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Abstract

The default mode network (DMN) is believed to subserve the baseline mental
activity in humans. Its highest energy consumption compared to other brain
networks and its intimate coupling with conscious awareness are both pointing to
an overarching function. Many research streams speak in favor of an evolutionarily
adaptive role in envisioning experience to anticipate the future. In the present
work, we propose a process model that tries to explain how the DMN may
implement continuous evaluation and prediction of the environment to guide
behavior. Specifically, we answer the question whether the neurobiological
properties of the DMN collectively provide the computational building blocks
necessary for a Markov Decision Process. We argue that our formal account of
DMN function naturally accommodates as special cases previous interpretations
based on (1) predictive coding, (2) semantic associations, and (3) a sentinel role.
Moreover, this process model for the neural optimization of complex behavior in
the DMN offers parsimonious explanations for recent experimental findings in
animals and humans.

keywords: systems neuroscience, artificial intelligence, reinforcement learning,
mind-wandering

1 Introduction

In the absence of external stimulation, the human brain is not at rest. At the turn to the 21st
century, brain-imaging may have been the first technique to allow for the discovery of a unique
brain network that would subserve baseline mental activities (Raichle et al., 2001; Buckner
et al., 2008; Bzdok and Eickhoff, 2015). The “default mode network” (DMN) continues to
metabolize large quantities of oxygen and glucose energy to maintain neuronal computation
during free-ranging thought (Kenet et al., 2003; Fiser et al., 2004). The baseline energy
demand is only weakly modulated at the onset of defined psychological tasks (Gusnard and
Raichle, 2001). At its opposite, during sleep, the decoupling of brain structures discarded the
idea of the DMN being only a passive network resonance and rather supported an important
role in sustaining conscious awareness (Horovitz et al., 2009).
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This dark matter of brain physiology (Raichle, 2006) begs the question of the biological
purpose underlying DMN activity. Despite observation of similar large-scale networks of
co-varying spontaneous activity in electrophysiological investigations (De Pasquale et al., 2010;
Brookes et al., 2011; Baker et al., 2014), the link between the fMRI BOLD signal and
population-level neural activity is still unclear. If those frequency-specific electrophysiological
correlations are proposed as complementary to those observed with BOLD (Hipp and Siegel,
2015), their role in DMN function remains elusive (Maldjian et al., 2014).

What has early been described as the “stream of consciousness” in psychology (James,
1890) found a potential neurobiological manifestation in the DMN (Shulman et al., 1997;
Raichle et al., 2001). We propose that this set of some of the most advanced regions in the
association cortex (Mesulam, 1998; Margulies et al., 2016b) are responsible for higher-order
control of human behavior. Our functional account follows the notion of “a hierarchy of brain
systems with the DMN at the top and the salience and dorsal attention systems at intermediate
levels, above thalamic and unimodal sensory cortex” (Carhart-Harris and Friston, 2010).

1.1 Towards a formal account of default mode function:
higher-order control of the organism

The network nodes that compose the human DMN are responsible for extended parts of the
baseline neural activity, which typically decreases when engaged in controlled psychological
experiments (Gusnard and Raichle, 2001). The standard mode of neural information
maintenance and manipulation has been argued to mediate evolutionarily conserved functions
(Brown, 1914; Binder et al., 1999; Buzsáki, 2006). Today, many psychologists and
neuroscientists believe that the DMN implements some form of probabilistic estimation of past,
hypothetical, and future events (Fox et al., 2005; Hassabis et al., 2007; Schacter et al., 2007;
Binder et al., 2009; Buckner et al., 2008; Spreng et al., 2009). This brain network might have
emerged to continuously predict the environment using mental imagery as an evolutionary
advantage (Suddendorf and Corballis, 2007). However, information processing in the DMN has
also repeatedly been shown to directly impact human behavior. Goal-directed task performance
improved with decreased activity in default mode regions (Weissman et al., 2006) and increased
DMN activity was linked to more task-independent, yet sometimes useful thoughts (Mason
et al., 2007; Seli et al., 2016). Gaining insight into DMN function is particularly challenging
because this brain network appears to simultaneously modulate perception-action cycles in the
present and to support mental travel across time, space, and content domains (Boyer, 2008).

The present work adopts the perspective of a human agent faced with the choice of the
next actions and guided by outcomes of really happened, hypothetically imagined, and
expected futures to optimize behavioral performance. Formally, a particularly attractive
framework to describe, quantify, and predict intelligent systems, such as the brain, is proposed
to be the combination of control theory and reinforcement learning (RL). An intelligent agent
improves the interaction with the environment by continuously updating its computation of
value estimates and action predispositions through integration of feedback outcomes. That is,
“[agents], with their actions, modify the environment and in doing so partially determine their
next stimuli, in particular stimuli that are necessary for triggering the next action” (Pezzulo,
2011). Agents with other behavioral policies therefore sample different distributions of
action-perception trajectories (Ghavamzadeh et al., 2015). Henceforth, control refers to the
influence that an agent exerts when interacting with the environment to reach preferred states.

Psychologically, the more the ongoing executed task is unknown and unpracticed, the less
stimulus-independent thoughts occur (Filler and Giambra, 1973; Teasdale et al., 1995; Christoff
et al., 2016). Conversely, it has been empirically shown that, the more the world is easy to
foresee, the more human mental activity becomes detached from the actual sensory
environment (Antrobus et al., 1966; Pope and Singer, 1978; Mason et al., 2007; Weissman
et al., 2006). Without requiring explicit awareness, these “offline” processes may contribute to
optimizing control of the organism. We formalize a policy matrix to capture the space of
possible actions that the agent can perform on the environment given the current state. A value
function maps environmental objects and events (i.e., states) to expected rewards. Switching
between states reduces to a sequential processing model. Informed by outcomes of performed
actions, neural computation reflected in DMN dynamics could be constantly shaped by
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prediction error through feedback loops. The present computational account of DMN function
will be described in the mathematical framework of Markov Decision Processes (MDP). MDPs
specifically formalize decision making in stochastic contexts with reward feedback.

Such an RL account of DMN function can naturally embed human behavior into the
tension between exploitative action with immediate gains and exploratory action with
longer-term gratification. We argue that DMN implication in many of the most advanced
human capacities can be recast as prediction error minimization informed by internally
generated probabilistic simulations - “covert forms of action and perception” (Pezzulo, 2011) -,
allowing maximization of action outcomes across multiple time-scales. Such a purposeful
optimization objective may be solved by a stochastic approximation based on a brain
implementation of Markov Chain Monte Carlo (MCMC) sampling. Even (unavoidably)
imperfect memory recall, Even necessarily imperfect memory recall, random day-time
mind-wandering, and seemingly arbitrary dreams during sleep may provide randomly sampled
blocks of pseudo-experience instrumental to iteratively optimize the behavior of the organism.

Evidence from computational modeling of human behavior (Körding and Wolpert, 2004)
and cell recording experiments in ferrets (Fiser et al., 2004) suggest that the brain is largely
dedicated to “the development and maintenance of [a] probabilistic model of anticipated events”
(Raichle and Gusnard, 2005). The present paper proposes a process model that satisfies this
previously proposed contention. We also contribute to the discussion of DMN function by
providing some of the first empirical evidence that morphological variability in DMN regions is
linked to the reward circuitry (Fig. 2), thus linking two literatures with currently scarce
cross-references. Finally, we detail how our process model relates to previous accounts of DMN
function and we derive explicit hypotheses to be tested in future neuroscience experiments. At
this stage, we emphasize the importance of differentiating which levels of observation are at
play in the present account. A process model is not solely intended to capture behavior of the
agent, such as cognitive accounts of DMN function, but also the neurocomputational specifics
of the agent. Henceforth, we will use “inference“ when describing aspects of the statistical
model, “prediction“ when referring to the neurobiological implementation, and words like
“forecast“ or “forsee“ when referring to the behavior of the agent.

2 Known neurobiological properties of the default
mode network

We begin by a neurobiological deconstruction of the DMN based on experimental findings in
the neuroscience literature. This walkthrough across main regions of the DMN will outline the
individual functional profiles, paving the way for their algorithmic interpretation in our formal
account (section 3).

2.1 The posteromedial cortex: global monitoring and
information integration

The midline structures of the human DMN, including the posteromedial cortex (PMC) and the
medial prefrontal cortex (mPFC), are probably responsible for highest turn-overs of energy
consumption (Raichle et al., 2001; Gusnard and Raichle, 2001). These metabolic characteristics
go hand-in-hand with brain-imaging findings that suggested the PMC and mPFC to potentially
represent the functional core of the DMN (Andrews-Hanna et al., 2010; Hagmann et al., 2008).

