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Abstract

Recent studies indicate that DNA methylation can be used to identify changes at
transcriptional enhancers and other cis-regulatory elements in primary human samples. A
systematic approach to inferring gene regulatory networks has been provided by the
R/Bioconductor package ELMER (Enhancer Linking by Methylation/Expression Relationships),
which first identifies DNA methylation changes in distal regulatory elements and correlates these
with the expression of nearby genes to identify direct transcriptional targets. Next, ELMER
performs a transcription factor binding motif analysis and integrates with expression profiling of
all human transcription factors, to identify master regulatory TFs and place each differentially
methylated regulatory element into the context of an altered gene regulatory network (GRN).

Here we present a completely updated version of the package (ELMER v. 2.0), which uses
the latest Bioconductor data structures including the popular MultiAsssayExperiment,
supports multiple reference genome assemblies as well as the DNA methylation platforms
Infinium MethylationEPIC and Infinium HumanMethylation450, and provides a “Supervised”
analysis mode for paired sample study designs (such as treated vs. untreated replicate samples).
It also supports data import from the new NCI Genomic Data Commons (GDC) database. The
new version is substantially re-written, improving stability, performance, and extensibility. It
also uses improved databases for transcription factor binding domain families and binding motif
specificities, and has newly designed output plots for publication-quality figures.

Below, we describe the methods and new features of ELMER v. 2.0 and present two use case
demonstrating how the tool can be used to analyze TCGA data in either Unsupervised or
Supervised mode. ELMER (v2.0.0) is available as an R/Bioconductor package at
https://github.com/tiagochst/ELMER. Also, ELMER.data (v2.0.0), which provides auxiliary
data required to perform the analysis, is available at
https://github.com/tiagochst/ELMER.data.

Keywords

DNA methylation, gene regulatory networks, enhancers, chromatin interactions, chromQTLs,
transcription factor binding sites, epigenetics, computational tools

1/31

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 10, 2017. ; https://doi.org/10.1101/148726doi: bioRxiv preprint 

https://github.com/tiagochst/ELMER
https://github.com/tiagochst/ELMER.data
https://doi.org/10.1101/148726
http://creativecommons.org/licenses/by/4.0/


Introduction 1

Motivated by our discovery of transcriptional enhancers in tissue DNA methylation data [1], and 2

subsequent approaches to linking these enhancers to transcriptional targets using a chromQTL 3

approach [2] (reviewed in Yao et al. [3]), we developed the the R/Bioconductor ELMER (Enhancer 4

Linking by Methylation/Expression Relationships) package, a tool which infers regulatory element 5

landscapes and transcription factor networks from cancer methylomes [4]. 6

This tool combined DNA methylation and gene expression data from human tissues to infer 7

multi-level cis-regulatory networks through several steps which included the identification of distal 8

enhancer probes with significantly altered DNA methylation levels in primary tumor tissues 9

compared to normal tissues, followed by the identification of putative target genes, and a 10

comprehensive gene regulatory network analysis which combined transcription factor motifs at the 11

altered enhancers with TF expression to identify the underlying master regulators. This approach 12

identified several known and unknown master regulators in TCGA data, such as GATA3 and 13

FOXA1 in breast cancer, and P63 and SOX2 in squamous cell lung carcinoma [4, 5]. 14

Based on user feedback and a full review of the source code, we identified and implemented a 15

number of software improvements, which are summarized in table 1: (i) The original package 16

contained no standard data structure to handle multiple assays (DNA methylation, gene expression, 17

and clinical data), which would be required for an integrative genomic data analysis. Recently, the 18

Bioconductor team provided such a data structure through the MultiAssayExperiment package. (ii) 19

All auxiliary databases (human TF list, classification of TF in families, gene annotation, DNA 20

methylation annotation and motif occurrences within probe sites) used in the package were created 21

and maintained manually, thereby making the upgrade process laborious; thus, we automated this 22

process. (iii) The package was developed to analyze primary tumor tissue samples compared to 23

normal tissues samples, thus not allowing arbitrary subgroups to be compared (for instance 24

mutants vs. non-mutants, treated vs. untreated, etc.) (iv) Our original approach used known 25

epigenomic markers for enhancers to constrain the genomic regions searched for differential 26

methylation. However, this selection could limit our algorithm to identifying regulatory networks 27

for tissue types that exist in the epigenomic databases; we found this constraint problematic, and 28

thus now search all distal regulatory regions without any such filter. (v) The function used to 29

download data from The Cancer Genome Atlas (TCGA) data portal [6] broke when the TCGA site 30

was shutdown and its data transferred to The NCI’s Genomic Data Commons (GDC) [7]; we now 31

have a more general data provider interface that supports GDC as the default provider. (vi) The 32

package only supported data aligned to Genome Reference Consortium GRCh37 (hg19), and we 33

now provide support for Genome Reference Consortium GRCh38 (hg38). (vii) There was no 34

support to the recent HumanMethylationEPIC (EPIC) array [8]. In addition to the specific 35

improvements listed above, we substantially re-wrote most of the code to be more efficient and 36

maintainable, also most of the output plots generated were improved. 37

Here, we present a new version of the R ELMER package, which addresses all the issues 38

described above. The new version of ELMER (v2.0.0) is available as an R/Bioconductor package at 39

https://github.com/tiagochst/ELMER. And, the new version of ELMER.data (v2.0.0), which 40

provides auxiliary data required to perform the analysis, is available at 41

https://github.com/tiagochst/ELMER.data. 42
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Table 1. Main differences between ELMER old version (v.1) and the new version (v.2)

Features ELMER Version 1 ELMER Version 2

Primary data
structure

mee object (custom data struc-
ture)

MAE object (Bioconductor data
structure)

Auxiliary data Manually created Programmatically created
Number of human
TFs

1,982 1,987 (Uniprot database [9])

Number of TF mo-
tifs

91 771 (HOCOMOCO v11 database
[10])

TF classification 78 families 82 families and 331 subfamilies
(TFClass database [11])

Analysis per-
formed

Normal vs tumor samples Group 1 vs group 2

Statistical group-
ing

unsupervised only unsupervised or supervised using la-
beled groups

TCGA data
source

The Cancer Genome Atlas
(TCGA) (not available)

The NCI’s Genomic Data Commons
(GDC)

Genome of refer-
ence

GRCh37 (hg19) GRCh37 (hg19)/GRCh38 (hg38)

DNA methylation
platforms

HumanMethylation450 HumanMethylationEPIC and Hu-
manMethylation450

Graphical User in-
terface (GUI)

