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Abstract  

Mitochondria play a significant role in human diseases. However, disease associations with 

mitochondrial DNA (mtDNA) SNPs have proven difficult to replicate. A reanalysis of eight 

schizophrenia-associated mtDNA SNPs, in 23,743 normal Danes and 2,538 schizophrenia patients, 

revealed marked inter-allelic differences in haplogroup affiliation and nuclear ancestry, 

genogeophraphic affinity (GGA). This bi-genomic linkage disequilibrium (2GLD) could entail 

population stratification. Only two mitochondrial SNPs, m.15043A and m.15218G, were 

significantly associated with schizophrenia. However, these associations disappeared when 

corrected for haplogroup affiliation. The extensive 2GLD documented is a major concern when 

interpreting historic as well as designing future mtDNA association studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 12, 2017. ; https://doi.org/10.1101/149070doi: bioRxiv preprint 

https://doi.org/10.1101/149070


3 
 

Genetic variants in mitochondrial DNA (mtDNA) – and in nuclear genes coding for mitochondrial 

function - have been associated with disease 1-3. More than 300 variants4,5 in mtDNA and genes 

involved in mitochondrial function6 have been reported to cause mitochondrial disease which is 

clinically characterised by complex metabolic, neurological, muscular and psychiatric symptoms7,8. 

SNPs in mtDNA and mitochondrial haplogroups (mtDNA hgs), which are evolutionarily fixed SNP 

sets with a characteristic geographical distribution, have been proposed as potential disease 

modifiers8. This has been reported in neurological degenerative diseases such as Alzheimer’s 

disease 9-12 and Parkinson’s disease 12-14, metabolic diseases and cancers15, as well as psychiatric 

diseases, notably schizophrenia (SZ) and bipolar disease16-18. 

 

Association studies of mtDNA variants and disease have been difficult to replicate8. However, the 

definition of a methodological paradigm for association studies with mtDNA variants19 implicitly 

assumes that mtDNA variants are independent of the nuclear genome. In a recent Danish study on 

mtDNA haplogroups and their nuclear ancestry or nuclear genogeographical affinity (GGA), we 

demonstrated a marked difference in nuclear ancestry between individual haplogroups20. This 

means that mtDNA hgs entail population stratification also at the level of gDNA. The effect of such 

a stratification on disease association, will depend on the admixture structure of the particular 

population, the population history, epidemiology and genetic epidemiology of the disease, as well 

as the number of persons included in the study. The extensive fine-scale heterogeneity of gDNA 

and significant admixture documented in the UK21 and Europe22 further increase the risk of 

spurious false positive associations, if the mtDNA/gDNA interaction is not corrected phenomenon 

for in association studies.  
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Using DNA-array data from the Danish iPSYCH study on 2,538 schizophrenia patients and 23,743 

population controls, we show that eight mtDNA SNPs, previously associated with SZ 16-18,23, exhibit 

considerable inter-allelic differences both with respect to mtDNA hg affiliation  and nuclear GGA. 

This phenomenon, that we name  bi-genomic linkage disequilibrium (2GLD), affecting the 

association between an mtDNA SNP and mtDNA, as well as gDNA, can lead to both false negative 

and positive associations with disease. We demonstrate that for only two of the original eight 

SNPs is it possible to replicate the association with SZ in this cohort, when correcting for 

population stratification. Both mtDNA haplogroup affiliation and GGA affects the strength of 

association. Finally, we show that none of the SNPs are associated with SZ when examined on a 

particular the mtDNA hg background, with correction for 2GLD. As none of previous studies of 

mtDNA SNPs have been performed with correction for population stratification, let alone 2GDL, 

our results indicate that all such published associations should be considered preliminary. In 

principle, this conclusion should not be limited to associations with SZ.  
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Results 

From a literature search of mtDNA SNPs previously associated with SZ, we identified eight that 

were also typed by the PsychChip, Table 1. PsychChip data from 23,743 normal Danes and 2,538 

SZ patients (Detailed in Suppl Table 1) showed that the SNPs were present in the population with 

frequencies varying from 0.2 % – 20.6 %, Table 1. There was no appreciable difference in mtDNA 

haplogroup or GGA distribution between controls and SZ patients, Suppl table 1.  