Normal and disturbed metabolic fluctuations in the human PMC have been closely related
to changes of conscious awareness (Cavanna and Trimble, 2006). Indeed, the PMC matures
relatively late (i.e., myelination) during postnatal development in monkeys (Goldman-Rakic,
1987), which is generally considered to be a sign of evolutionary sophistication. This DMN
region has long been speculated to reflect constant computation of environmental statistics and
its internal representation as an inner “mind’s eye” (Cavanna and Trimble, 2006; Leech and
Sharp, 2014). For instance, Bálint’s syndrome is a neurological disorder of conscious awareness
that results from medial damage in the parietal cortex (Bálint et al., 1909). Such neurological
patients are plagued by an inability to bind various individual features of the visual
environment into an integrated whole (i.e., simultanagnosia) as well as an inability to direct
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vmPFC (BA10): 
Stmulus-value associaton

Right TPJ: Predicton error signaling

Lef TPJ: World semantcs
Ncl. Accumbens:
Reward / punishment signals

Hippocampus: Memory, 
space, and experience replay

PMC: Global monitoring and informaton integraton
dmPFC (BA9): Acton consideraton

Fig 1. Default mode network: key functions. Neurobiological overview of the
DMN with its major constituent parts and the associated functional roles relevant in
our functional interpretation.

action towards currently unattended environmental objects (i.e., optic ataxia). This
dysfunction can be viewed as a high-level impairment in gathering information about
alternative objects (i.e., exploration) as well as leveraging these environmental opportunities
(i.e., exploitation). Congruently, the human PMC was coupled in two different functional
connectivity analyses (Bzdok et al., 2015) with the amygdala, involved in significance
evaluation, and the nucleus accumbens (NAc), involved in reward evaluation. Specifically,
among all parts of the PMC, the ventral posterior cingulate cortex was most connected to the
laterobasal nuclei group of the amygdala (Bzdok et al., 2015). This amygdalar subregion has
been proposed to continuously scan environmental input for biological relevance assessment
(Bzdok et al., 2013a; Ghods-Sharifi et al., 2009; Baxter and Murray, 2002).

The putative role of the PMC in continuous abstract integration of environmental relevance
and ensuing top-level guidance of action on the environment is supported by many
neuroscience experiments. Electrophysiological recordings in animals implicated PMC neurons
in strategic decision making (Pearson et al., 2009), risk assessment (McCoy and Platt, 2005),
outcome-dependent behavioral modulation (Hayden et al., 2009), as well as approach-avoidance
behavior (Vann et al., 2009). Neuron spiking activity in the PMC allowed distinguishing
whether a monkey would pursue an exploratory or exploitative behavioral strategy during food
foraging (Pearson et al., 2009). Further, single-cell recordings in the monkey PMC
demonstrated this brain region’s sensitivity to subjective target utility (McCoy and Platt,
2005) and integration across individual decision-making instances (Pearson et al., 2009). This
DMN region encoded the preference for or aversion to options with uncertain reward outcomes
and its neural spiking activity was more associated with subjectively perceived relevance of a
chosen object than by its actual value, based on an “internal currency of value” (McCoy and
Platt, 2005). In fact, direct stimulation of PMC neurons in monkeys promoted exploratory
actions, which would otherwise be shunned (Hayden et al., 2008). Graded changes in firing
rates of PMC neurons indicated changes in upcoming choice trials, while their neural patterns
were distinct from neuronal spike firings that indicated choosing either option. Similarly in
humans, the DMN has been shown to gather and integrate information over different parts of
auditory narratives in an fMRI study (Simony et al., 2016).

Moreover, the retrosplenial portion of the PMC could support representation of action
possibilities and evaluation of reward outcomes by integrating information from memory recall
and different perspective frames. Regarding memory recall, retrosplenial damage has been
consistently associated with anterograde and retrograde memory impairments of various kinds
of sensory information in animals and humans (Vann et al., 2009). Regarding perspective
frames, the retrosplenial subregion of the PMC has been proposed to mediate between the
organism’s egocentric (i.e., focused on external sensory environment) and allocentric (i.e.,
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focused on internal world knowledge) viewpoints in animals and humans (Epstein, 2008;
Burgess, 2008; Valiquette and McNamara, 2007).

Consequently, the PMC may contribute to overall DMN function by monitoring the
subjective outcomes of possible actions and integrating that information with memory and
perspective frames into short- and longer-term behavioral agendas. Estimated value, found to
differs across individuals, might enrich statistical assessment of the environment to map and
predict delayed reward opportunities in the future. In doing so, the PMC may continuously
adapt the organism to changes in both the external environment and its internal representation
to enable strategic behavior.

2.2 The prefrontal cortex: action consideration and
stimulus-value association

Analogous to the PMC, the dorsomedial PFC (dmPFC) of the DMN is believed to subserve
multi-sensory processes across time, space, and content domains to exert top-level control on
behavior. Comparing to the PMC, however, dmPFC function may be closer to a “mental
sketchpad” (Goldman-Rakic et al., 1996), as this DMN part potentially subserves the de-novo
construction and manipulation of meaning representations instructed by stored semantics and
memories (Bzdok et al., 2013c). The dmPFC may subserve representation and assessment of
one’s own and other individuals’ action considerations. Generally, neurological patients with
tissue damage in the prefrontal cortex are known to struggle with adaptation to new stimuli
and events (Stuss and Benson, 1986). Specifically, neural activity in the human dmPFC
reflected expectations about other peoples’ actions and outcomes of these predictions. Neural
activity in the dmPFC indeed explained the performance decline of inferring other peoples’
thoughts in aging humans (Moran et al., 2012). Certain dmPFC neurons in macaque monkeys
exhibited a preference for processing others’, rather than own, action with fine-grained
adjustment of contextual aspects (Yoshida et al., 2010).

Comparing to the dmPFC, the vmPFC is probably more specifically devoted to subjective
value evaluation and risk estimation of relevant environmental stimuli (Fig. 1 and 2). The
ventromedial prefrontal DMN may subserve adaptive behavior by bottom-up-driven processing
of what matters now, drawing on sophisticated value representations (Kringelbach and Rolls,
2004; O’Doherty et al., 2015). Quantitative lesion findings across 344 human individuals
confirmed a substantial impairment in value-based action choice (Gläscher et al., 2012). Indeed,
this DMN region is preferentially connected with reward-related and limbic regions. The
vmPFC is well known to have direct connections with the NAc in axonal tracing studies in
monkeys (Haber et al., 1995). Congruently, the gray-matter volume of the vmPFC and NAc
correlated with indices of value-guided behavior and reward attitudes in humans (Lebreton
et al., 2009). NAc activity is further thought to reflect reward prediction signals from
dopaminergic neurotransmitter pathways (Schultz, 1998) that not only channel action towards
basic survival needs but also enable more abstract reward processings, and thus perhaps RL, in
humans (O’Doherty et al., 2015).

Consistently, diffusion MRI tractography in humans and monkeys (Croxson et al., 2005)
quantified the NAc to be more connected to the vmPFC than dmPFC in both species. Two
different functional connectivity analyses in humans also revealed strong vmPFC connections
with the NAc, hippocampus (HC), and PMC (Bzdok et al., 2015). In line with these
connectivity findings in animals and humans, the vmPFC is often proposed to represent
triggered emotional and motivational states (Damasio et al., 1996). Such real or imagined
arousal states could be mapped in the vmPFC as a bioregulatory disposition influencing
cognition and decision making. In neuroeconomic studies of human decision making, the
vmPFC consistently reflects an individuals subjective value predictions (Behrens et al., 2008),
which may also explain why performance within and across participants was reported to relate
to state encoding in the vmPFC (Schuck et al., 2016). Such a “cognitive map” of the action
space was argued to encode the current task state even when states are unobservable from the
sensory environment.
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Fig 2. Morphological coupling
between reward system and
default mode network. Based on
9,932 human subjects from the UK
Biobank, inter-individual differences in
left NAc volume (R2 = 0.11± 0.02) and
right NAc volume (R2 = 0.14± 0.02)
could be predicted from volume in the
DMN regions. These out-of-sample
generalization performances were
obtained from support vector regression
applied to normalized region volumes in
the DMN in a 10-fold cross-validation
procedure. Consistent for the left and
right reward system, NAc volume in a
given subject is positively coupled with
the vmPFC and HC. The colors are
indicative of the (red = positive, blue
= negative) and relative importance
(the lighter the higher) of the regression
coefficients. The code for reproduction
and visualization: www.github.com/
banilo/darkcontrol_PCB2018.

2.3 The hippocampus: memory, space, and experience replay

The DMN midline has close functional links with the HC in the medial temporal lobe (Vincent
et al., 2006; Shannon et al., 2013) —a region long known to be involved in memory operations
and spatial navigation in animals and humans. While the HC is traditionally believed to allow
recalling past experience, there is now increasing evidence for an important role in constructing
mental models in general (Zeidman and Maguire, 2016; Schacter et al., 2007; Gelbard-Sagiv
et al., 2008; Javadi et al., 2017; Boyer, 2008). Its recursive anatomical architecture may be
specifically designed to allow reconstructing entire sequences of experience from memory
fragments. Indeed, hippocampal damage was not only associated with an impairment in
re-experiencing the past (i.e., amnesia), but also forecasting of one’s own future and
imagination of experiences more broadly (Hassabis et al., 2007).

Mental scenes created by neurological patients with HC lesion exposed a lack of spatial
integrity, richness in detail, and overall coherence. Single-cell recordings in the animal HC
revealed constantly active neuronal populations whose firing coincided with specific locations in
space during environmental navigation. Indeed, when an animal is choosing between
alternative paths, the corresponding neuronal populations in the HC spike one after another
(Johnson and Redish, 2007). Such neuronal patterns in the HC appear to directly indicate
upcoming behavior, such as in planning navigational trajectories (Pfeiffer and Foster, 2013)
and memory consolidation of choice relevance (De Lavilléon et al., 2015). Congruently, London
taxi drivers, humans with high performance in forecasting spatial navigation, were shown to
exhibit increased gray-matter volume in the HC (Maguire et al., 2000).