None TCGAbiolinksGUI

Methods 43

Operation 44

The R ELMER package version 2.0.0 requires R version 3.4.0 or higher. It is open-source under 45

the GNU General Public License v3.0 (GPL-3) and can run on any operating system. It depends 46

mainly on two R/Bioconductor packages: TCGAbiolinks [12] to download cancer data from NCI 47

Genomic Data Commons (GDC), and MultiAssayExperiment [13] to create an R object with an 48

integrative data structure. Finally, we provide a pipeline to perform ELMER analysis on cancer 49

samples compared to normal tissue samples from GDC; however, it should be noted that to perform 50

its analysis for some cancer types, a minimum of 16 Gb memory in R is required. 51

The latest development version can be installed in an R session from GitHub using the devtools 52

package [14]: 53

Listing 1. ”Install ELMER version 2.0 from github”

54

install.packages("devtools", dependencies = TRUE) 55

devtools :: install_github("tiagochst/ELMER", dependencies = TRUE , build_vignettes 56

= TRUE) 57

devtools :: install_github("tiagochst/ELMER.data", dependencies = TRUE , build_ 58

vignettes = TRUE) 59

6061

Having successfully installed the ELMER package, it can be loaded using library("ELMER") 62

and a detailed vignette is available at 63
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http://bioconductor.org/packages/devel/bioc/vignettes/ELMER/inst/doc/index.html. 64

Figure 1 shows an overview of the workflow of the ELMER package. 65
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Figure 1. ELMER workflow: ELMER receives as input a DNA methylation object, a gene
expression object (a matrix or a SummarizedExperiment object) and a Genomic Ranges (GRanges)
object with distal probes to be used as filter which can be retrieved using the get.feature.probe
function. The function createMAE will create a Multi Assay Experiment object keeping only samples
that have both DNA methylation and gene expression data. Genes will be mapped to genomic
position and annotated using ENSEMBL database [15], while for probes it will add annotation from
Zhou et al. (http://zwdzwd.github.io/InfiniumAnnotation) . This MAE object will be used as input
to the next analysis functions. First, it identifies differentially methylated probes followed by the
identification of their nearest genes (10 upstream and 10 downstream) through the get.diff.meth
and GetNearGenes functions respectively. For each probe, it will verify if any of the nearby genes
were affected by its change in the DNA methylation level and a list of gene and probes pairs will be
outputted from get.pair function. For the probes in those pairs, it will search for enriched regulatory
Transcription Factors motifs with the get.enriched.motif function. Finally, the enriched motifs will
be correlated with the level of the transcription factor through the get.TFs function. In the figure
green Boxes represents user input data, blue boxes represents output object, orange boxes represent
auxiliary pre-computed data and gray boxes are functions.
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Implementation 66

Here we describe each of following analysis steps shown in figure 1. For more details, please also 67

check the original ELMER paper [4]. 68

• Organize data as a MultiAssayExperiment object 69

• Identify distal probes with significantly different DNA methylation level when comparing two 70

sample groups. 71

• Identify putative target genes for differentially methylated distal probes, using methylation vs. 72

expression correlation 73

• Identify enriched motifs for each probe belonging to a significant probe-gene pair 74

• Identify master regulatory Transcription Factors (TF) whose expression associate with DNA 75

methylation changes at multiple regulatory regions. 76

Organization of data as a MultiAssayExperiment object 77

To facilitate the analysis of experiments and studies with multiple samples the Bioconductor 78

team created the SummarizedExperiment class [17], a data structure able to store data and 79

metadata for a single experiment but not for data spanning several experiments for the same 80

sample. To overcome this problem, recently, the MultiAssay SIG (Special Interest Group) created 81

the MultiAssayExperiment class [13] a data structure to manage and preprocess multiple assays for 82

integrated genomic analysis. This data structure is now an input for all main functions of ELMER 83

and can be generated by the createMAE function. 84

To perform ELMER analyses, we need to populate a MultiAssayExperiment with a DNA 85

methylation matrix or SummarizedExperiment object from HM450K or EPIC platform; a gene 86

expression matrix or SummarizedExperiment object for the same samples; a matrix mapping DNA 87

methylation samples to gene expression samples; and a matrix with sample metadata (i.e. clinical 88

data, molecular subtype, etc.). If TCGA data are used, the last two matrices will be automatically 89

generated. If using non-TCGA data, the matrix with sample metadata should be provided with at 90

least a column with a patient identifier and another one identifying its group which will be used for 91

analysis, if samples in the methylation and expression matrices are not ordered and with same 92

names, a matrix mapping for each patient identifier their DNA methylation samples and their gene 93

expression samples should be provided to the createMAE function. Based on the genome of 94

reference selected, metadata for the DNA methylation probes, such as genomic coordinates, will be 95

added from Zhou et al. [18]; and metadata for gene expression and annotation is added from 96

Ensembl database [19] using biomaRt [20]. 97

Selecting distal probes 98

Probes from HumanMethylationEPIC (EPIC) array and Infinium HumanMethylation450 99

(HM450) array are removed from the analysis if they have either internal SNPs close to the 3′ end 100

of the probe; non-unique mapping to the bisulfite-converted genome; or off-target hybridization due 101

to partial overlap with non-unique elements [16]. This probe metadata information is included in 102

ELMER.data package, populated from the source file at 103

http://zwdzwd.github.io/InfiniumAnnotation [16]. To limit ELMER to the analysis of distal 104

elements, probes located in regions of ±2kb around transcription start sites (TSSs) were removed. 105
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Identification of differentially methylated CpGs (DMCs) 106

For each distal probe, samples of each group (group 1 and group 2) are ranked by their DNA 107

methylation beta values, those samples in the lower quintile (20% samples with the lowest 108

methylation levels) of each group are used to identify if the probe is hypomethylated in group 1 109

compared to group 2, using an unpaired one-tailed t-test. The 20% is a parameter to the diff.meth 110

function called minSubgroupFrac. For the (ungrouped) cancer case, this is set to 20% as in Yao 111

et al. [4], because we typically wanted to be able to detect a specific molecular subtype among the 112

tumor samples; these subtypes often make up only a minority of samples, and 20% was chosen as a 113

lower bound for the purposes of statistical power (high enough sample numbers to yield t-test 114

p-values that could overcome multiple hypothesis corrections, yet low enough to be able to capture 115

changes in individual molecular subtypes occurring in 20% or more of the cases.) This number can 116

be set arbitrarily as an input to the diff.meth function and should be tuned based on sample sizes 117

in individual studies. In the Supervised mode, where the comparison groups are implicit in the 118

sample set and labeled, the minSubgroupFrac parameter is set to 100%. An example would be a cell 119

culture experiment with 5 replicates of the untreated cell line, and another 5 replicates that include 120

an experimental treatment. 121

To identify hypomethylated DMCs, a one-tailed t-test is used to rule out the null hypothesis: 122

