brunel and Nadal, 1998]. For recall,
FI(x) = (d f /dx)2/ f (x) with f(x) the firing
rate at position x of the input feature. In prac-
tice the Fisher Information was reduced to the
squared slope of the line fitted between three
successive bins of the tuning curve divided by
the firing rate of the middle bin.

Dataset

Neuronal recordings that are analyzed
in this report were described in a previ-
ously published paper [Peyrache et al.,
2015] and are available for download
(https://crcns.org/data-sets/thalamus/th1).
Briefly, multi-site silicon probes (Buzsaki32
and Buzsaki64 fom Neuronexus) were inserted
over the antero-dorsal nucleus (ADn) of
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the thalamus in 7 mice. In three of these
animals, a second probe was lowered to the
post-subiculum (PoSub).

During the recording session, neurophysi-
ological signals were acquired continuously
at 20 kHz on a 256-channel Amplipex system
(Szeged; 16-bit resolution, analog multiplex-
ing). The wide-band signal was downsampled
to 1.25 kHz and used as the local-field potential
signal. To track the position of the animals in
the open maze and in their home cage during
rest epochs, two small light-emitting diodes
(LEDs; 5-cm separation), mounted above the
headstage, were recorded by a digital video
camera at 30 frames per second. The LED lo-
cations were detected online and resampled at
39 Hz by the acquisition system. Spike sorting
was performed semi-automatically, using Klus-
taKwik (http://klustakwik.sourceforge.net/).
This was followed by manual adjustment of the
waveform clusters using the software Klusters.

In animals implanted over the antero-dorsal
nucleus, the thalamic probe was lowered until
the first thalamic units could be detected on at
least 2-3 shanks. The thalamic probe was then
lowered by 70-140 µm at the end of each ses-
sion. In the animals implanted in both the tha-
lamus and in the post-subiculum, the subicular
probe was moved everyday once large head-
direction cell ensembles were recorded from
the thalamus. Thereafter, the thalamic probes
were left at the same position for as long as
the quality of the recordings remained high.
They were subsequently adjusted to optimize
the yield of head-direction cells. To prevent sta-
tistical bias of neuron sampling, we discarded
sessions from analysis that were separated by
less than 3 days during which the thalamic
probe was not moved.

Data analysis

For all analysis, spike trains were binned for
all analyses in 25ms bins and smoothed with a
125 ms kernel, unless stated otherwise.

Code availability

The analyses presented in this report were
run on Matlab (Mathworks, 2017) and Python.
Code is available online in a raw form and
as a Jupyter notebook to present some of the
analyses (www.github.com / PeyracheLab /
NeuroBoostedTrees). Gradient boosting was
implemented with the XGBoost toolbox [Chen
and Guestrin, 2016].

Results

Gradient boosted trees predict firing

rates with raw features

We applied gradient boosted trees (XGB) to the
prediction of spike counts from head-direction
neurons recorded in ADn and PoSub (see
Fig. 2.A for a full display of the training pro-
cess). Since the head-direction signal is a well
characterized signal relative to the angular di-
rection of the animal’s head, we compared the
prediction of XGB with the output of the model-
based (MB) tuning curve (that is, the firing rate
expected from the head-direction of the animal
knowing the tuning curve; see Fig. 2.B). The
comparison shows that XGB reaches the same
level of performance than MB for both ADn
and PoSub. We then added a generalized lin-
ear regression model with raw head-direction
values or a 6th order kernel. In the first case,
the model learns only from the angular fea-
tures θ ranging from 0 to 2π. In the second
case, the model learns with all the k harmonics
(cosθ, sinθ, . . . , coskθ, sinkθ). Not surprisingly,
the simple linear model showed negative or
null performances for both anatomical struc-
tures (Fig. 2.B). Preprocessing of the angular
feature (with the 6th order kernel) increased
the performance to the same levels as XGB and
MB.