There is hence increasing evidence that HC function extends beyond simple forms of
encoding and reconstruction of memory and space information. Based on spike recordings of
hippocampal neuronal populations, complex spiking patterns can be followed across extended
periods including their modification of input-free self-generated patterns after environmental
events (Buzsáki, 2004). Specific spiking sequences, which were elicited by experimental task
design, have been shown to be re-enacted spontaneously during quiet wakefulness and sleep
(Hartley et al., 2014; ONeill et al., 2010). Moreover, neuronal spike sequences measured in
hippocampal place cells of rats featured re-occurrence directly after experimental trials as well
as directly before (prediction of) upcoming experimental trials (Diba and Buzsáki, 2007).
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Similar spiking patterns in hippocampal neurons during rest and sleep have been proposed to
be critical in communicating local information to the neocortex for long-term storage,
potentially including DMN regions. Moreover, in mice, invasively triggering spatial experience
recall in the HC during sleep has been demonstrated to subsequently alter action choice during
wakefulness (De Lavilléon et al., 2015). These HC-subserved mechanisms conceivably
contribute to advanced cognitive processes that require re-experiencing or newly constructed
mental scenarios, such as in recalling autobiographical memory episodes (Hassabis et al., 2007).
Thus, the HC would orchestrate re-experience of environmental aspects for consolidations
based on re-enactment and for integration into rich mental scene construction (Deuker et al.,
2016; Bird et al., 2010). As such, the HC may impact ongoing perception of and action on the
environment (Zeidman and Maguire, 2016; De Lavilléon et al., 2015).

2.4 The right and left TPJ: prediction error signaling and
world semantics

The DMN emerges with its midline structures early in human development (Doria et al., 2010),
while the right and left TPJs may become fully integrated into this major brain network only
after birth. The TPJs are known to exhibit hemispheric differences based on microanatomical
properties and cortical gyrification patterns (Seghier, 2013). Globally, neuroscientific
investigations on hemispheric functional specialization have highlighted the right cerebral
hemisphere as dominant for attentional functions and the left side for semantic functions
(Seghier, 2013; Bzdok et al., 2013b, 2016a; Stephan et al., 2007).

The TPJ in the right hemisphere (RTPJ) has been shown to be closely related to
multi-sensory prediction and prediction error signaling. This DMN region is probably central
for action initiation during goal-directed psychological tasks and for sensorimotor behavior by
integrating multi-sensory attention (Corbetta and Shulman, 2002). Its involvement was
repeatedly reported in multi-step action execution (Hartmann et al., 2005),
visuo-proprioceptive conflict (Balslev et al., 2005), and detection of environmental changes
across visual, auditory, or tactile stimulation (Downar et al., 2000). Direct electrical stimulation
of the human RTPJ during neurosurgery was associated with altered perception and stimulus
awareness (Blanke et al., 2002). It was argued that the RTPJ encodes actions and predicted
outcomes, without necessarily relating these neural processes to value estimation (Liljeholm
et al., 2013; Hamilton and Grafton, 2008; Jakobs et al., 2009). Additionally, neural activity in
the RTPJ has been proposed to reflect stimulus-driven attentional reallocation to self-relevant
and unexpected sources of information as a circuit breaker that recalibrates functional control
of brain networks (Bzdok et al., 2013b; Corbetta et al., 2008). Indeed, neurological patients
with RTPJ damage have particular difficulties with multi-step actions (Hartmann et al., 2005).
In the face of large discrepancies between actual and previously predicted environmental events,
the RTPJ acts as a potential switch between externally-oriented mind sets focussed on the
sensory environment and internally-oriented mind sets focussed on mental scene construction.
For instance, temporally induced RTPJ damage in humans diminished the impact of predicted
intentions of other individuals (Young et al., 2010), a capacity believed to be enabled by the
DMN. The RTPJ might hence be an important relay that shifts away from the internally
directed baseline processes to, instead, deal with unexpected environmental stimuli and events.

The left TPJ of the DMN (LTPJ), in turn, has a close relationship to Wernicke’s area
involved in semantic processes, such as in spoken and written language. Neurological patients
with damage in Wernicke’s area have a major impairment of language comprehension when
listening to others or reading a book. Patient speech preserves natural rhythm and normal
syntax, yet the voiced sentences lack meaning (i.e., aphasia). Abstracting from speech
interpretations in linguistics and neuropsychology, the LTPJ appears to mediate access to and
binding of world knowledge, such as required during action considerations (Binder and Desai,
2011; Seghier, 2013). Consistent with this view, LTPJ damage in humans also entailed
problems in recognizing others’ pantomimed action towards objects without obvious relation to
processing explicit language content (Varney and Damasio, 1987). Inner speech also hinges on
knowledge recall about the physical and social world. Indeed, the internal production of
verbalized thought (“language of the mind”) was closely related to the LTPJ in a pattern
analysis of brain volume (Geva et al., 2011). Further, episodic memory recall and mental
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imagery to forecast future events strongly draw on re-assembling world knowledge. Isolated
building blocks of world structure get rebuilt in internally constructed mental scenarios that
guide present action choice, weigh hypothetical possibilities, and forecast event outcomes.
Neural processes in the LTPJ may hence contribute to the automated predictions of the
environment by incorporating experience-derived building blocks of world regularities into
ongoing action, planning, and problem solving.

3 Reinforcement learning control: a process model
for DMN function

We argue the outlined neurobiological properties of the DMN regions to be sufficient for
implementing all components of a full-fledged reinforcement-learning (RL) system. Recalling
past experience, considering candidate actions, random sampling of possible experiences, as
well as estimation of instantaneous and expected delayed reward outcomes are key components
of intelligent RL agents that are plausible to functionally intersect in the DMN.

RL is an area of machine learning concerned with searching optimal behavioral strategies
through interactions with an environment with the goal to maximize some cumulative reward.
The optimal behavior typically takes the future into account as some rewards could be delayed.
Through repeated action on and feedback from the environment, the agent learns how to reach
goals and continuously improve the collection of reward signals in a trial-and-error fashion (Fig.
3). At a given moment, each taken action a triggers a change in the state of the environment
s→ s′, accompanied by environmental feedback signals as reward r = r(s, a, s′) obtained by
the agent. If the collected reward outcome yields a negative value it can be more naturally
interpreted as punishment. In this setting, the environment is partially controlled by the action
of the agent and the reward can be thought of as satisfaction —or aversion —that accompany
the execution of a particular action.

The environment is generally taken as stochastic, that is, changing in random ways. In
addition, the environment is only partially observable in the sense that only limited aspects of
the environment’s state are accessible to the agent’s sensory input (Starkweather et al., 2017).
We assume that volatility of the environment is realistic in a computational model which sets
out to explain DMN functions of the human brain. We argue that a functional account of the
DMN based on RL can naturally embed human behavior in the tension between exploitative
action with immediate gains and explorative action with longer-term reward outcomes (Dayan
and Daw, 2008). In short, DMN implication in a diversity of particularly sophisticated human
behaviors can be parsimoniously explained as instantiating probabilistic simulations of
experience coupled with prediction error minimization to calibrate action trajectories for
reward outcome maximization at different time-scales. Such a purposeful optimization
objective may be subserved by a stochastic approximation based on a brain implementation of
MCMC sampling.

3.1 Markov decision processes

RL has had considerable success in modeling many real-world problems, including super-human
performance in complex video games (Mnih et al., 2015), robotics (Ng et al., 2004; Abbeel and
Ng, 2004), and strategic board games like the breakthrough results upon recently on the game
of Go (Silver et al., 2016) considered to be a milestone benchmark in artificial intelligence. In
artificial intelligence and machine learning, a popular computational model for multi-step
decision processes in such an environment are MDPs (Sutton and Barto, 1998). An MDP
operationalizes a sequential decision process in which it is assumed that environment dynamics
are determined by a Markov process, but the agent cannot directly observe the underlying
state. Instead, the agent tries to optimize a subjective reward signal (i.e., likely to be different
for another agent in the same state), by maintaining probability distributions over actions
according to their expected utility. This is a minimal set of assumptions that can be made
about an environment faced by an agent engaged in interactive learning.

Definition. Mathematically, an MDP is simply a quintuplet (S,A, r, p) where
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Fig 3. Reinforcement learning in a nutshell. Given the current state of the
environment, the agent takes an action by following the policy matrix as updated by the
Bellman equation. The agent receives a triggered reward and observes the next state.
The process goes on until interrupted or a goal state is reached.

• S is the set of states, such as S = {happy, sad, puzzeled}.
• A is the set of actions, such as A = {read, run, laugh, sympathize, empathize}.
• r : S ×A× S → R is the reward function, so that r(s, a, s′) is the instant reward for

taking action a in state s followed by a state-transition s→ s′.

• p : S ×A× S → [0, 1], (s, a, s′) 7→ p(s′|s, a), the probability of moving to state s′ if
action a is taken from state s. In addition, one requires that such transitions be
Markovian. Consequently, the future states are independent of past states and only
depend on the present state and action taken.