µgroup1 ≥ µgroup2, where µgroup1 is the mean methylation within the lowest group 1 quintile (or 123

another percentile as specified by the minSubgroupFrac parameter) and µgroup2 is the mean within 124

the lowest group 2 quintile. Raw p-values are adjusted for multiple hypothesis testing using the 125

Benjamini-Hochberg method [21], and probes are selected when they had adjusted p-value less than 126

0.01 (which can be configured using the pvalue parameter). For additional stringency, probes are 127

only selected if the methylation difference: ∆ = µgroup1 − µgroup2 was greater than 0.3. The same 128

method is used to identify hypermethylated DMCs, except we use the upper quintile, and the 129

opposite tail in the t-test is chosen. 130

Identification of putative target gene(s) 131

For each differentially methylated distal probe (DMC), the closest 10 upstream genes and the 132

closest 10 downstream genes are tested for inverse correlation between methylation of the probe and 133

expression of the gene (the number 10 can be changed using the numFlankingGenes parameter). To 134

select these genes, the probe-gene distance is defined as the distance from the probe to the 135

transcription start site specified by the ENSEMBL gene level annotations [19] accessed via the 136

R/Bioconductor package biomaRt [20, 22]. By choosing a constant number of genes to test for each 137

probe, our goal is to avoid systematic false positives for probes in gene rich regions. This is 138

especially important given the highly non-uniform gene density of mammalian genomes. Thus, 139

exactly 20 statistical tests were performed for each probe, as follows. 140

For each probe-gene pair, the samples (all samples from both groups) are divided into two 141

groups: the M group, which consisted of the upper methylation quintile (the 20% of samples with 142

the highest methylation at the enhancer probe), and the U group, which consists of the lowest 143

methylation quintile (the 20% of samples with the lowest methylation.) The 20% ile cutoff is a 144

configurable parameter minSubgroupFrac in the get.pair function. As with its usage in the diff.meth 145

function, the default value of 20% is a balance, allowing for the identification of changes in a 146

molecular subtype making up a minority (i.e. 20%) of cases, while also yielding enough statistical 147

power to make strong predictions. For larger sample sizes or other experimental designs, this could 148

be set even lower. 149

For each candidate probe-gene pair, the Mann-Whitney U test is used to test the null hypothesis 150
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that overall gene expression in group M is greater than or equal than that in group U. This 151

non-parametric test was used in order to minimize the effects of expression outliers, which can 152

occur across a very wide dynamic range. For each probe-gene pair tested, the raw p-value Pr is 153

corrected for multiple hypothesis using a permutation approach as follows. The gene in the pair is 154

held constant, and x random methylation probes are chosen to perform the same one-tailed U test, 155

generating a set of x permutation p-values Pp. We chose the x random probes only from among 156

those that were ”distal” (farther than 2kb from an annotated transcription start site), in order to 157

draw these null-model probes from the same set as the probe being tested [23]. An empirical 158

p-value Pe value was calculated using the following formula (which introduces a pseudo-count of 1): 159

Pe =
num(Pp ≤ Pr) + 1

x+ 1
(1)

Notice that in the Supervised mode, no additional filtering is necessary to ensure that the M and 160

U group segregate by sample group labels. The two sample groups are segregated by definition, 161

since these probes were selected for their differential methylation, with the same directionality, 162

between the two groups. 163

Characterization of chromatin state context of enriched probes using FunciVar 164

Unlike version 1 of ELMER, we now consider all distal probes in the identification of regulatory 165

elements. DNA methylation is known to affect several different classes of distal chromatin state 166

element, including active enhancers, poised enhancers, and insulators. In order to provide a 167

functional interpretation of the regulatory elements identified by ELMER, we perform a chromatin 168

state enrichment analysis of the probes within significant probe-gene pairs, using the statePaintR 169

tools from the statehub.org [24], along with our new FunciVar package [25]. Enrichment of the 170

putative pairs within chromatin states is calculated against a background model that uses the distal 171

probe set that the putative pairs are drawn from. 172

Motif enrichment analysis 173

In order to identify enriched motifs and potential upstream regulatory TFs, all probes with 174

occurring in significant probe-gene pairs are combined for motif enrichment analysis. HOMER 175

(Hypergeometric Optimization of Motif EnRichment) [26] is used to find motif occurrences in a 176

±250bp region around each probe, using HOCOMOCO (HOmo sapiens COmprehensive MOdel 177

COllection) v11 [10] . Transcription factor (TF) binding models are available at 178

http://hocomoco.autosome.ru/downloads (using the HOMER specific format with threshold 179

score levels corresponding to p-value ≤ 1−4). 180

For each probe set tested (i.e. the set of all probes occurring in significant probe-gene pairs), a
motif enrichment Odds Ratio and a 95% confidence interval are calculated using following formulas:

p =
a

a+ b
(2a)

P =
c

c+ d
(2b)

OddsRatio =

p
(1−p)
P

1−P
=
p(1 − P )

P (1 − p)
=
ad

bc
(2c)

SD =

√
1

a
+

1

b
+

1

c
+

1

d
(2d)
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where a is the number of probes within the selected probe set that contains one or more motif 181

occurrences; b is the number of probes within the selected probe set that do not contain a motif 182

occurrence; c and d are the same counts within the entire array probe set (drawn from the same set 183

of distal-only probes using the same definition as the primary analysis). A probe set was considered 184

significantly enriched for a particular motif if the 95% confidence interval of the Odds Ratio was 185

greater than 1.1 (specified by option lower.OR, 1.1 is default), and the motif occurred at least 10 186

times (specified by option min.incidence, 10 is default) in the probe set. 187

Identification of master regulator TFs 188

When a group of enhancers is coordinately altered in a specific sample subset, this is often the 189

result of an altered upstream master regulator transcription factor in the gene regulatory network. 190

ELMER tries to identify such transcription factors corresponding to each of the TF binding motifs 191

enriched from the previous analysis step. For each enriched motif, ELMER takes the average DNA 192

methylation of all distal probes (in significant probe-gene pairs) that contain that motif occurrence 193