The comparison of our models indicates that
XGB is the best model to learn raw data such
as the angular head-direction signal. As ex-
pected, the linear regression model needs a
kernel in order to linearize and increase the di-
mensionality of the feature space. The data we
used contain only head-direction neurons and
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Figure 2: Comparing gradient boosted trees (XGB) with
classical methods. A Using the angle as the input fea-
ture (red), the machine learning algorithm is trained to
minimize the error in predicting the firing rate of one
head-direction neuron over time (yellow, spiking activ-
ity below) during the training phase. For each angular
position in the test set, the algorithm predicts a firing
rate (blue curve). The score of the algorithm measure how
close is the prediction to the real value. B Using an 8-fold
cross-validation, XGB was compared to model-based tun-
ing curves (MB) with 60 bins, a linear regression model
and a linear regression model with preprocessing of the
features i.e the first six harmonics of the angular direction
of the head were used instead of the raw angle. Record-
ings from ADn and PoSub were used to benchmark each
model. B To find the optimal number of trees and the
optimal depth of XGB, a grid-search was performed for
each neuron using the Bayesian Information Criterion
(BIC). C Distribution of the set of optimal parameters for
all neurons. Overall, a maximum number of 100 trees
with a depth of 5 was used to learn and predict spiking
activity as in A.

the relation between neural firing rates and
head angular position was perfectly captured
by XGB when compared to MB.

In comparison with XGB, linear models and
MB are straightforward models in terms of
numbers of free parameters compared to XGB.
In order to validate our approach of predicting
spike trains using XGB, we performed a grid-
search to find the optimal number of trees and
the optimal depth of each tree. A Bayesian
Information Criterion (BIC) score (Fig. 2.C)
was used to compare grid points. The BIC
score was defined as BIC(|Trees|, Depth) =
(|Trees| + Depth)log(n) − 2log(L) with n the
number of time steps in the data training set
and L the likelihood of the model. By penaliz-
ing more complex models using this approach,
we found that 100 trees with a maximal depth
of 5 were sufficient to predict spike trains for
all neurons (Fig. 2.C,D).

Information content of the feature space

is revealed by data splitting

Gradient boosted trees, as most Machine Learn-
ing tools, can be considered as a black box that
achieves high levels of performance with no
possibility to interpret how learning was per-
formed. But, unlike e.g. deep networks, it
is possible to retrieve the thresholds at which
trees split the data to predict the target out-
put (as shown in Fig. 1). In the case of
head-direction cells, predicted from the head-
direction of the animals, the positions of splits
in the interval [0, 2π] were retrieved from the
gradient boosted trees (see examples of fig-
ure 3.A). Splits concentrated for head-direction
values where the tuning curves was the steep-
est. In fact, the density of splits was very
strongly correlated to the Fisher Information
(Fig. 3.A and insets in B), a measure related,
but not equal, to tuning curve steepness that
estimates the variance of an optimal decoder
[Brunel and Nadal, 1998].

Many neurons of the brain’s navigation sys-
tem exhibit correlates to more than one behav-
ioral parameters, for example head-direction
and place [Cacucci et al., 2004, Peyrache et al.,
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Figure 3: Segmentation of behavioral features to predict neuronal spiking. A Tuning-curve splitting for one neuron of
the antero-dorsal nucleus (ADn) and one neuron of the post-subiculum (PoSub). Each vertical gray line is a split from
the gradient boosted trees used to predict firing rate. Black lines indicate Fisher Information (computed from the tuning
curves). B Density of angular splits for ADn and PoSub for all the neurons, and average (thick line). Splits positions
were realigned relative to the peak of the tuning curve. Horizontal dashed lines display chance levels. Insets show the
distribution of correlation coefficients between Fisher Information and density of splits. C Using x and y coordinates of
the animal in the environment as additional input features of the algorithm. Colored lines indicate spatial positions of
splits along x and y. Gray lines indicate a short segment of the trajectory of the animal during the example session. D
Density of splits for x and y position features for all neurons. The highest density is shown in black. E Proportion of
splits for the three input features (head direction, x position and y position for AD and PoSub. F Mean gain value for
the three input features (head direction, x position and y position for ADn and PoSub)