 

Haplogroup distribution of mtDNA SNPs 

The potential affiliation, based on PhyloTree, of SNPs to different mtDNA haplogroups is shown in 

Table 1, and the actual mtDNA haplogroup distribution in the controls (not different from that of 

the SZ patients, Suppl Table 2) is shown in Table 2. For all SNPs there is a marked difference in the 

actual mtDNA haplogroup distribution between the two alleles at the same position. Thus, when 

comparing persons with either of two alleles at the same mtDNA position, the comparison is 

between groups with widely differing mtDNA distributions. A PCA analysis of the mtDNA 

sequences in persons with either the A or G allele at position 15,043 is shown in figure 1A. This 

analysis shows that the difference in mtDNA sequence is very extensive.  

 

Genogeographic affinity (ancestry) of mtDNA SNPs 

The average GGA (ancestry) of the nuclear genome in control persons as a function of each mtDNA 

allele revealed major differences, both between different positions (inter-SNP) in the mtDNA 

molecule and between different alleles (inter-allelic) at the same position, Table 3. Apart from 
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subtle differences in the distributions of Greenlandic and Asian GGA affiliations, the distribution is 

similar in SZ patients, Suppl table 3. Most marked is the difference in Danish GGA for m.15043 

A/G, with an inter-allelic difference ~ 20 percent points in Danish ancestry, and the A-allele has a 

prominent Central South Asian ancestry not seen in the G-allele, Table 3 and Suppl Table 3. PCA 

analyses of the nuclear genome, Figure 1 B, of the two alleles, reveal a striking difference in the 

ancestry of the nuclear genome between the two alleles. Thus, when comparing persons with 

either of two alleles at the same mtDNA position, there is a substantial risk for comparison 

between groups with widely different ancestries (GGA), thus increased risk of confounding by 

population structure.  

 

Association between schizophrenia and mtDNA SNPs  

The association of each mtDNA SNP with SZ was assessed (Table 4). In consequence of the inter-

allelic differences in mtDNA hg affiliations and GGA demonstrated above, several association 

analyses were performed. The first (“ALL_hgs”) comprised all persons irrespective of either mtDNA 

hg or GGA, the second (“EU_hgs”) only comprised persons with a “classical European” mtDNA hg, 

i.e. H, V, J, K, U, or T. Thirdly, we examined associations in persons with a Danish GGA (All-

hgs_DANES), and finally, in persons with both a “European” mtDNA haplogroup and a Danish GGA 

(EU-hgs_DANES). Five SNPs, m.1438A, m.3197C, m.3666A, m.4769A, and m.9388G showed no 

association with SZ, both when all persons were included and where selection was made to reduce 

effects of varying mtDNA and GGA affiliations. The m.10398G SNP was marginally significantly, 

while m.15043A was significantly associated with a reduced risk for SZ irrespective of the 

grouping. The high level of diversity in the PCA analysis of m.15043A (and the remaining SNPs – 
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data not shown), figure 1A, prompted us to examine whether a fixation of the mtDNA hg, i.e. 

limiting the analysis to persons with a specific hg, in cases where it was reasonable frequent, 

would result in significant associations. The result, table 5, was the contrary – on a fixed mtDNA 

haplogroup background, none of the SNPs exhibited a significant association with SZ.  
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Discussion 

 

Here we show that mtDNA SNPs are in bi-genomic linkage disequilibrium (2GLD) with mtDNA hgs 

and gDNA clusters due to population structure and shared demographic history of mtDNA and 

gDNA. This means that each mtDNA allele is associated with a unique distribution of mtDNA hgs 

and other associated mtDNA variants, and at the same time associated with a unique distribution 

of gDNA clusters. This has the consequence that an association between a particular allele in a 

specific SNP and disease is not exclusively a result of the presence of the particular allele of the 

SNP; rather it is the result of a combination of differences in mtDNA and gDNA sequences – a 

result of population stratification and admixtureIt is thus not – as is frequently done, and 

suggested as a paradigm for mtDNA association – sufficient to consider an association as  evidence 

for a specific effect of an allele on the function of a protein or RNA coded for by the mtDNA and, 

consequently, as a cause of pathophysiological changes.  

 

The linkage disequilibrium between different alleles on a SNP and mtDNA hgs and sub-hgs is not 

surprising as hgs are defined by series of evolutionarily conserved SNPs. The particular distribution 

of subsets of mtDNA hgs, sub-hgs and individual SNPs, that are associated with a particular allele 

at a specific SNP will depend on the population history and the extent and source of admixture. In 

most countries, and in particular in Europe, such history is very complicated and incompletely 

clarified. m.10398G was found associated with SZ in Han Chinese, however, when the cohort was 

broken down with respect to haplogroups, the association disappeared24. This illustrates that a 

specific allele’s mtDNA haplogroup distribution may induce spurious association with SZ. Spurious 
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associations between mtDNA SNPs and a particular phenotype, when restricted to persons of a 

specific mtDNA hg25, may however be due to population stratification at the sub-hg level. 