(within a ±250bp region) and compares this average DNA methylation to the expression of each 194

gene annotated as a human TF. 195

A statistical test is performed for each motif-TF pair, as follows. All samples are divided into 196

two groups: the M group, which consists of the 20% of samples with the highest average 197

methylation at all motif-adjacent probes, and the U group, which consisted of the 20% of samples 198

with the lowest methylation. This step is performed by the get.TFs function, which takes 199

minSubgroupFrac as an input parameter, again with a default of 20%. For each candidate motif-TF 200

pair, the Mann-Whitney U test is used to test the null hypothesis that overall gene expression in 201

group M is greater or equal than that in group U. This non-parametric test was used in order to 202

minimize the effects of expression outliers, which can occur across a very wide dynamic range. For 203

each motif tested, this results in a raw p-value (Pr) for each of the human TFs. All TFs are ranked 204

by their −log10(Pr) values, and those falling within the top 5% of this ranking were considered 205

candidate upstream regulators. The best upstream TFs which are known to recognize to specific 206

binding motif are automatically extracted as putative regulatory TFs, and rank ordered plots are 207

created to visually inspect these relationships, as shown in the example below. Because the same 208

motif can be recognized by many transcription factors of the same binding domain family, we define 209

these relationships at both the family and subfamily classification level using the classifications 210

from TFClass database [11]. Use of this database is a major change from version 1 of ELMER, 211

which used custom curations for DNA binding domain families. Use of the TFClass database is 212

preferable because it is well curated and regularly updated to reflect new findings. 213

Use Case 1: Breast Invasive Carcinoma (unsupervised approach) 214

Here, we describe how to perform ELMER analysis on TCGA BRCA (Breast Invasive 215

Carcinoma) data retrieved from the GDC server. We assume that the user has an R environment 216

with the packages ELMER (v2.0.0 or newer) and ELMER.data (v2.0.0 or newer) installed (see 217

Installation documentation on the Bioconductor website). We first describe how the data can be 218

downloaded and organized to the default ELMER input, followed by the following analysis steps: 219

• Identification of distal probes with significant differential DNA methylation (i.e. DMCs) in 220

tumor vs. normal samples 221

• Identification of putative target gene(s) for differentially methylated distal probes 222
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• Characterization of chromatin state context of significant probe regions using FunciVar 223

• Identification of enriched motifs within set of probes in significant probe-gene pairs 224

• Identification of master regulator Transcription Factors (TF) for each enriched motif 225

In addition to these standard steps, we also show how to compare the putative probe-gene pairs 226

to those derived from deep-sequenced ChIA-PET data from MCF7 cells (as shown in Yao et al. [4]). 227

This use case uses all data available with the recommended thresholds and can take up to 10 hours 228

to complete and requires a machine with more than 16GB of RAM. For a simpler example, please 229

take a look at the included vignette (see supplemental files). 230

Downloading TCGA data 231

The function getTCGA uses the TCGAbiolinks package [12] to download TCGA data for all 232

samples for a given disease (such as BLCA, LGG, GBM). Its main arguments are the genome that 233

if set to ”hg19” will download data from GDC legacy archive, and if set to ”hg38” it will download 234

data from the main GDC harmonized data portal. 235

Listing 2. ”Step 1: Downloading TCGA data from GDC database”

236

library(ELMER) 237

getTCGA(disease = "BRCA", # TCGA disease abbreviation (BRCA ,BLCA ,GBM , LGG , etc) 238

basedir = "DATA", # Where data will be downloaded 239

genome = "hg38") # Genome of refenrece "hg38" or "hg19" 240

241242

If the getTCGA function called before was successful it will create the following objects and 243

folders: 244

--- DATA/BRCA/ 245

|----------- BRCA_meth_hg38.rda (object with DNA methylation) 246

|----------- BRCA_RNA_hg38.rda (object with gene expression) 247

|----------- BRCA_clinic.rda (object with indexed clinical information) 248

|----------- Raw/ (folder: contains All raw data from GDC) 249

Selecting distal probes 250

The function get.feature.probe, shown in Listing 3, is used to select HM450K/EPIC probes 251

located away from any TSS (at least 2Kb away). Its main arguments are the genome of reference 252

(”hg38”/”hg19”) and DNA methylation platform (”450K”/”EPIC”). The feature argument is used 253

to limit the region of probes; as we want all distal probes, we set it to NULL. 254

Listing 3. ”Step 2: Selection of probes within biofeatures”

255

# get distal probes that are 2kb away from TSS 256

distal.probes <- get.feature.probe(feature = NULL , 257

genome = "hg38", 258

met.platform = "450K") 259

# 168644 probes 260

261262
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Organizing data into a MultiAssayExperiment object 263

The function createMAE is used to organize the gene expression and DNA methylation data 264

into a MultiAssayExperiment (MAE) object. Listing 4 shows how to use it with the data created in 265

the previous steps. Its main arguments are described below: 266

• exp : An R object or a path to a file containing a gene expression matrix or 267

SummarizedExperiment with gene counts. 268

• met : An R object or a path to a file containing a DNA methylation matrix or 269

SummarizedExperiment with beta values. 270

• met.platform: DNA methylation platform. ”EPIC” for Infinium MethylationEPIC or ”450K” 271

for Infinium HumanMethylation450. 272

• genome: The genome of reference (”hg19” or ”hg38”) used to select the correct metadata. 273

Genes genomic ranges will be annotated using ENSEMBL database and DNA methylation 274

probes using metadata available at http://zwdzwd.github.io/InfiniumAnnotation. 275

• linearize.exp: this step will take the log2(gene expression+ 1) in order to linearize the 276

relationship between gene expression and DNA methylation. 277

• filter.probes : genomic ranges (i.e. distal regions) within which probes from DNA methylation 278

data should be kept. 279

• met.na.cut : maximum percentage of empty values (NA) a probe might have to be considered 280

in the analysis. The default is 20% (i.e if 50% of samples has empty values for a given probe, 281

it will be removed). 282

• colData: A matrix with samples metadata (i.e. clinical data , molecular subtype information). 283

If argument TCGA is set to TRUE this matrix will be created automatically. In this case, 284

the colData argument is optional. 285

• sampleMap: A matrix mapping DNA methylation data and gene expression data to samples. 286

ELMER uses only samples with both data. Otherwise, it will be removed. If argument TCGA 287

is set to TRUE this matrix will be created automatically. In this case sampleMap argument is 288

optional. 289

Listing 4. ”Step 3: Create MultiAssayExperiment”

290

mae <- createMAE(exp = "DATA/BRCA/BRCA_RNA_hg38.rda", 291

met = "DATA/BRCA/BRCA_meth_hg38.rda", 292

met.platform = "450K", 293

genome = "hg38", 294

linearize.exp = TRUE , 295

filter.probes = distal.probes , 296

met.na.cut = 0.2, 297

save = TRUE , 298

TCGA = TRUE) 299

300301

Listing 5 shows information about the object created. There are 866 samples with both gene 302

expression and DNA methylation data, and among those 5 are metastatic samples, 778 are Primary 303

Solid Tumor and 83 are Solid Tissue Normal. 304
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Listing 5. ”Verifying MultiAssayExperiment”