2016, Sargolini et al., 2006]. To determine the
relative correlation of a neuron with these dif-
ferent behavioral parameters, we regressed
spike trains against x and y positions of the
animal randomly foraging in the environment,
in addition to the head-direction. We thus in-
creased the feature space and dissected the
resulting splitting distribution of the gradient
boosted trees (Fig. 3.C). Averaging over all neu-
rons, the density of splits was the highest in the
corner of the environment (Fig. 3.D) where the
animal spend naturally most of its time. When
averaging the distribution of splits between the
head-direction and the two-dimensional posi-

tion (Fig. 3.E), the angular feature was more
segmented for both ADn and PoSub. Nev-
ertheless, we observed that the proportion of
angular splits to position splits was slightly
lower for PoSub when compared to ADn.

One potential issue with this approach is
that training a large number of trees overfit
the learning procedure: it is optimal for de-
coding performance, not necessarily for the
interpretability of the tree structure. To best ex-
plained the contribution of various features to
the spiking activity, it is sometimes more suited
to concentrate on the structure of a smaller
number of trees, and examine the ’gain’ of each
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feature when training the first trees. In fact, the
average gain (see equation 8) for each feature
decreases exponentially as the number of trees
increases (as shown in Fig. S1 when predicting
firing rate only with the angular direction). Be-
sides, we found that random features were also
more split as the number of trees increased (see
Fig. S2). For all those reasons, analysis of the al-
gorithm were performed with the first 30 trees
with a depth of 2 as it corresponds to the most
meaningful split density and average gain. As
a result, the gain of spatial features (x and
y position) was approximatively three times
higher for PoSub neurons compared to ADn
neurons (Fig. 3.E and F), in agreement with
previous studies that employed model-based
methods (i.e. that assumed various properties
for spike trains and sampling of the feature
space) [Cacucci et al., 2004, Peyrache et al.,
2016]. Thus, we concluded that XGB, when
used appropriately, is an efficient method for
determining the relative contribution of vari-
ous features to a series of spike trains.

Peer-prediction reveals the directionality

of information flow across brain struc-
tures

We then applied XGB to neuronal peer-
prediction, that is learning to estimate the spik-
ing activity of one neuron as a function of
the activity of a population of other neurons
(Harris et al. [2003], Peyrache et al. [2015], Pil-
low et al. [2008]). For each session that con-
tained at least 7 neurons in both ADn and Po-
Sub, the model learned all possible group com-
binations (ADn->ADn, PoSub->ADn, PoSub-
>PoSub, ADn->PoSub). For intra-group pre-
diction, the target neuron was removed from
the pool of feature neurons. Tested during
wake, REM and slow wave sleep (referred
also to as ’non-REM sleep’), we found that
peer-prediction had the highest prediction
score between ADn neurons and the lowest
score between PoSub neurons (Fig. 4.A). Inter-
group predictions were similar. In all cases,
scores during slow wave sleep were system-
atically lower than during wakefulness and

REM, in agreement with previous analysis of
peer-prediction in thalamo-cortical assemblies
Peyrache et al. [2015].

Uneven number of feature neurons is a po-
tential confound in peer-prediction analysis.
The prediction process was thus repeated by
equalizing the number of neurons in both struc-
tures and it yielded similar scores as the origi-
nal analysis (Fig. 4.B). The activity within ADn
is therefore more predictable than in the Po-
Sub.

To best capture the statistical dependencies
between spikes trains, we focused on a gain
analysis (i.e. from the branching structure re-
sulting from learning on only 30 trees with a
depth of 2) and we found that the angular dis-
tance was a weak predictor of the split density
for both ADn and PoSub (Fig. 4.C). In others
words, gradient boosted trees tend to split pref-
erentially, yet mildly, feature neurons that have
a preferred direction closer to the target neuron.
More surprisingly, we found no correlation be-
tween the mean firing rate of neurons and the
density of splits (Fig. 4.D). Feature data from
neurons with high firing rates are character-
ized by a wider range of values to be split,
yet, this does not lead to increased splitting.
Thus, all neurons contributed to the prediction
of the activity of another neuron despite each
idiosyncratic spiking activity.