 

As mtDNA replicates without recombination, independently of the cell cycle, mtDNA hgs and SNPs 

should be independent of the nuclear genome, but only if the population were infinitely large and 

in the absence of population substructure. This is often not the case, due to geographical 

population substructure, recent admixture, socially and culturally defined restrictions in choice of 

spouse. A recent study showed that most Danish grandparents to present-day high school 

students chose spouses within a short distance of their birthplace26. This practice will with time 

lead to regionalisation, and a southwestern to northeastern gradient was found26.  Furthermore, 

immigrants may seek a partner from within their ethnic community. Such effects have been 

sought eliminated in some studies by restricting the participants in mtDNA association studies to 

persons with a three-generation presence in the population. However, it has not been 

documented that this is sufficient to obviate association or linkage disequilibrium between mtDNA 

SNPs and specific gDNA clusters. Extensive gDNA micro-scale heterogeneity has been documented 

in the UK21 and Western France27 and admixture has been an important factor in the accretion of 

the present-day genomic variation of Europe22,28. The UK study21 showed that this is not just a 

result of recent demic changes; however, recent migrations may lead to widespread 2GLD. 

 

Schizophrenia is a complex syndromic disease29 with geographically varying prevalence30 and 

characterized by a markedly elevated prevalence among first and second generation 

immigrants31,32, particularly among persons with dark skin moving to Nordic lattitudes33. These 
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epidemiological characteristics of SZ obviously increase the risk of spurious associations caused by 

subtle admixture and 2GLD. However, it does not per se refute the mitochondrial pathogenic 

paradigm34 where variation in mitochondrial function, believed to interfere with ATP production 

35,36, inflammation and signaling37,38 as well as Ca2+-homeostasis39, and apoptosis38, is considered 

to be of paramount importance for development of disease. Several neuroanatomical post-

mortem findings in SZ brains indicate perturbed mitochondrial function40, but such findings are 

difficult to distinguish from changes caused by drug treatment.  

 

The iPSYCH data are prospective and signs of immigration are apparent20, but they also showed 

that the variation in ancestry differed greatly between mtDNA hgs – even within traditional 

European hgs, i.e. mtDNA hg U, where ancient European sub-hgs occurred together with U-sub-

hgs of recent Near Eastern and Central Asian origin20. Thus, 2GLD is likely to be a confounder and 

may lead both to false positive as well as false negative associations with disease. The method of 

correction for 2GLD in association studies will depend on the specific mtDNA SNP examined, the 

population structure and history, as well as the size of the study population.  

 

If population stratification involving gDNA is inherent when performing association studies with 

mtDNA SNPs, it should be expected that diseases with geographically varying prevalence would be 

likely to find associated with specific mtDNA SNPs. The largest mtDNA association study to data18 

found mtDNA SNPs associated with ulcerative colitis, exhibiting a European North-South and East-

West gradient41, and with multiple sclerosis exhibiting a longitudinal prevalence gradient42 and 

effect of immigration43. The same study found that the prevalence of mtDNA SNPs associated with 
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Parkinson’s disease was lower in African and Asian people44. Furthermore, the incidence of 

primary biliary cirrhosis is very high in North East England, 50 % lower in the rest of England and 

Scandinavia, and 90 % lower in the Middle East and Asia45.  

 

A major problem with the interpretation of mtDNA SNP variants is the difficulties associated with 

performing a meaningful and reproducible assessment of mitochondrial function. In vitro studies 

of mitochondrial function, e.g. enzymatic activity measurements of OXPHOS components in cells, 

tissues46 or cybrids47 as well as allotopic expression15, are difficult to interpret as they also 

interfere with the inherent cellular control of mitochondrial function38. Furthermore, it should be 

noted, that mtDNA hgs and sub-hgs are cladistics groups and not functional units. Thus, in the 

Danish population, the U-hg is composed of a range of sub-hgs, e.g. U5a, U5b, U6, U7, and U8, 

with widely differing GGAs, reflecting migrations rather than selection20. It is thus meaningless to 

ascribe a specific functional effect to a particular mtDNA hg – without having carefully examined 

both mtDNA and nuclear genetic variation and corrected for stratifications in both. 