305

> mae 306

A MultiAssayExperiment object of 2 listed 307

experiments with user -defined names and respective classes. 308

Containing an ExperimentList class object of length 2: 309

[1] DNA methylation: RangedSummarizedExperiment with 135331 rows and 866 columns 310

[2] Gene expression: RangedSummarizedExperiment with 57035 rows and 866 columns 311

Features: 312

experiments () - obtain the ExperimentList instance 313

colData () - the primary/phenotype DataFrame 314

sampleMap () - the sample availability DataFrame 315

`$`, `[`, `[[` - extract colData columns , subset , or experiment 316

*Format () - convert ExperimentList into a long or wide DataFrame 317

assays () - convert ExperimentList to a list of rectangular matrices 318

> table(mae$definition) 319

Metastatic Primary solid Tumor Solid Tissue Normal 320

5 778 83 321

322323

Identification of distal probes with significant differential DNA methylation 324

(i.e. DMCs) in tumor vs. normal samples 325

The function get.diff.meth is used to identify regions differently methylation between two groups. 326

Listing 6 shows how to use it to select hypomethylated probes in ”Primary solid tumor” samples 327

when compared to ”solid tissue normal” samples (FDR ≤ 0.01, ∆β ≥ 0.3), using those samples in 328

the lower quintile (minSubgroupFrac = 0.2) of DNA methylation levels for each probe. Its main 329

arguments are described below: 330

• data A multiAssayExperiment with DNA methylation and Gene Expression data. 331

• group.col A column defining the groups of the sample. You can view the available columns 332

using: colnames(MultiAssayExperiment::colData(data)). 333

• group1 A group from group.col. ELMER will run group1 vs group2. That means, if the 334

direction is hyper, get probes hypermethylated in group 1 compared to group 2. 335

• group2 A group from group.col. ELMER will run group1 vs group2. That means, if the 336

direction is hyper, get probes hypermethylated in group 1 compared to group 2. 337

• diff.dir Differential methylation direction. It can be ”hypo” which is only selecting 338

hypomethylated probes in group 1 when compared to group 2; ”hyper” which is only selecting 339

hypermethylated probes; 340

• minSubgroupFrac A number ranging from 0 to 1, specifying the fraction of extreme samples 341

from group 1 and group 2 that are used to identify the differential DNA methylation. The 342

default is 0.2 because we typically want to be able to detect a specific (possibly unknown) 343

molecular subtype among tumor; these subtypes often make up only a minority of samples, 344

and 20% was chosen as a lower bound for the purposes of statistical power. If you are using 345

pre-defined group labels, such as treated replicates vs. untreated replicated, use a value of 1.0 346

(Supervised mode) 347

• pvalue A number specifying the significant P value (adjusted P value by Benjamini-Hochberg 348

procedure) cutoff for selecting significant hypo/hyper-methylated probes. The default is 0.01. 349
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• sig.dif A number specifying the smallest DNA methylation difference as a cutoff for selecting 350

significant hypo/hyper-methylated probes. The default is 0.3. 351

Listing 6. ”Identify significantly different DNA methylation probes in tumor and normal samples”

diff.probes <- get.diff.meth(data = mae ,

group.col = "definition",

group1 = "Primary solid Tumor",

group2 = "Solid Tissue Normal",

diff.dir = "hypo", # Get probes hypometh. in group 1

cores = 1,

minSubgroupFrac = 0.2, # % group samples used.

pvalue = 0.01,

sig.dif = 0.3,

dir.out = "Results_hypo/",

save = TRUE)

352

If the save argument is set to TRUE, in the dir.out folder two files will be created: 353

getMethdiff.hypo.probes.csv containing all probes from the DNA methylation data with the 354

difference means of the groups and the significance values, getMethdiff.hypo.probes.significant.csv 355

will contain only probes that respect the thresholds. Table 2 shows the first rows of 356

getMethdiff.hypo.probes.significant.csv file. 357

probe pvalue Primary.solid.Tumor˙Minus˙Solid.Tissue.Normal adjust.p

cg00001809 1.97e-35 -0.32 1.26e-34
cg00008695 1.62e-67 -0.44 3.72e-66
cg00009553 6.84e-31 -0.525 3.61e-30

Table 2. First three rows of getMethdiff.hypo.probes.significant.csv file.

Also, users are able to verify the DNA methylation levels of a selected probe using the auxiliary 358

function metBoxPlot, as shown in Listing 7. This function creates a boxplot for all samples and 359

another one for the 20% of samples used in the analysis for each probe as shown in plots 2 and 7. 360

Listing 7. ”Verify probes used in the comparison”

metBoxPlot(mae ,

group.col = "definition",

group1 = "Primary solid Tumor",

group2 = "Solid Tissue Normal",

diff.dir = "hypo",

probe = "cg14058239",

minSubgroupFrac = 0.2)

361
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Figure 2. Probe cg00001809 DNA methylation boxplot. Due to the distribution of DNA
methylation levels, if considered all samples in the comparison the probe would not be identified as
differentially methylated, but if considered the existence of different molecular subtypes and using
only the 20% of samples, this probe will be identified as differentially methylated.

Identification of putative target gene(s) for differentially methylated distal 362

probes 363

The function get.pair is used to link enhancer probes with methylation changes to target genes 364

with expression changes and report the putative target gene for selected probes. Listing 8 shows 365

how to select the 20 nearest genes (10 downstream and 10 upstream) and evaluate if each pair is 366

anti-correlated (probes with higher methylation levels have lower gene expression levels). Its main 367

arguments are described below: 368

• nearGenes Output of GetNearGenes function. 369

• mode Algorithm mode: ”unsupervised” or ”supervised”. If unsupervised is set the U 370

(unmethylated) and M (methylated) groups will be selected among all samples of both groups 371

based on methylation of each probe. Otherwise U group and M group will set as all the 372

samples of group1 or group2 as described below: If diff.dir is ”hypo, U will be the group 1 373

and M the group2. If diff.dir is ”hyper” M group will be the group1 and U the group2. 374

• minSubgroupFrac A number ranging from 0 to 1, specifying the fraction of extreme samples 375
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that define group U (unmethylated) and group M (methylated), which are used to link probes 376

to genes. The default is 0.4 (the lowest quintile of samples is the U group and the highest 377

quintile samples is the M group) because we typically want to be able to detect a specific 378