Can XGB reveal the temporal component of
neuronal communication across brain areas?
To investigate this question, XBG was run for
peer-prediction of individual PoSub neurons
from multiple copies of ADn population activ-
ity at various time-lags. In other words, the
model learned the relationship between the fir-
ing rate of feature neurons from time t− T to
t + T (in Fig. 4.A, the model had access only to
time t). A graphical explanation of this proce-
dure is shown in Fig. S3. Using only raw, un-
smoothed spike counts, we found that the gain
(the number of splits multiplied by the mean
gain) was maximal at -25 ms when predicting
PoSub firing rate with ADn activity (Fig. 4.E).
This delay of transmission between structures
was held constant between wake, REM sleep
and slow wave sleep, suggesting a hard-wired,
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Figure 4: Peer-prediction between ADn and PoSub. A Two conditions were tested: prediction between neurons of the
same population (ADn⇒ADn and PoSub⇒PoSub) and prediction using neurons of the other population (PoSub⇒ADn
and ADn⇒PoSub). Only sessions with at least 7 neurons in each population were included (2 animals). Peer-prediction
was then tested during wake (plain bars), REM sleep (dashed bars) and slow wave sleep (crossed bars) episodes. B To
rule out the possibility that the difference in scores resulted from uneven number of recorded neurons, the score were
recomputed using an equal number of neurons in each population (i.e by randomly selecting neurons within the largest
group). C Number of splits of one feature neuron given its angular distance with the target neuron. D Number of splits
given the mean firing rate of the feature neuron. Despite firing rate differences, all features neurons contributed. E For
the ADn⇒PoSub condition, the activity of ADn neurons at successive past to future time steps was used as feature
space. The number of splits was maximal around 25 ms before the current time (vertical black lines) for wake and sleep.
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internally organized circuit [Peyrache et al.,
2015].

Decoding signals from neuronal popula-
tions

XGB is a powerful tool to decode information,
and we thus tested its performance on the de-
coding of the head-direction signal distributed
over population of head-direction cells. To this
end, unlike previous analysis, spiking activ-
ity was binned in 200ms windows and XGB
was trained and compared to a Bayesian de-
coding method, a technique widely used for
such tasks [Peyrache et al., 2015, Zhang et al.,
1998], that predicts the probability of being in
a particular head-direction at each time step
based on the instantaneous spike count in the
population. For both algorithms, 60 angular
bins were used to predict the head-direction.
We parametrized the gradient boosted trees
to use the multi-class log-loss that outputs a
probability of being in a certain class or not.

Using sessions that contained more than 7
neurons in both ADn and PoSub (n=5, two ani-
mals), we showed that gradient boosted trees
and Bayesian decoding show similar perfor-
mance when using ADn activity as a feature
while gradient boosted trees slightly outper-
forms Bayesian decoding for PoSub activity(
Fig. 5.A). An example of decoding from gradi-
ent boosted trees is shown in Fig. 5.B.

Discussion

The present methodology offers a new per-
spective for the analysis of neuronal dynamics
and coding. Unlike classical tools that aim to
provide interpretation of the data by investi-
gating the predictability of a particular model
of neuronal function, we show that gradient
boosted trees [Chen and Guestrin, 2016, Fried-
man, 2001], a supervised learning technique
commonly used in various fields of data min-
ing, equals, if not outperforms other classes
of machine learning models [Burges, 2010, Li,
2012]. This performance was achieved by a di-
rect fit of raw data to the targeted spike trains,

with no explicit prior on cell’s response (e.g. a
tuning curve, or a model of mixed-selectivity to
a set of variables). We report optimal parame-
ters and detailed methods to study neuronal re-
sponse and dynamics as a function of behavior
or endogeneous processes (e.g. the neuronal
peer network). Furthermore, we show that the
resulting tree structure, after learning of the
data, can be itself analyzed to reveal important
properties of the neuronal networks.