The process has memory if the subsequent state depends not only on the current state but
also on a number of past states. Rational probabilistic planning can thus be reformulated as a
standard memoryless Markov process by simply expanding the definition of the state s to
include experience episodes of the past. This extension adds the capacity for memory to the
model because the next state then depends not only on the current situation but also on
previously experienced events, which is the motivation behind Partially Observable MDPs
(POMDPs) (Starkweather et al., 2017; O’Reilly and Frank, 2006). Nevertheless, this
mathematical property of POMDPs mostly accounts for implicit memory. Since the current
paper is concerned with plausibility at the behavioral and neurobiological level, we will address
below how our account can accommodate the neurophysiological constraints of the DMN and
the explicit memory characteristics of human agents.

Why Markov Decision Processes? One may wonder whether MDP models are
applicable to something as complex as human behavior. For instance, financial trading is
largely a manifestation of strategic decision-making of interacting human agents. According to
how the market responds, the agent incurs gain or loss as environmental feedback of the
executed financial actions. Recent research on automatizing market exchanges by algorithmic
trading has successfully used MDPs as a framework for modeling these elaborate behavioral
dynamics (Brázdil et al., 2017; Yang et al., 2015, 2014, 2012; Dempster and Leemans, 2006;
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Hult and Kiessling, 2010; Abergel et al., 2017). MDPs have also been effective as a behavioral
model in robotics (Ng et al., 2004; Abbeel and Ng, 2004) and in challenging multistep strategy
games (Mnih et al., 2015; Silver et al., 2016; Pritzel et al., 2017). As such, we aim to expand
MDP applications as a useful model from ”online” decision-making to the realms of ”offline”
behaviors most associated with the DMN.

Towards model-free reinforcement learning for the DMN. Model-free RL can
be plausibly realized in the human brain (O’Doherty et al., 2015; Daw and Dayan, 2014).
Indeed, it has been proposed (Gershman et al., 2015) that a core property of human
intelligence is the improvement of expected utility outcomes as a strategy for action choice in
uncertain environments, a situation perfectly captured by the formalism of MDPs. It has also
long been proposed (Dayan and Daw, 2008) that there can be a direct mapping between
model-free RL learning algorithms and aspects of the brain. The neurotransmitter dopamine
could serve as a ’teaching signal’ to better estimate value associations and action policies by
controlling synaptic plasticity in the reward-processing circuitry, including the NAc. In
contrast, model-based RL would start off with some mechanistic assumptions about the
dynamics of the world. These can be assumptions about the physical laws governing the agent’s
environment or constraints on the state space, transition probabilities between states, reward
contingencies, etc. An agent might represent such knowledge about the world as follows:

• r(s, “stand still”) = 0 if s does not correspond to a location offering relevant resources.

• p(s′|s, “stand still”) = 1 if s′ = s and 0 otherwise.

• etc.

Such knowledge can be partly extracted from the environment: the agent infers a model of the
world while learning to take optimal decisions based on the current representation of the
environment. These methods learn what the effect is going to be of taking a particular action
in a particular state. The result is an estimate of the underlying MDP which can then be either
solved exactly or approximately, depending on the setting and what is feasible.

In contrast, model-free methods require no prespecified knowledge of the environment
(transition probabilities, types of sensory input, etc.) or representation thereof. The agent
infers which state-action pairs lead to reward through sampling the world in a trial-and-error
manner and derives longer-term reward aggregates using environmental feedback information
as an incentive. In so doing, model-free agents ultimately learn both an action policy and an
implicit representations of the world. This distinction between model-free and model-based RL
is similar to previous views (Dayan and Berridge, 2014).

3.1.1 Accumulated rewards and policies

The behavior of the agent is governed by a policy, which maps states of the world to
probability distributions over candidate actions. Starting at time t = 0, following a policy π
generates a trajectory of action choices:

choose action: a0 ∼ π(a|s0)

observe transition: s1 ∼ p(s|s0, a0) and collect reward R0 = r(s0, a0, s1)

choose action: a1 ∼ π(a|s1)

observe transition: s2 ∼ p(s|s1, a1), and collect reward R1 = r(s1, a1, s2)

...

choose action: at ∼ π(a|st)
observe transition: st+1 ∼ p(s|st, at), and collect reward Rt = r(st, at, st+1)

...

We assume time-invariance in that we expect the dynamics of the process to be equivalent over
sufficiently long time windows of equal length (i.e., stationarity). Since an action executed in
the present moment might have repercussions in the far future, it turns out that the quantity
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to optimize is not the instantaneous rewards r(s, a), but a cumulative reward estimate which
takes into account expected reward from action choices in the future. A common approach to
modeling this gathered outcome is the time-discounted cumulative reward

Gπ =

∞∑
t=0

γtRt = R0 + γR1 + γ2R2 + . . .+ γtRt + . . . (1)

This random variable 1 measures the cumulative reward of following an action policy π. Note
that value buffering may be realized in the vmPFC. This DMN region has direct connections to
to the NAc, known to be involved in reward evaluation.

The goal of the RL agent is then to successively update this action policy in order to
maximize Gπ on average (cf. below). In (1), the definition of cumulative reward Gπ, the
constant γ (0 ≤ γ < 1) is the reward discount factor, viewed to be characteristic for a certain
agent. On the one hand, setting γ = 0 yields perfectly hedonistic behavior. An agent with such
a shortsighted time horizon is exclusively concerned with immediate rewards. This is however
not compatible with coordinated planning of longer-term agendas that is potentially subserved
by neural activity in the DMN. On the other hand, setting 0 < γ < 1 allows a learning process
to arise. A positive γ can be seen as calibrating risk-seeking trait of the intelligent agent, that
is, the behavioral predispositions related to trading longer delays for higher reward outcomes.
Such an agent puts relatively more emphasis on rewards expected in a more distant future.
Concretely, rewards that are not expected to come within τ := 1/(1− γ) time steps from the
present point are ignored. The complexity reduction by time discounting alleviates the variance
of expected rewards accumulated across considered action cascades by limiting the depth of the
search tree. Given that there is more uncertainty in the far future, it is important to appreciate
that a stochastic policy estimation is more advantageous in many RL settings.

3.2 The components of reinforcement learning in the DMN

Given only the limited information available from an MDP, at a state s the average utility of
choosing an action a under a policy π can be captured by the single number

Qπ(s, a) = E[Gπ|s0 = s, a0 = a], (2)

called the Q-value for the state-action pair (s, a). In other words, Qπ(s, a) corresponds to the
expected reward over all considered action trajectories, in which the agent sets out in the
environment in state s, chooses action a, and then follows the policy π to select future actions.
For the brain, Qπ(s, a) defined in (2) provides the subjective utility of executing a specific
action. It thus answers the question “What is the expected utility of choosing action a, and its
ramifications, in this situation?”. Qπ(s, a) offers a formalization of optimal behavior that may
well capture such processing aspects subserved by the DMN in human agents.

3.2.1 Optimal behavior and the Bellman equation

Optimal behavior of the agent corresponds to a strategy π∗ for choosing actions such that, for
every state, the chosen action guarantees the best possible reward on average. Formally,

π∗(s) := argmaxa∈AQ
∗(s, a), where Q∗(s, a) := max

π
Qπ(s, a). (3)

The learning goal is to approach the policy π∗ as close as possible, that is to solve the MDP.
Note that (3) presents merely a definition and does not lend itself as a candidate schema for
solving MDPs with even moderately sized action and state spaces (i.e., intractability).
Fortunately, the Bellman equation (Sutton and Barto, 1998) provides a fixed-point relation
which defines Q∗ implicitly via a sampling procedure, without querying the entire space of
policies, with the form

Q∗ = Bel(Q∗), (4)

1Random as it depends both on the environment’s dynamics and the policy π being executed.
The exponential delay discounting function used here refers to the usual formulation in the field of
reinforcement learning, although psychological experiments may also reveal other discounting regimes
(Green and Myerson, 2004).
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where the so-called Bellman transform Bel(Q) of an arbitrary Q-value function Q : S ×A → R
is another Q-value function defined by

Bel(Q)(s, a) := Es′∼p(s′|s,a)[r(s, a) + γ max
a′∈A

Q(s′, a′)]

= r(s, a) + γEs′∼p(s′|s,a)[max
a′∈A

Q(s′, a′)]

= instantaneous reward + expected reward for acting greedily thereafter

(5)

The Bellman equation (4) is a temporal consistency equation which provides a dynamic
decomposition of optimal behavior by dividing the Q-value function into the immediate reward
and the discounted rewards of the upcoming states. The optimal Q-value operator Q∗ is a
fixed point for this equation. As a consequence of this outcome stratification, the complicated
dynamic programming problem (3) is broken down into simpler sub-problems at different time
points. Indeed, exploitation of hierarchical structure in action considerations has previously
been related to the medial prefrontal part of the DMN (Koechlin et al., 1999; Braver and
Bongiolatti, 2002). Using the Bellman equation, each state can be associated with a certain
value to guide action towards a preferred state, thus improving on the current action policy of
the agent. Note that in (4) the random sampling is performed only over quantities which
depend on the environment. This aspect of the learning process can unroll off-policy by
observing state transitions triggered by another (possibly stochastic) behavioral policy.