(possibly unknown) molecular subtype among tumor; these subtypes often make up only a 379

minority of samples, and 20% was chosen as a lower bound for the purposes of statistical 380

power. This argument is Only used if mode is ”supervised”, otherwise if you are using 381

pre-defined group labels (”supervised” mode), such as treated replicates vs. untreated 382

replicated, it will use all samples. 383

• permu.size Number of permutation. The default is 10000. Note: This parameter can strongly 384

impact run time. 385

• raw.pvalue Raw p-value cutoff for defining significant pairs. The default is 0.001. 386

• Pe Empirical p-value cutoff for defining significant pairs. The default is 0.001. 387

• filter.probes Should probes be filtered by selecting only those which have at least a certain 388

number of samples below and above a certain cut-off? If true, arguments filter.probes and 389

filter.percentage will be used. 390

• filter.portion A number specifying the cut point to define binary methylation level for probe 391

loci. The default is 0.3. When the beta value is above 0.3, the probe is methylated and vice 392

versa. For one probe, the percentage of methylated and unmethylated samples should be 393

above filter.percentage value. Only used if filter.probes is TRUE. 394

• filter.percentage Minimum percentage of samples to be considered in methylated and 395

unmethylated for the filter.portion option. Default 5%. Only used if filter.probes is TRUE. 396
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Listing 8. ”Step 5: Identify putative target genes for differentially methylated distal probes”

# For each differently methylated probes we will get the

# 20 nearby genes (10 downstream and 10 upstream)

nearGenes <- GetNearGenes(data = mae ,

probes = diff.probes$probe ,
numFlankingGenes = 20,

cores = 1)

# This step is the most time consuming. Depending on the size of the groups

# and the number of probes found previously it migh take hours

Hypo.pair <- get.pair(data = mae ,

nearGenes = nearGenes ,

group.col = "definition",

group1 = "Primary solid Tumor",

group2 = "Solid Tissue Normal",

permu.dir = "Results_hypo/permu",

permu.size = 10000 ,

mode = "unsupervised",

minSubgroupFrac = 0.4, # 40% of samples to create U and M

raw.pvalue = 0.001,

Pe = 0.001,

filter.probes = TRUE ,

filter.percentage = 0.05,

filter.portion = 0.3,

dir.out = "Results_hypo",

cores = 1,

label = "hypo")

# Number of pairs: 2950

397

The output of this function is shown in table 3. Probe and GeneID columns show the significant 398

pair and the column Pe shows the adjusted p-value.

Probe GeneID Symbol Distance Sides Raw.p Pe

cg14058239 ENSG00000141424 SLC39A6 0 R1 5.17e-56 9.99e-5
cg14986386 ENSG00000183323 CCDC125 0 L2 3.26e-55 9.99e-5
cg04723436 ENSG00000107485 GATA3 110455 R3 6.00e-55 4.9.99e-4

Table 3. First three rows of getPair.hypo.pairs.significant.csv file.

399

To visualize the relationship between the probe-gene pairs inferred, there are two auxiliary 400

functions in ELMER. The function schematic.plot, shown in Listing 9, which will plot genes and 401

probes in a specified genomic region, highlighting the significant pairs identified by plotting a 402

genomic interactions track and highlight the genes in the pair in red (Figure 3). Also, using the 403

function scatter.plot (Listing 10) it is possible to visualize the correlation between gene expression 404

and DNA methylation levels at probe (Figure 4). Finally, an overall summary of the DNA DNA 405

methylation levels and gene expression levels can be visualized using the auxiliary function 406

heatmapPairs, as shown in Listing 11. This function creates a heatmap for all samples as shown in 407

plots 5. 408
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Listing 9. ”Schematic plot to visualize gene-probe pairs”

# by probe and with detail about DNA methylation

schematic.plot(data = mae ,

group.col = "definition",

group1 = "Primary solid Tumor",

group2 = "Solid Tissue Normal",

pair = Hypo.pair ,

statehub.tracks = "hg38/ENCODE/mcf -7.16 mark.segmentation.bed",

byProbe = "cg04723436")

409

Listing 10. ”Scatter plot to visualize correlation between gene expression and DNA methylation
levels at probe”

scatter.plot(data = mae ,

byPair = list(probe = "cg04723436",

gene = "ENSG00000107485"),

save = T,

category = "definition",

lm = TRUE)

410

Listing 11. ”Heatmap to visualize gene-probe pairs”

heatmapPairs(data = mae ,

group.col = "definition",

group1 = "Primary solid Tumor",

group2 = "Solid Tissue Normal",

pairs = Hypo.pair ,

filename = "heatmap.pdf")

411
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Figure 3. Plot probe gene pairs with annotation track for MCF-7 cell line from StateHub.org.
Significant probes and gene pairs are highlighted in red.
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Figure 4. Scatter plot for significant probe (cg04723436) gene (GATA3) pair.

Figure 5. Heatmap of paired probes and distal genes. The first heatmap (left one) shows DNA
methylation β levels ranging from 0 (non-methylated) up to 1 (methylated probes). The second
heatmap (middle one) shows z-scores for gene expression levels (standard deviations from each
gene means). The last heatmap (right heatmap) shows the distance between the probe and gene
anti-correlated.
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Characterization of chromatin state context of significant probe regions using 412

FunciVar 413

To understand and compare our set of probes identified in the probe-gene pairs inferred we used 414

chromatin state of IHEC cell types from http://statehub.org/, to calculate the relative 415

enrichment of different states (see Additional file for the code). This procedure uses code from the 416

statepaintR [24] and FunciVar [25] packages. Figure 6 shows the enrichment for 14 encode cells 417

lines. The plot shows enrichment for enhancer active region (EAR), weak enhancer (EWR) and 418

active promoter region (PAR) in MCF-7 cell (human breast adenocarcinoma cell line) while for 419

other cell lines this enrichment is not visible. 420
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Figure 6. Enrichment of paired probes and chromatin states of encode cells. The plot shows
enrichment for enhancer active region, weak enhancer and active promoter region for MCF-7
cell. Acronyms - AR: Active region, EAR: active enhancer, EWR: Weak Enhancer, EPR: poised
enhancer, PAR: active promoter, PWR: Weak Promoter, PPR: poised promoter, PPWR: Weak
Poised Promoter, CTCF: architectural complex, TRS: transcribed, HET: heterochromatin, SCR:
Polycomb Repressed Silenced
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Identification of enriched motifs within set of probes in significant probe-gene 421

pairs 422

The function get.enriched.motif is used to identify enriched motif in a set of probes. The main 423

arguments are described below: 424

• lower.OR The motif with lower boundary of 95% confidence interval for Odds Ratio 425

≥ lower.OR are the significantly enriched motifs. 426

• min.incidence Minimum number of probes having the motif signature (default: 10) required 427

for a motif to be enriched. 428

Listing 12. ”Step 6: Motif enrichment analysis on the selected probes”

enriched.motif <- get.enriched.motif(data = mae ,

min.motif.quality = "DS",

probes = unique(Hypo.pair$Probe),
dir.out = "Results_hypo",

label = "hypo",

min.incidence = 10,

lower.OR = 1.1)