Learning neuronal firing in relation to

behavioral data: performance and optimal

parameters

We first sought to validate the approach of
learning a predictive model of spike trains
from behavioral data with a decision tree learn-
ing algorithm that does not include a prede-
fined model of the training set. To this end,
we analyzed a dataset of head-direction cells
[Peyrache et al., 2015, Taube et al., 1990], whose
firing in relation to behavior is among the best
characterized signals in the mammalian ner-
vous system. We have demonstrated first that
gradient boosted trees predicts the firing of the
neurons with high accuracy by establishing a
direct correspondence between the raw behav-
ioral data (in this case the head-direction angu-
lar value alone) and the instantaneous spiking
of the neurons (Fig. 2). The performance was
similar to a model-based approach (i.e. predic-
tion of the firing rate on test data based on the
tuning curve of the training set). This is not
surprising for a class of neurons whose spik-
ing activity is explained so well by an experi-
mentally tractable signal. However, in general,
tuning curves for even well defined neuronal
responses explain only partially actual spike
trains and XGB may well capture previously
undetermined sources of variance.

Although XGB can be viewed as a model-free
technique that does not assume any particular
statistics or generative model of the input data,
the procedure still depends on a limited set of
free parameters that need to be tuned for opti-
mal performance. To facilitate the use of this
classifier for future studies and assure repro-
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A B

Figure 5: Decoding of head-direction angle. A For sessions with large groups of neurons (n ≥ 7) in ADn and PoSub,
the head-direction of the animal was decoded based on spiking activity with the classical Bayesian decoding and gradient
boosted trees (XGB) over 60 angular bins. B Example of decoding for XGB during 30 seconds of head rotation or both
ADn and PoSub. The black line shows the real angular head-direction.

ducibility of analyses across laboratories, we
systematically explored the parameter space
for depth and number of trees in the case of
single neuron spike train prediction (in rela-
tion to head-direction). We found that minima
were well localized, for all neurons, using the
BIC score that penalizes over-complex mod-
els. In particular, we show how the use of
multiple trees (approximatively 100), each lim-
ited in depth (typically five branching), was
an optimal choice of parameters. The narrow
distribution of parameters across neurons can
stem from the fact that angular values are ho-
mogeneously distributed across sessions. Im-
portantly, these optimal parameters did not
seem to depend on neuron’s intrinsic parame-
ters (e.g. firing rates) and there was no obvious
trade-off between tree depth and number of
trees (the two optimal values were indepen-
dently distributed across neurons).

Interpreting the structure of the gradient

boosted trees

While the structure of a multi-layered neural
nets (or other forms of deep architecture) after
learning the classification of a dataset is no-
toriously unanalyzable [Mikolov et al., 2013,
Szegedy et al., 2013, Zeiler and Fergus, 2014],
we show how the branching of the decision tree
may be highly informative on how input data

0 25 50 75 100 125 150

Number of trees

BIC

pseudo-R2

GainSplit
analysis Prediction Overfitting

Figure 6: Split analysis and optimal data prediction lies
within different ranges of tree numbers (for a fixed tree
depth). Thus, the use of gradient boosted trees requires
a careful tuning of the parameters of the algorithm de-
pending on the question (interpretability of the structure
versus prediction and decoding of the signal).

are matched to their output targets. The den-
sity of splits (or branching) across the series of
trees was maximal in the range of inputs where
firing rate changes the most. More precisely,
data splitting was tightly correlated with the
amount of Fisher Information, a measure of de-
coding performance. Indeed, there’s a direct re-
lationship between Fisher Information and the
variance of the optimal estimator (the Cramer-
Rao bound) Averbeck et al. [2006], Brunel and
Nadal [1998], in one or several dimensions.