Box 1: Neural correlates of the Bellman equation in the DMN Relating decom-
position of consecutive action choices by the Bellman equation to neuroscientific insights,
specific neural activity in the dorsal prefrontal cortex (BA9) was linked to processing
“goal-tree sequences” in human brain-imaging experiments (Koechlin et al., 1999, 2000).
Sub-goal exploration may require multi-task switching between cognitive processes as later
parts of a solution frequently depend on respective earlier steps in a given solution path,
which necessitates storage of expected intermediate outcomes. As such, “cognitive branch-
ing” operations for nested processing of behavioral strategies are likely to entail secondary
reallocation of attention and working-memory resources. Further brain-imaging experi-
ments corroborated the prefrontal DMN to subserve “processes related to the management
and monitoring of sub-goals while maintaining information in working memory” (Braver
and Bongiolatti, 2002) and to functionally couple with the hippocampus conditioned by
“deep versus shallow planning” (Kaplan et al., 2017). Moreover, neurological patients with
lesions in this DMN region were reported to be impaired in aspects of realizing “multiple
sub-goal scheduling” (Burgess et al., 2000). Hence, the various advanced human abilities
subserved by the DMN, such as planning and abstract reasoning, can be viewed to involve
some form of action-decision branching to enable higher-order executive control.

3.2.2 Value approximation and the policy matrix

As already mentioned in the previous section, Q-learning (Watkins and Dayan, 1992) optimizes
over the class of deterministic policies of the form (3). State spaces may be extremely large and
tracking all possible states and actions may require prohibitively excessive computation and
memory resources. The need of maintaining an explicit table of states can be eliminated by
instead using of an approximate Q-value function Q̃(s, a|θ) by keeping track of an
approximating parameter θ of much lower dimension than the number of states. At a given
time step, the world is in a state s ∈ S, and the agent takes an action which it expects to be
the most valuable on average, namely

πhard-max(s) = argmaxa∈A Q̃(s, a|θ). (6)

This defines a mapping from states directly to actions. For instance, a simple linear model with
a kernel φ would be of the form Q̃(s, a|θ) = φ(s, a)T θ, where φ(s, a) would represent a
high-level representation of the state-action pairs (s, a), as was previously proposed (Song
et al., 2016), or artificial neural-network models as demonstrated in recent seminal
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investigations (Mnih et al., 2015; Silver et al., 2016) for playing complex games (atari, Go, etc.)
at super-human levels. In the DMN, the dmPFC would implement such a hard-max lookup
over the action space. The model parameters θ would correspond to synaptic weights and
connection strengths within and between brain regions. It is a time-varying neuronal program
which dictates how to move from world states s to actions a via the hard-max policy (6). The
approximating Q-value function Q̃(s, a|θ) would inform the DMN with the (expected)
usefulness of choosing an action a in state s. The DMN, and in particular its dmPFC part,
could then contribute to the choice, at a given state s, of an action a which maximizes the
approximate Q-values. This mapping from states to actions that is conventionally called policy
matrix (Mnih et al., 2015; Silver et al., 2016). Learning consists in starting from a given table
and updating it during action choices, which take the agent to different table entries.

3.2.3 Self-training and the loss function

Successful learning in brains and computer algorithms may not be possible without a defined
learning goal —the loss function. The action a chosen in state s according to the policy matrix
defined in (6) yields a reward r collected by the agent, after which the environment transitions
to a new state s′ ∈ S. One such cycle yields a new experience e = (s, a, r, s′). Each cycle
represents a behavior unit of the agent and is recorded in replay memory buffer —which we
hypothesize to be subserved by the HC —, possibly discarding the oldest entries to make space:
D ← append(D, e). At time step k, the agent seeks an update θk ← θk−1 + δθk of the
parameters for its approximate model of the Q-value function. This warrants a learning process
and definition of a loss function. The Bellman equation (4) provides a way to obtain such a
loss function (9) as we outline in the following. Experience replay consists in sampling batches
of experiences e (s, a, r, s′) ∼ D from the replay memory D. The agent then tries to
approximate the would-be Q-value for the state-action pair (s, a) as predicted by the Bellman
equation (4), namely

yk := yk(s, a, s′) = r + γmax
a′

Q̃(s′, a′|θk−1), (7)

with the estimation of a parametrized regression model (s, a) 7→ Q̃(s, a|θk−1). From a
neurobiological perspective, experience replay can be manifested as the re-occurrence of neuron
spiking sequences that have also been measured during specific prior actions and environmental
states. The HC is a strong candidate for contributing to such neural reinstantiation of
behavioral episodes as neuroscience experiments have repeatedly indicated in rats, mice, cats,
rabbits, songbirds, and monkeys (Buhry et al., 2011; Nokia et al., 2010; Dave and Margoliash,
2000; Skaggs et al., 2007).

At the current step k, computing an optimal parameter update then corresponds to finding
the model parameters θk which minimize the following mean-squared loss function

L(θQk ) = E(s,a,r,s′)∼D

[
1

2
(Q̃(s, a|θk)− yk)2

]
, (8)

where yk is obtained from (4). A recently proposed, practically successful alternative approach
is to learn this representation using an artificial deep neural-network model. This approach
leads to the so-called deep Q-learning (Mnih et al., 2015; Silver et al., 2016) family of methods
which is the current state-of-the-art in RL research. The set of model parameters θ that
instantiate the non-linear interactions between layers of the artificial neural network may find a
neurobiological correspondence in the adaptive strengths of axonal connections between neurons
from the different levels of the neural processing hierarchy (Mesulam, 1998; Taylor et al., 2015).

A note on bias in self-training. Some bias may be introduced by self-training due to
information shortage caused by the absence of external stimulation. One way to address this
issue is using importance sampling to replay especially those state-transitions from which there
is more to learn for the agent (Schaul et al., 2015; Hessel et al., 2017). New transitions are
inserted into the replay buffer with maximum priority, thus shifting emphasis to more recent
transitions. Such insertion strategy would help counterbalance the bias introduced by the
information shortage incurred by absent external input. Other authors noticed (Hessel et al.,
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2017) that such prioritized replay reduces the data complexity and the agent shows faster
increases in learning performance.

3.2.4 Optimal control via stochastic gradient descent in the DMN

Efficient learning of the entire set of model parameters can effectively be achieved via stochastic
gradient descent, a universal algorithm for finding local minima based on the first derivative of
the optimization objective. Stochastic here means that the gradient is estimated from batches
of training samples, which here corresponds to blocks of experience from the replay memory:

δ = −αk∇θkL(θk) = −αkE(s,a,r,s′)∼D[(Q̃(s, a|θk)− yk)︸ ︷︷ ︸
prediction error

∇θkQ̃(s, a|θk)︸ ︷︷ ︸
aversion

], (9)

where the positive constants α1, α2, . . . are learning rates. Thus, the subsequent action is taken
to drive reward prediction errors to percolate from lower to higher processing layers to
modulate the choice of future actions. It is known that under special conditions on the learning
rates αk –namely that the learning rates are neither too large nor too small, or more precisely
that the sum

∑∞
k=0 αk diverges while

∑∞
k=0 α

2
k– the thus generated approximating sequence of

Q-value functions
Q̃(., .|θ0)→ Q̃(., .|θ1)→ Q̃(., .|θ2)→ . . .

are attracted and absorbed by the optimal Q-value function Q∗ defined implicitly by the
Bellman equation (4).

3.2.5 Does the hippocampus subserve MCMC sampling?

In RL, MCMC simulation is a common means to update the agent’s belief state based on
stochastic sampling around states and possible transitions (Daw and Dayan, 2014). MCMC
simulation provides a simple method for evaluating the value of a state. This inference
procedure provides an effective mechanism both for tree search (of the considered action
trajectories) and for belief state updates, breaking the curse of dimensionality and allowing
much greater scalability than an RL agent without stochastic resampling procedures. Such
methods have scaling as a function of available data (i.e., sample complexity) that is
determined only by the underlying difficulty of the MDP, rather than the size of the state
space or observation space, which can be prohibitively large.

In the human brain, the HC could contribute to synthesizing imagined sequences of world
states, actions and rewards (Aronov et al., 2017; Chao et al., 2017; Boyer, 2008). These
simulations of experience batches would be used to update the value function, without ever
looking inside the black box describing the model’s dynamics. A brain-imaging experiment in
humans for instance identified hippocampal signals that specifically preceded upcoming choice
performance in prospective planning in new environments (Kaplan et al., 2017). This would be
a simple control algorithm by evaluating all legal actions and selecting the action with highest
expected cumulative rewards. In MDPs, MCMC simulation provides an effective mechanism
both for tree search and for belief-based state updates, breaking the curse of dimensionality
and allowing much greater scalability than has previously been possible (Silver et al., 2016).
This is because expected consequences of action choices can be well evaluated although only a
subset of the states are actually considered (Daw and Dayan, 2014).