429

Identification of master regulator Transcription Factors (TF) for each enriched 430

motif 431

The function get.TFs is used to identify regulatory TF whose expression associates with TF 432

binding motif DNA methylation which. 433

Listing 13. ”Step 7: Identify regulatory Transcript Factors”

434

TF <- get.TFs(data = mae , 435

group.col = "definition", 436

group1 = "Primary solid Tumor", 437

group2 = "Solid Tissue Normal", 438

minSubgroupFrac = 0.4, # Set to 1 if supervised mode 439

enriched.motif = enriched.motif , 440

dir.out = "Results_hypo", 441

cores = 1, 442

label = "hypo") 443

444

paste(sort(unique(TF$top.potential.TF.family)),collapse = ",") 445

# "EMX1 ,ESR1 ,FOXA1 ,GATA3 ,HOMEZ ,LMX1B ,MYB ,MZF1 ,NR2F6 ,OVOL1 ,PBX1 ,RARA ,SPDEF ,ZKSCAN1 446

,ZSCAN16" 447

paste(sort(unique(TF$top.potential.TF.subfamily)),collapse = ",") 448

# "AR ,EMX1 ,FOXA1 ,FOXD2 ,GATA3 ,HOMEZ ,LMX1B ,MYB ,NR2E3 ,PBX1 ,ZKSCAN1 ,ZSCAN16" 449

450451

The result of this function is shown in table 4 and in figure 8. 452

21/31

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 10, 2017. ; https://doi.org/10.1101/148726doi: bioRxiv preprint 

https://doi.org/10.1101/148726
http://creativecommons.org/licenses/by/4.0/


ZN282_HUMAN.H11MO.0.D
FOSB_HUMAN.H11MO.0.A

ZN333_HUMAN.H11MO.0.D
PO3F4_HUMAN.H11MO.0.D
CEBPA_HUMAN.H11MO.0.A
DDIT3_HUMAN.H11MO.0.D

PO6F1_HUMAN.H11MO.0.D
JUND_HUMAN.H11MO.0.A

SOX18_HUMAN.H11MO.0.D
ARI3A_HUMAN.H11MO.0.D
NFIL3_HUMAN.H11MO.0.D

JUN_HUMAN.H11MO.0.A
CEBPB_HUMAN.H11MO.0.A

FOS_HUMAN.H11MO.0.A
GATA3_HUMAN.H11MO.0.A
JUNB_HUMAN.H11MO.0.A
BATF_HUMAN.H11MO.1.A

FOXO1_HUMAN.H11MO.0.A
FUBP1_HUMAN.H11MO.0.D

ATF4_HUMAN.H11MO.0.A
SIX1_HUMAN.H11MO.0.A

ZN264_HUMAN.H11MO.0.C
CUX2_HUMAN.H11MO.0.D

FOXJ3_HUMAN.H11MO.1.B
HOMEZ_HUMAN.H11MO.0.D
HNF1B_HUMAN.H11MO.1.A
FOXG1_HUMAN.H11MO.0.D

DLX6_HUMAN.H11MO.0.D
ANDR_HUMAN.H11MO.0.A

FOXP3_HUMAN.H11MO.0.D
HNF1A_HUMAN.H11MO.0.C

TEF_HUMAN.H11MO.0.D
PO2F1_HUMAN.H11MO.0.C
HNF1B_HUMAN.H11MO.0.A
PO5F1_HUMAN.H11MO.1.A
FOXP1_HUMAN.H11MO.0.A
FOXJ3_HUMAN.H11MO.0.A
FOXC2_HUMAN.H11MO.0.D
FOXO4_HUMAN.H11MO.0.C
FOXL1_HUMAN.H11MO.0.D
FOXK1_HUMAN.H11MO.0.A
FOXQ1_HUMAN.H11MO.0.C
FOXD2_HUMAN.H11MO.0.D
FOXO3_HUMAN.H11MO.0.B
FOXO6_HUMAN.H11MO.0.D
FOXP2_HUMAN.H11MO.0.C
FOXF1_HUMAN.H11MO.0.D
FOXD3_HUMAN.H11MO.0.D
FOXJ2_HUMAN.H11MO.0.C
FOXD1_HUMAN.H11MO.0.D
FOXF2_HUMAN.H11MO.0.D
FOXC1_HUMAN.H11MO.0.C
FOXM1_HUMAN.H11MO.0.A
FOXB1_HUMAN.H11MO.0.D
FOXA1_HUMAN.H11MO.0.A
FOXA3_HUMAN.H11MO.0.B
FOXA2_HUMAN.H11MO.0.A

1.5 2.0 2.5 3.0 3.5 4.0

Odds Ratio

M
ot

ifs
Probes hypomethylated in Primary Solid Tissue vs Solid tissue normal

Figure 7. Motif enrichment plot shows the enrichment levels (OR ≥ 2.0) for the selected
motifs. This plot represents a subset of the enriched motifs for lower.or = 1.1, only selected for
representational purposes.
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Figure 8. TF ranking plot shows statistic −log10(P − value) assessing the anti-correlation level
of TFs expression level with average DNA methylation level at sites with a given motif. By default,
the top 3 associated TFs and the TF family members (dots in red) that are associated with that
specific motif are labeled in the plot. But there is also an option to highlight only TF sub-family
members (TCClass database classification)
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Comparing inferred results with MCF-7 chIA-PET 453

As shown in Yao et al. [4], we compared the putative pairs inferred to the chromatin loops 454

derived from deep-sequenced ChIA-PET data from MCF7 cells [27]. First, we identify the number 455

of ELMER pairs overlapping the ChIA-PET loops, then we repeat using randomly generated pairs 456

with properties similar to the ELMER pairs. For each true ELMER probe in a probe-gene pair, we 457

randomly select a different probe from the complete set of distal probes. We then choose the nth 458

nearest gene to the random probe, where n is the same as the adjacency of the true ELMER probe 459

(i.e. if the true probe is linked to the second gene upstream, the random probe will also be linked to 460

its second gene upstream). Thus, the random linkage set has both the same number of probes and 461

the same number of linked genes as the true set. One hundred such random datasets were 462

generated to arrive at a 95% CI (±1.96 ∗ SD). The result is shown in Figure 9. Of the 2124 463

putative pairs identified in breast cancer tumors, 316 (approximately 14.9%) were also identified as 464

loops in the MCF7 ChIA-PET data. This was a three-fold enrichment over randomized probe-gene 465

pairs (see Additional file for the code). 466

Figure 9. The graph shows the comparison of the number of probe-gene pairs identified within
MCF7 ChIA-PET data using the putative pairs from BRCA vs. random pairs