In the case of neuronal peer-prediction, ana-
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lyzing the structure of gradient boosted trees
presents the advantage that all kinds of neu-
ronal interactions (positive, negative, linear or
monotonically non-linear) yield comparable
estimates (when quantifying split density or
gain). This is in contrast with classical correla-
tion analyses of individual spike trains relative
to a population of peers that may be hard to in-
terpret in certain cases where these interactions
are both negative and positive ([Okun et al.,
2015, Renart et al., 2010]. In addition, fitting
spiking data to maximum entropy (i.e. Ising)
models have revealed that linear correlations
may not indicate the true coordination between
spike trains [Cocco et al., 2009, Schneidman
et al., 2006]. The analysis of tree branching
provides an estimate of the statistical depen-
dencies between spike trains, independent of
the underlying type of interaction and with-
out assuming a particular transfer function for
the target neuron [Harris et al., 2003]. The na-
ture of neuronal coordination as observed from
spike trains is still debated, for example in the
hippocampus [Chadwick et al., 2015], and un-
biased, model-free methods may be highly in-
formative on the nature of the actual statistical
dependencies between neurons.

As summarized in Fig. 6, we also report an
optimal range of tree number that should be
used for split analysis. Using less trees allows
to reveal the contribution of different features
to the output target, at the expense of predic-
tion and decoding performance. The structure
of the branching is then best captured by the
’gain’ of the learning. In contrast, fitting the
data on too many trees lead to overfitting and
should be avoided. Overall, the reader inter-
ested in using this technique should bear in
mind that meaningful information about the
dataset can sometimes be overshadowed by
high split density. In such case, it is of best
interest to reduce the number of trees and to
control that the average gain for splits is large
enough.

Measuring the contribution of multiple

behavioral variables

A large class of neurons in the brain are modu-
lated by several dimensions of incoming stim-
uli [Finkelstein et al., 2015, Hardcastle et al.,
2017, Rigotti et al., 2013, Sargolini et al., 2006],
a property refereed to as mixed-selectivity. Un-
tangling the different contributions is some-
times challenging and gradient boosted trees
offer a rapid and unequivocal approach to ad-
dress this issue Benjamin et al. [2017], Truc-
colo and Donoghue [2007]. In fact, there is
no intrinsic limit to the dimensionality of the
inputs that can be learned. To further test this
technique, we regressed spike trains of head-
direction cells with position, as well as head-
direction data. In line with previous reports
[Cacucci et al., 2004, Peyrache et al., 2016], the
head-direction cells of the PoSub correlated
also with spatial factors while in the ADn, neu-
rons coded mostly for the head-direction. XGB
thus allows to rapidly explore the correlates
of spike trains to measurements of external or
internal variables of the system.

Prediction of feed-forward activation in

a thalamo-cortical network in vivo

Investigation of neuronal dynamics does not
always entail the regression of spiking data
to variables of the experiments. Many stud-
ies have focused on the spatio-temporal coor-
dination of neuronal networks in vivo, inde-
pendent of any behaviorally-related processing
([Luczak et al., 2007, Okun et al., 2015, Peyrache
et al., 2012]. In fact, the characterization of sig-
nal transmission between brain areas remains
one of the most complex challenges of neuro-
science as it requires first the recording of such
data in vivo as well as the establishment of a
proper model of interaction to determine the
parameters of spike transmission (e.g. conduc-
tion delay and post-synaptic integration time).

Here we used data from the head-direction
thalamo-cortical network [Peyrache et al.,
2015] with simultaneous recording of PoSub
and ADn. It allowed us to demonstrate a
temporally-shifted relationship from ADn to
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PoSub. More precisely, we used gradient
boosted trees to predict PoSub head-direction
cell firing activity based on the ensemble spike
trains of the head-direction cells of the ADn,
at various time-lags between the two series of
spike trains. PoSub spiking was mostly de-
pendent on ADn activity in preceding time
bins (in average 25ms) thus indicating a likely
feed-forward pathway. First, this replicates the
findings that the head-direction signal of ADn
neurons precedes the actual head-direction by
about 25 ms [Blair and Sharp, 1995, Goodridge
and Taube, 1997]. Second, the temporal asym-
metry in the prediction of cortical spiking rela-
tive to thalamic activity was preserved dur-
ing sleep, both during REM and non-REM,
and therefore it indicates that this differential
temporal coding likely emerges from intrinsic
wiring and dynamics. This confirms antomi-
cal studies, as well as examination of putative
synaptic interaction between neurons in this
pathway Peyrache et al. [2015].