A note on implicit and explicit memory. While Markov processes are usually
memoryless, it is mathematically feasible to incorporate the previous states of such model into
the current state. This extension may partially account for implicit memory at the behavioral
level, but may not explain the underlying neurobiological implementation or accommodate
explicit memory. Implicit memory-based processing arises in our MDP account of DMN
function in several different forms: successive updates of a) the action policy and the value
function, both being products of the past, as well as b) the deep non-linear relationships within
the hierarchical connections of biological neural networks. The brain’s adaptive synaptic
connections can be thought as a deep neural-network architecture affording an implicit form of
information compression of life experience. Such memory traces are stored in the neural
machinery and can be implicitly retrieved as a form of knowledge during simulation of action
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rather than accessed as a stored explicit representation (Pezzulo, 2011). c) Certain neural
processes in the hippocampus can be seen as some type of MCMC sampling for memory recall,
which can also be a basis for probabilistic simulations across time-scales (Schacter et al., 2007;
Axelrod et al., 2017).

3.3 Putting everything together

The DMN is today known to consistently increase in neural activity when humans engage in
cognitive processes that are relatively detached from the current sensory environment. The
more familiar and predictable the current environment, the more brain resources may remain
for allocating DMN activity to MDP processes extending beyond the present time and sensory
context. In line with this perspective, DMN engagement was shown to heighten and relate to
effective behavioral responses in the practiced phase of a demanding cognitive flexibility task,
as compared to acquisition phase when participants learned context-specific rules. This
involvement in automated decision-making has led the authors to propose an “autopilot” role
for the DMN (Vatansever et al., 2017), which may contribute to optimizing control of the
organism in general. Among all parts of the DMN, the RTPJ is perhaps the most evident
candidate for a network-switching relay that calibrates between processing of
environment-engaged versus internally generated information (Downar et al., 2000; Golland
et al., 2006; Bzdok et al., 2013b).

Additionally, the DMN was proposed to be situated at the top of the brain network
hierarchy, with the subordinate salience and dorsal attention network in the middle and the
primary sensory cortices at the bottom (Carhart-Harris and Friston, 2010; Margulies et al.,
2016b). Its putative involvement in thinking about hypothetical experiences and future
outcomes appears to tie in with the implicit computation of action and state cascades as a
function of experienced events and collected feedback from the past. A policy matrix
encapsulates the choice probabilities of possible actions on the world given a current situation
(i.e., state). The DMN may subserve constant exploration of candidate action trajectories and
nested estimaton of their cumulative reward outcomes. Implicit computation of future choices
provides a potential explanation for the evolutionary emergence and practical usefulness of
mind-wandering at day-time and dreams during sleep in humans.

vmPFC (BA10): 
Stmulus-value associaton

Right TPJ: Predicton error signaling

Lef TPJ: World semantcs
Ncl. Accumbens:
Reward / punishment signals

Hippocampus: Memory, 
space, and experience replay

PMC: Global monitoring and informaton integraton
dmPFC (BA9): Acton consideraton

Fig 4. Default mode network: possible neurobiological implementation of
reinforcement learning. Overview of how the constituent regions of the DMN (refer
to section 2) may map onto computational components necessary for an RL agent.

The HC may contribute to generating perturbed action-transition-state-reward samples as
batches of pseudo-experience (i.e., recalled, hypothesized, and forecasted scenarios). The small
variations in these experience samplings allow searching a larger space of model parameters and
possible experiences. Taken to its extreme, stochastic recombination of experience building
blocks can further optimize the behavior of the RL agent by model learning from scenarios in
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the environment that the agent might only very rarely or never encounter. An explanation is
thus offered for experiencing seemingly familiar situations that a human has however never
actually encountered (i.e., déjà vu effect). While such a situation may not have been
experienced in the physical world, the DMN may have previously stochastically generated,
evaluated, and adapted to such a randomly synthesized event. Generated representations
arguably are “internally manipulable, and can be used for attempting actions internally, before
or instead of acting in the external reality, and in diverse goal and sensory contexts, i.e. even
outside the context in which they were learned” (Pezzulo, 2011). In the context of scarce
environmental input and feedback (e.g., mind-wandering or sleep), mental scene construction
allows pseudo-experiencing possible future scenarios and action outcomes.

From the perspective of a model-free RL agent, prediction in the DMN reduces to
generalization of policy and value computations from sampled experiences to successful action
choices and reward predictions in future states. As such, plasticity in the DMN arises naturally.
If an agent behaving optimally in a certain environment moves to new, yet unexperienced
environment, reward prediction errors will largely increase. This feedback will lead to
adaptation of policy considerations and value estimations until the intelligent system converges
to a new steady state of optimal action decisions in a volatile world.

Box 2: Proposed studies for testing the MDP account of DMN function

1. Experiment (Humans): We hypothesize a functional relationship between the DMN
closely associated with the occurrence of stimulus-independent thoughts and the
reward circuitry. During an iterative neuroeconomic two-player game, fMRI signals
in the DMN could be used to predict reward-related signals in the nucleus accumbens
across trials in a continuous learning paradigm. We expect that the more DMN
activity is measured to be increased, supposedly the higher the tendency for stimulus-
independent thoughts, the more the fMRI signals in the reward circuits should be
independent of the reward context in the current sensory environment.

2. Experiment (Humans): We hypothesize a functional dissociation between computa-
tions pertaining to action policy versus adapting stimulus-value associations as we
expect implementation in different subsystems of the DMN. First, we expect that
fMRI signals in the right temporo-parietal junction relate to behavioral changes
subsequent to adaptation in the action choice tendencies (policy matrix) involved
in non-value-related prediction error. Second, fMRI signals in the ventromedial
prefrontal cortex should relate to behavioral changes following adaptation in value
estimation (value matrix) due to reward-related stimulus-value association. We
finally expect that fMRI signals in the posteromedial cortex, as a potential global
information integrator, are related to shifts in overt behavior based on previous
adaptations in both policy or value estimation.

3. Experiment (Animals): We hypothesize that experience replay for browsing problem
solutions subserved by the DMN is contributing to choice behavior in mice. Hip-
pocampal single-cell recordings have shown that neural patterns during experimental
choice behavior are reiterated during sleep and before making analogous choices
in the future. Necessity of cortical DMN regions, in addition to the hippocampus,
for mind-searching candidate actions during choice behavior can be experimentally
corroborated by causal disruption of DMN regions, such as by circumscribed brain
lesion or optogenetic intervention in the inferior parietal and prefrontal cortices.

4. Experiment (Humans): We hypothesize that the relevant time horizon is modulated
by various factors such as age, acute stress and time-enduring impulsivity traits.
Using a temporal discounting experiment, it can be quantified how the time horizon
is affected at the behavioral level and then traced-back to its corresponding neural
representation. Such experimental investigation can be designed to examine between-
group and within-group effects (e.g., impulsive population like chronic gamblers or
drug addicts); and brought in context with the participants age and personality
traits.
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5. Experiment (Humans & Animals): An additional layer of learning concerns the
addition of new entries in the state and action spaces. Extension of the action
repertoire could be biologically realized by synaptic epigenesis (Gisiger et al., 2005).
Indeed, the tuning of synaptic weights through learning can stabilize additional
patterns of activity by creating new attractors in the neural dynamics landscape
(Takeuchi et al., 2014). Those attractors can then constrain both the number of
factors taken into account by decision processes and the possible behaviors of the
agent (Wang, 2008). To examine this potential higher-level mechanism, we propose
to probe how synaptic epigenesis is related to neural correlates underlying policy
matrix updates: in humans the changes of functional connectivity between DMN
regions can be investigated following a temporal discounting experiment and in
monkeys or rodents anterograde tracing can be used to study how homolog regions
of the DMN present increased synaptic changes compare to other parts of the brain.
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#  Behavioral	goal
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Fig 5. Situating Markov Decision Processes among other accounts of
default mode function. The Venn diagram summarizes the relationship between four
previously proposed explanations for the functional role of the DMN and our present
account. Viewing empirical findings in the DMN from the MDP viewpoint incorporates
important aspects of the free energy principle, predictive coding, sentinal hypothesis,
and semantic hypothesis. The MDP account may reconcile several strengths of these
functional accounts in a process model that simultaneously acknowledges environmental
input and behavioral choices as well as the computational and algorithmic properties
(How? and What?) underlying higher-order control of the organism.
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4 Relation to existing accounts

4.1 Predictive coding hypothesis

Predictive coding mechanisms (Clark, 2013; Friston, 2008) are a frequently evoked idea in the
context of default mode function (Bar et al., 2007). Cortical responses are explained as
emerging from continuous functional interaction between higher and lower levels of the neural
processing hierarchy. Feed-forward sensory processing is constantly calibrated by top-down
modulation from more multi-sensory and associative brain regions further away from primary
sensory cortical regions. The dynamic interplay between cortical processing levels may enable
learning about aspects of the world by reconciling gaps between fresh sensory input and
predictions computed based on stored prior information. At each stage of neural processing, an
internally generated expectation of aspects of environmental sensations is directly compared
against the actual environmental input. A prediction error at one of the processing levels
induces plasticity changes of neuronal projections to allow for gradually improved future
prediction of the environment. In this way, the predictive coding hypothesis offers explanations
for the constructive, non-deterministic nature of sensory perception (Friston, 2010; Buzsáki,
2006) and the intimate relation of motor movement to sensory expectations (Wolpert et al.,
1995; Körding and Wolpert, 2004). Contextual integration of sensorimotor perception-action
cycles may be maintained by top-down modulation using internally generated information
about the environment.