25/31

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 10, 2017. ; https://doi.org/10.1101/148726doi: bioRxiv preprint 

https://doi.org/10.1101/148726
http://creativecommons.org/licenses/by/4.0/


Use Case 2: BRCA molecular subtypes analysis (supervised 467

approach) 468

Several studies identified distinct molecular Breast cancer classes and divided them as the 469

luminal-like (Luminal A and Luminal B) subclasses, which are Estrogen receptor-positive 470

(ER-positive), and the basal-like, ErbB2-positive and normal-like subclasses, which are the 471

ER-negative groups [28, 29, 30]. To performed ELMER analysis comparing known molecular 472

subtypes (Her2, Luminal A, Luminal B and Basal-like) a TCGA BRCA dataset classification 473

retrieved from Ciriello et al. [31]. 474

The main arguments changed were the percentage of samples used to identify the differentially 475

methylated probes in function get.diff.meth which was set to 100% (use all samples from each 476

group) and the mode in function get.pair and in function get.TFs which was set to ”supervised”. In 477

this mode instead of defining the U (unmethylated) group as the samples with lowest quintile of 478

DNA methylation levels and the M (methylated) group as the highest quintile, the U and M group 479

will be defined as all samples of one known molecular subtype (Figure 10). For example, if the first 480

step identified probes hypomethylated in Luminal A group compared to Basa-like group, in the 481

next steps the U group will be the Luminal A samples and the M group will be the Basal-like 482

samples. The results and code of this supervised analysis can be found in the supplemental files. 483

From the Luminal A group vs Basal-like group analysis, it can be highlighted that the pairs of 484

high expressed genes and hypomethylated probes in the Basal groups are enriched for the SOX10 485

TF signature. For this signature, the regulatory TF candidate identified is the SOX11 (Sry-related 486

HMG box-11) TF; this correlation between basal-like and SOX11 was recently described by 487

Shepherd et al. [32]. Also, the TF analysis reported the forkhead box C1 (FOXC1) transcription 488

factor as the TF with the highest anti-correlation between TF expression and DNA methylation 489

levels. Even though, this TF is not in the family of any enriched motifs this correlation between the 490

FOXC1 TF and Basal-like breast cancers (BLBCs) was reported by Zuo and Yao [33] and Chung 491

et al. [34]. 492

On the other hand, when analyzing in the other direction in terms of methylation level, for those 493

pairs of high expressed genes and hypomethylated probes in the Luminal A group, the TF analysis 494

identified GATA3, FOXA1, RARA, MYB as candidate regulatory TF. GATA3 and FOXA1 are 495

known characterize this molecular subtype as described by Yersal and Barutca [29] while RARA 496

was associated with the Luminal phenotype by Centritto et al. [35], MYB is shown to be required 497

for the proliferation of ER-positive breast cancer cells Mitra et al. [36]. 498
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Figure 10. Difference of groups U and M definition in ”supervised” and ”unsupervised” mode. A:
unsupervised mode; when minSubgroupFrac argument is set to 40%, the methylated group is defined
as the highest quintile and the unmethylated group as the lowest quintile; B: supervised mode;
methylated and unmethylated group are defined as one of the know molecular, the unmethylated
group is represented by all the LumA samples while the methylated group is represented by all the
Basal samples;

Discussion 499

We present a new version of ELMER, an R/Bioconductor package that allows users to infer 500

altered gene regulatory networks and master regulators, by linking expression changes to DNA 501

methylation changes of nearby cis-regulatory elements. This version is greatly improved in terms of 502

stability, performance, and extensibility. It also adds a number of new features, including support 503

for support Human genome build 38, to the Infinium MethylationEPIC BeadChip array, import of 504

datasets from the NCI Genomic Data Commons (GDC), and a new Supervised mode for analysis of 505

paired sample study designs. It also performs motif and master regulator analysis using an 506

expanded set of motifs and a well-maintained database for TF binding domain families and binding 507

site preferences. It also provides greater support for Bioconductor standards (such as 508

MultiAssayExperiment) and improved user interaction by improving messages and error handling, 509

as well as newly designed, publication quality output plots. Our case study performed on a TCGA 510

Breast Invasive Carcinoma (TCGA-BRCA) dataset showed that GATA3, ESR1, FOXA1 were 511

identified, consistent with research presented by Theodorou et al. [37] and our earlier work [4]. 512

Furthermore, the molecular subtypes case study identified for the Basal-like molecular subtype 513

group the SOX11 as a candidate regulatory TF and it also identified FOXC1 as the one whose 514

expression most anti-correlates with the DNA methylation levels. Those findings are consistent 515

with the recent reviews by Han et al. [38] and research by Shepherd et al. [32]. On the other hand, 516

for the Luminal A group some of the candidate regulatory TF analysis identified were GATA3, 517

FOXA1, RARA and MYB which were also consistent with recent researches. 518

27/31

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 10, 2017. ; https://doi.org/10.1101/148726doi: bioRxiv preprint 

https://doi.org/10.1101/148726
http://creativecommons.org/licenses/by/4.0/


Data availability 519

The TCGA data was downloaded from the NCI Genomic Data Commons (GDC) data portal [7] 520

using TCGAbiolinks R/Bioconductor package [12, 39]. Gene annotations were retrieved from 521

ENSEMBL [19] database via biomaRt R/Bioconductor package [20, 22]. DNA methylation 522

microarrays metadata were retrieved from http://zwdzwd.github.io/InfiniumAnnotation [16]. 523

Transcription factor (TF) binding models can be downloaded at HOCOMOCO database 524

(http://hocomoco.autosome.ru/) [10]. The list of human TF can be accessed at 525

http://www.uniprot.org/ [9]. The classification of human transcription factors (TFs) can be 526

viewed at http://tfclass.bioinf.med.uni-goettingen.de/tfclass [11]. 527

Software availability 528

1. The source code of ELMER is available at https://github.com/tiagochst/ELMER and the 529

auxiliary data files are available https://github.com/tiagochst/ELMER.data. 530

2. ELMER is available under the GNU General Public License version 3 (GNU GPL3) 531

3. To create the auxiliary data, the HOMER software was used and is available at 532

http://homer.ucsd.edu/homer/ (Software: v4.9.1, Genome hg19: v5.10, Genome hg38: 533

v5.10). 534
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Fernandez Banet, Konstantinos Billis, Carlos Garćıa Girón, Thibaut Hourlier, Kevin Howe, Andreas 598
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