Gradient boosted trees match Bayesian de-
coding in performance

Neurons convey information about external
parameters, and it should thus be possible to
decode these signals from population activ-
ity. The best examples are the demonstration
that position can be estimated from ensembles
of hippocampal place cells during exploration
and ’imagination’ of future paths [Johnson and
Redish, 2007, Pfeiffer and Foster, 2013, Wilson
and McNaughton, 1993] as well as the head-
direction signal during wakefulness and sleep
Peyrache et al. [2015]. Decoding of neuronal
signals has also been widely studied in the con-
text of brain machine interface [Laubach et al.,
2000].

Bayesian decoding is the tool of reference to
estimate a signal from ensembles of neurons.
In fact, it computes the probability distribution
of a particular signal given the tuning curves
of the neurons and the instantaneous spike
counts in the neuronal population. This tech-
nique generally assumes that spike counts are
drawn from Poisson processes and that neu-

rons are independent from each other (Zhang
et al. [1998]). Here we have compared the per-
formance of Bayesian decoders with gradient
boosted trees when decoding angular values,
based on the activity of either ADn or PoSub.
We found that gradient boosted trees matched
Bayesian decoding when using ADn neurons
but were better with PoSub activity. As empha-
sized in this report, PoSub activity does not en-
code only the head-direction. In case of mixed-
selectivity signals, a model-free technique such
as gradient boosted trees show decisive superi-
ority in predicting an external variable.

Potential for neuroscience and future

work

The potential of these methods to unravel
dynamics of biological neuronal networks is
tremendous and will be the scope of further
studies. For instance, tracking synaptic trans-
mission in pairwise spike trains [Barthó et al.,
2004], uncoupling the phase-locking of neu-
ronal spiking to concomitant and nested brain
oscillations [Belluscio et al., 2012, Tort et al.,
2009] and determining the nature of the coor-
dination in neuronal populations in relation to
behavior [Chadwick et al., 2015, Harris et al.,
2003] are examples of the current challenges of
data analysis in systems neuroscience. In addi-
tion, future improvements of brain-machine in-
terface will require the development of reliable
and robust tools to decode neuronal activity
[Andersen et al., 2004, Lebedev and Nicolelis,
2006].

In summary, gradient boosted trees meth-
ods are potentially helpful tools to explore a
dataset and make prediction on the underly-
ing biological processes which, in turn, can
be tested with more classical methods. They
may also be used to decode signals for closed-
loops experiments and brain-machine interface
in animals or humans. Finally, these methods
open avenues for the study of neuronal data in
general as the branching of the tree structure
can be analyzed as a ’proxy’ of the biological
system itself.
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Figure S1: Learning gain per tree decreases with the number of trees (blue line). This decay was well captured by an
exponential fit (red line), from which an optimal number of trees of approximatively 30 trees is derived (interesect of the
linear fit at origin with the x-axis). At this stage the mean gain per tree is approximately 1

3 of its initial value and most
of the learning has already occurred.
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Figure S2: Features carrying actual signal are preferentially split in the first trees, resulting in higher gain. The graph
illustrates the evolution of split density when learning the spike train of a head-direction neuron as a function of the
number of trees for three features: the actual head-direction and two random vectors. Split density increased linearly
and similarly with the number of trees in the asymptotic regime for all features. However, the increase was much higher
for the head-direction at low tree numbers, a difference well captured by gain analysis. Note that, as the order of features
in the algorithm may impact which are split first, we showed how the feature data were organized (random 1, angle and
random 2).
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Figure S3: Revealing temporal delay in peer-prediction. Feature space is composed of multiple copies of the activity of
the feature neuron (in this case, in the ADn) at various time-lags (blue curves) to learn the target spike train (PoSub,
red curves). The relationship between the two spike trains shows maximal dependence at t-1, resulting in a high number
of splits by the algorithm (yellow horizontal lines). Splitting was less effective for more independent firing at t and t-2.
In this example, the relationship at t-1 is trivial (linear and positively correlated). However, the quantification of these
interactions give comparable values for a large variety of interactions (e.g. positive, negative or monotonically non
linear).
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