In short, predictive coding processes conceptualize updates of the internal representation of
the environment to best accommodate and prepare the organism for processing the constant
influx of sensory stimuli and performing action on the environment. There are hence a number
of common properties between the predictive coding account and the proposed formal account
of DMN function based on MDPs. Importantly, a generative model of how perceived sensory
cues arise in the world would be incorporated into the current neuronal wiring. Further, both
functional accounts are supported by neuroscientific evidence that suggest the human brain to
be a “statistical organ” (Friston et al., 2014) with the biological purpose to generalize from the
past to new experiences. Neuroanatomically, axonal back projections indeed outnumber by far
the axonal connections mediating feedforward input processing in the monkey brain and
probably also in humans (Salin and Bullier, 1995). These many and diverse top-down
modulations from higher onto downstream cortical areas can inject prior knowledge at every
stage of processing environmental information. Moreover, both accounts provide a
parsimonious explanation for why the human brain’s processing load devoted to incoming
information decreases when the environment becomes predictable. This is because the internal
generative model only requires updates after discrepancies have occurred between
environmental reality and its internally reinstantiated representation. Increased computation
resources are however allocated when unknown stimuli or unexpected events are encountered
by the organism. The predictive coding and MDP account hence naturally evoke a mechanism
of brain plasticity in that neuronal wiring gets increasingly adapted when faced by
unanticipated environmental challenges.

While sensory experience is a constructive process from both views, the predictive coding
account frames sensory perception of the external world as a generative experience due to the
modulatory top-down influence at various stages of sensory input processing. This generative
top-down design is replaced in our MDP view of the DMN by a sequential decision-making
framework. Further, the hierarchical processing aspect from predictive coding is re-expressed in
our account in the form of nested prediction of probable upcoming actions, states, and
outcomes. While both accounts capture the consequences of action, the predictive coding
account is typically explained without explicit parameterization of the agent’s time horizon and
has a tendency to be presented as emphasizing prediction about the immediate future. In the
present account, the horizon of that look into the future is made explicit in the γ parameter of
the Bellman equation. Finally, the process of adapting the neuronal connections for improved
top-down modulation takes the concrete form of stochastic gradient computation and
back-propagation in our MDP implementation. It is however important to note that the
neurobiological plausibility of the back-propagation procedure is controversial (Goodfellow
et al., 2016).
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In sum, recasting DMN function in terms of MDPs therefore naturally incorporates a
majority of aspects from the prediction coding hypothesis. The present MDP account of DMN
function may therefore serve as a concrete implementation of predictive coding ideas. MDPs
have the advantage of exposing an explicit mechanisms for controlling the horizon of future
considerations and for how the internal representation of the world is updated, as well as why
certain predictions may be more relevant to the agent than others.

4.2 Semantic hypothesis

This frequently proposed cognitive account to explain DMN function revolves around forming
logical associations and abstract analogies between experiences and conceptual knowledge
derived from past behavior (Bar, 2007; Binder et al., 1999; Constantinescu et al., 2016).
Analogies might naturally tie incoming new sensory stimuli to explicit world knowledge (i.e.,
semantics) (Bar, 2009). The encoding of complex environmental features could thus be
facilitated by association to known similar states. Going beyond isolated meaning and concepts
extracted from the world, semantic building blocks may need to get recombined to enable
mental imagery to (fore)see never-experienced scenarios. As such, semantic knowledge would
be an important ingredient for optimizing behavior by constantly simulating possible future
scenarios (Boyer, 2008; Binder and Desai, 2011). Such cognitive processes can afford the
internal construction and elaboration of necessary information that is not presented in the
immediate sensory environment by recombining building blocks of concept knowledge and
episodic memories (Hassabis and Maguire, 2009). Indeed, in aging humans, remembering the
past and imagining the future equally decreased in the level of detail and were associated with
concurrent deficits in forming and integrating relationships between items (Addis et al., 2008;
Spreng and Levine, 2006). Further, episodic memory, language, problem solving, planning,
estimating others’ thoughts, and spatial navigation represent neural processes that are likely to
build on abstract world knowledge and logical associations for integrating the constituent
elements in rich and coherent mental scenes (Schacter et al., 2007). “[Foresight] and
simulations are not only automatically elicited by external events but can be endogenously
generated when needed. [...] The mechanism of access via simulation could be a widespread
method for accessing and producing knowledge, and represents a valid alternative to the
traditional idea of storage and retrieval” (Pezzulo, 2011). Such mental scene-construction
processes could contribute to interpreting the present and foreseeing the future. Further,
mental scene imagery has been proposed to imply a distinction between engagement in the
sensory environment and internally generated mind-wandering (Buckner and Carroll, 2007).
These investigators stated that “A computational model [...] will probably require a form of
regulation by which perception of the current world is suppressed while simulation of possible
alternatives are constructed, followed by a return to perception of the present”.

In comparison, both the semantic hypothesis and the present formal account based on
MDPs expose mechanisms of how action considerations could be explored. In both accounts,
there is also little reason to assume that contemplating alternative realities of various levels of
complexity, abstraction, time-scale, and purpose rely on mechanisms that are qualitatively
different. This interpretation concurs with DMN activity increases across time, space, and
content domains demonstrated in many brain-imaging studies (Spreng et al., 2009; Laird et al.,
2009; Bzdok et al., 2012; Binder et al., 2009). Further, the semantic hypothesis and MDP
account offer explanations why HC damage does not only impair recalling past events, but also
imagining hypothetical and future scenarios (Hassabis et al., 2007). While both semantic
hypothesis and our formal account propose memory-enabled, internally generated information
for probabilistic representation of action outcomes, MDPs render explicit the grounds on which
an action is eventually chosen, namely, the estimated cumulative reward. In contrast to many
versions of the semantic hypothesis, the MDPs naturally integrate the egocentric view (more
related to current action, state, and reward) and the world view (more related to past and
future actions, states, and rewards) on the world in a same optimization problem. Finally, the
semantic account of DMN function does not provide suffcient explanation of how explicit world
knowledge and logical analogies thereof lead to foresight of future actions and states. The
semantic hypothesis does also not fully explain why memory recall for scene construction in
humans is typically fragmentary and noisy instead of accurate and reliable. In contrast to
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existing accounts on semantics and mental scene construction, the random and creative aspects
of DMN function are explained in MDPs by the advantages of stochastic optimization. Our
MDP account provides an algorithmic explanation in that stochasticity of the parameter space
exploration by MCMC approximation achieves better fine-tuning of the action policies and
inference of expected reward outcomes. That is, the purposeful stochasticity of policy and
value updates in MDPs provides a candidate explanation for why humans have evolved
imperfect noisy memories as the more advantageous adaptation. In sum, mental scene
construction according to the semantic account is lacking an explicit time and incentive model,
both of which are integral parts of the MDP interpretation of DMN function.

4.3 Sentinel hypothesis

Regions of the DMN have been proposed to process the experienced or expected relevance of
environment cues (Montague et al., 2006). Processing self-relevant information was perhaps the
first functional account that was proposed for the DMN (Gusnard et al., 2001; Raichle et al.,
2001). Since then, many investigators have speculated that neural activity in the DMN may
reflect the brain’s continuous tracking of relevance in the environment, such as spotting
predators, as an advantageous evolutionary adaptation (Buckner et al., 2008; Hahn et al., 2007).
According to this cognitive account, the human brain’s baseline maintains a “radar” function
to detect subjectively relevant cues and unexpected events in the environment. Propositions of
a sentinel function to underlie DMN activity have however seldom detailed the mechanisms of
how attention and memory resources are exactly reallocated when encountering a self-relevant
environmental stimulus. Instead, in the present MDP account, promising action trajectories are
recursively explored by the human DMN. Conversely, certain branches of candidate action
trajectories are detected to be less worthy to get explored. This mechanism, expressed by the
Bellman equation, directly implies stratified allocation of attention and working memory load
over relevant cues and events in the environment. Further, our account provides a parsimonious
explanation for the consistently observed DMN implication in certain goal-directed
experimental tasks and in task-unconstrained mind-wandering (Smith et al., 2009; Bzdok et al.,
2016b). Both environment-detached and environment-engaged cognitive processes may entail
DMN recruitment if real or imagined experience is processed, manipulated, and used in service
of organism control. During active engagement in tasks, the policy and value estimates may be
updated to optimize especially short-term action. At passive rest, these parameter updates
may improve especially mid- and long-term action. This horizon of the agent is expressed in
the γ parameter in the MDP account. We thus provide answers for the currently unsettled
question why the involvement of the same neurobiological brain circuit (i.e., DMN) has been
documented for specific task performances and baseline ’house-keeping’ functions.

In particular, environmental cues that are especially important for humans are frequently of
social nature. This may not be surprising given that the complexity of the social systems is
likely to be a human-defining property (Tomasello, 2009). According to the “social brain
hypothesis”, the human brain has especially been shaped for forming and maintaining
increasingly complex social systems, which allows solving ecological problems by means of
social relationships (Whiten and Byrne, 1988). In fact, social topics probably amount to
roughly two thirds of human everyday communication (Dunbar et al., 1997). Mind-wandering
at daytime and dreams during sleep are also rich in stories about people and the complex
interactions between them. In line with this, DMN activity was advocated to be specialized in
continuous processing of social information as a physiological baseline of human brain function
(Schilbach et al., 2008). This view was later challenged by observing analogues of the DMN in
monkeys (Mantini et al., 2011), cats (Popa et al., 2009), and rats (Lu et al., 2012), three
species with social capacities that are supposedly less advanced than in humans.

Further, the principal connectivity gradient in the cortex appears to be greatly expanded in
humans compared to monkeys, suggesting a phylogenetically conserved axis of cortical
expansion with the DMN emerging at the extreme end in humans (Margulies et al., 2016a).
Computational models of dyadic whole-brain dynamics demonstrated how the human
connectivity topology, on top of facilitating processing at the intra-individual level, can explain
our propensity to coordinate through sensorimotor loops with others at the inter-individual
level (Dumas et al., 2012). The DMN is moreover largely overlapping with neural networks
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associated with higher-level social processes (Schilbach et al., 2012). For instance, the vmPFC,
PMC, and RTPJ together may play a key role in bridging the gap between self and other by
integrating low-level embodied processes within higher level inference-based mentalizing
(Lombardo et al., 2009).

Rather than functional specificity for processing social information, the present MDP
account can parsimoniously incorporate the dominance of social content in human mental
activity as high value function estimates for information about humans (Baker et al., 2009;
Kampe et al., 2001; Krienen et al., 2010). The DMN may thus modulate reward processing in
the human agent in a way that prioritizes appraisal of and action towards social contexts,
without excluding relevance of environmental cues of the physical world. In sum, our account
on the DMN directly implies its previously proposed “sentinel” function of monitoring the
environment for self-relevant information in general and inherently accommodates the
importance of social environmental cues as a special case.

4.4 The free-energy principle and active inference

According to theories of the free-energy principle (FEP) and active inference (Friston, 2010;
Friston et al., 2009; Dayan et al., 1995), the brain corresponds to a biomechanical reasoning
engine. It is dedicated to minimizing the long-term average of surprise: the log-likelihood of the
observed sensory input –more precisely, an upper bound thereof– relative to the expectations
about the external world derived from internal representations. The brain would continuously
generate hypothetical explanations of the world and predict its sensory input x (analogous to
the state-action (s, a) pair in an MDP framework). However, surprise is challenging to optimize
numerically because we need to sum over all hidden causes z of the sensations (an intractable
problem). Instead, FEP therefore minimizes an upper-bound on surprise given by

generative surprise := − log(pG(x)) = FG(x)

= FRG (x)︸ ︷︷ ︸
accuracy

−KL(pR(z|x)‖pG(z|x))︸ ︷︷ ︸
complexity

≤ FRG (x), with equality if pR(z|x) = pG(z|x) for all z.

(10)

where
FRG (x) := 〈− log(pG(z,x))〉pR(z|x) −H(pR(z|x)) (11)

is the free energy. Here, the angular brackets denote the expectation of the joint negative
log-likelihood − log(pG(z,x)) w.r.t the recognition density pR(z|x), H is the entropy functional
defined by H(p) := −

∑
z p(z) log(p(z), while KL(.‖.) is the usual Kullback-Leibler (KL)

divergence (also known as relative entropy) defined by KL(p‖q) :=
∑
z p(z) log(p(z)/q(z)) ≥ 0,

which is a measure of how different two probability distributions are. In this framework, the
goal of the agent is then to iteratively refine the generative model pG and the recognition
model pR so as to minimize the free energy FRG (x) over sensory input x.

Importantly, FRG (x) gets low in the following cases:

• pR(z|x) puts a lot of mass on configurations (z,x) which are pG-likely, and

• pR(z|x) is as uniform as possible (i.e have high entropy), so as not to concentrate all its
mass on a small subset of possible causes for the sensation x.

Despite its popularity, criticism against the FEP has been voiced over the years, some of
which is outlined in the following. The main algorithm for minimizing free energy FRG (x) is the
wake-sleep algorithm (Dayan et al., 1995). As these authors noted, a crucial drawback of the
wake-sleep algorithm (and therefore of theories like the FEP (Friston, 2010)) is that it involves
a pair of forward (generation) and backward (recognition) models pG and pR that together
does not correspond to optimization of (a bound of) the marginal likelihood because KL
divergence is not symmetric in its arguments.

These considerations render the brain less likely to implement the wake-sleep algorithm or a
variant thereof. More recently, variational auto-encoders (VAEs) (Kingma and Welling, 2013)
emerged that may provide an efficient alternative to the wake-sleep algorithm. VAEs overcome
a number of the technical limits of the wake-sleep algorithm by using a reparametrization
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maneuver, which makes it possible to do differential calculus on random sampling procedures
without exploding variance. As a result, unlike the wake-sleep algorithm for minimizing free
energy, VAEs can be efficiently trained via back-propagation of prediction errors.

The difference between the FEP and the MDP account may be further clarified by a
thought experiment. Since theories based on the FEP (Friston, 2010; Friston et al., 2009)
conceptualize ongoing behavior in an organism to be geared towards the surprise-minimizing
goal, an organism entering a dark room (Fig. 6) would remain trapped in this location because
its sensory inputs are perfectly predictable given the environmental state (Friston et al., 2012).

Fig 6. The dark room
experiment. An intelligent
agent situated in a
light-deprived closed space is
used as a thought experiment
for the complete absence of
external sensory input.

However, such a behavior
is seldom observed in humans in the real world. In
a dark room, the intelligent agents would search for light
sources by explore the surroundings or aim to exit the
room. Defenders of the FEP have retorted by advancing
the “full package” (Friston et al., 2012): FEP is proposed
to be multi-scale and there would be a meta-scale
at which the organism would be surprised by such a lack
of surprise. According to this argument, a dark room
would paradoxically correspond to a state of particularly
high relevance. Driven by the surprise-minimization
objective, the FEP agent would eventually
bootstrap itself out of such saddle points to explore
more interesting parts of the environment. In contrast,
an organism operating under our RL-based theory
would inevitably identify the sensory-stimulus-deprived
room as a local minimum. Indeed,
hippocampal experience replay (see 3.2.3) could serve
to sample memories or fantasies of alternative situations
with reward structure. Such artificially generated
internal sensory input subserved by the DMN can entice
the organism to explore the room, for instance by looking
for and using the light switch or finding the room exit.

We finally note that FEP and active inference can be reframed in terms of our model-free
RL framework. This becomes possible by recasting the Q-value function (i.e., expected
long-term reward) maximized by the DMN to correspond to negative surprise, that is, the
log-likehood of current sensory priors the agent has about the world. More explicitly, this
corresponds to using free-energy as a Q-value approximator for the MDP such that

−Q ≈ FRG (x)︸ ︷︷ ︸
negative free energy

≈ − log(pG)︸ ︷︷ ︸
FEP generative surprise

.

Such a surprise-guided RL scheme has previously been advocated under the equivalent
framework of energy-based RL (Sallans and Hinton, 2004; Elfwing et al., 2016) and
information compression (Schmidhuber, 2010; Mohamed and Rezende, 2015). Nevertheless,
minimization of surprise quantities alone may be insufficient to explain the diversity of
behaviors that humans and other intelligent animals can perform.

5 Conclusion

Which brain function could be important enough for the existence and survival of the human
species to justify constantly high energy costs? MDPs motivate an attractive formal account of
how the human association cortex can be thought to implement multi-sensory representation
and high-level decision-making to optimize the organism’s intervention on the world. This
idealized process model accommodates a number of previous observations from neuroscience
studies on the DMN by simple but non-trivial mechanisms. Viewed as a Markovian sequential
decision process, human behavior unfolds by inferring cumulative reward outcomes from
hypothetical action cascades and extrapolation from past experience to upcoming events for
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guiding behavior in the present. MDPs also provide a formalism how opportunity in the
environment can be deconstructed, evaluated, and exploited when confronted with challenging
interdependent decisions. This functional interpretation may well be compatible with the
DMN’s poorly understood involvement across autobiographical memory recall, problem solving,
abstract reasoning, social cognition, as well as delay discounting and self prospection into the
future. Improvement of the internal world representation by injecting stochasticity into the
recall of past actions and inference of action outcomes may explain why highly accurate
memories have been disfavored in human evolution and why human creativity may be adaptive.

A major hurdle in understanding DMN activity from cognitive brain-imaging studies has
been its similar neural engagement in different time-scales: thinking about the past (e.g.,
autobiographical memory), thinking about hypothetical presents (e.g., daytime
mind-wandering), and thinking about anticipated scenarios (e.g., delay discounting). The MDP
account of DMN function offers a natural integration of a-priori diverging neural processes into
a common framework. It is an important advantage of the proposed artificial intelligence
perspective on DMN biology that it is practically computable and readily motivates
neuroscientific hypotheses that can be put to the test in future research. Neuroscience
experiments on the DMN should be designed that operationalize the set of action, value, and
state variables governing the behavior of intelligent RL agents. At the least, we propose an
alternative vocabulary to describe, contextualize, and interpret experimental findings in
neuroscience studies on higher-level cognition. Ultimately, neural processes in the DMN may
realize a holistic integration ranging from real experience over purposeful dreams to predicted
futures to continuously refine the organism’s fate.
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