 

Previous conflicting studies of disease associations with mtDNA have been suggested to be the 

result of insufficient power48, insufficient stratification respect to sex, age, geographical 

background49 or population admixture50, or the use of small areas of recruitment risking “occult” 

founder effects51. The fact that careful control, as here, of these factors and the 2GLD, results in 

none of eight previously SZ associated mtDNA SNPs being associated with SZ in the very large 

Danish iPSYCH cohort, suggests that previously reported associations could indeed be spurious 

findings due to cryptic population stratification. Meta-analyses pooling studies from different 
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populations15 does not necessarily solve this problem – it may aggravate it by introducing further 

sub-stratification of the total population analysed. The extensive 2GLD demonstrated in the 

Danish population makes this phenomenon the most parsimonious explanation of non-replicable 

associations with mtDNA variants, not only for associations with SZ, but obviously 2GLD can 

interfere with associations between mtDNA and all types of diseases and traits.  
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Online Methods 

 

Ethics statement 

The iPSYCH cohort study (www.ipsych.au.dk) is register-based using data from Danish national 

health registries. The study was approved by the Scientific Ethics Committees of the Central 

Denmark Region (www.komite.rm.dk) (J.nr.: 1-10-72-287-12) and executed according to guidelines 

from the Danish Data Protection Agency (www.datatilsynet.dk) (J.nr.: 2012-41-0110). Passive, but 

not informed, consent was obtained, in accordance with Danish Law nr. 593 of June 14, 2011, para 

10, on the scientific ethics administration of projects within health research.  

 

SZ patients and controls 

As part of the iPSYCH recruitment protocol, 23,743 controls, born between May 1st 1981 and Dec 

31st 2005 were selected at random from the Danish Central Person Registry. Among persons born 

within the same time span 2,538 persons assigned an ICD-10 F20 were identified in the Danish 

National Patient Registry.  All were singletons, were alive one year after their birth, and had a 

mother registered in the Danish Central Person Registry.  DNA should be available from DBS cards 

obtained from the Danish Neonatal Screening Biobank at Statens Serum Institut 52 Demographics 

of patients and controls are given in Suppl Table 1.  

 

Genetic analysis and mtDNA SNPing 

From each DBS card two 3.2-mm disks were excised from which DNA extracted using Extract-N-

Amp Blood PCR Kit (Sigma-Aldrich, St Louis, MO, USA)(extraction volume: 200 μL). The extracted 

DNA samples were whole genome amplified (WGA) in triplicate using the REPLIg kit (Qiagen, 

Hilden, Germany), then pooled into a single aliquot. Finally, WGA DNA concentrations were 
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estimated using the Quant-IT Picogreen dsDNA kit (Invitrogen, Carlsbad, CA, USA). The amplified 

samples were genotyped at the Broad Institute (MA, USA) using the PsychChip (Illumina, CA, USA) 

typing 588,454 variants, developed by the Psychiatric Genetic Consortia. We then isolated the 418 

mitochondrial loci and reviewed the genotype calls, before exporting into the PED/MAP format 

using GenomeStudio (Illumina, CA, USA). Haplo-grouping of mtDNA was performed using the 

defining SNPs reported in www.phylotree.org 53.  

 

Geno-geographic affinity (autosomal ancestry) 

Geno-geographic affinity (GGA) estimation was done using ADMIXTURE 1.3.050 in the supervised 

approach. Briefly, reference populations consisting of Human Genome Diversity Project (HGDP) 

(http://www.hagsc.org/hgdp/), a Danish (716 individuals) and a Greenlandian (592 individuals) 

genotyping SNP data set were used. The final reference data set consisted of 103,268 autosomal 

SNPs and 2,248 individuals assigned to one of nine population groups: Africa, America, Central 

South Asia, Denmark, East Asia, non-Danish Europe, Greenland, Middle East and Oceania. The 

number of clusters, K was set to eight, based on principal component analysis clustering (data not 

shown). The subpopulations were merged with the reference population data set and analysed 

using ADMIXTURE. For prediction of the ancestry of individuals within the mtDNA haplogroups we 

created a random forest model54 based on the reference data set, with the clusters Q1-8 as 

predictors and population groups as outcome. Thus the ancestry analysis of the individual person 

was the result of a supervised prediction. Prediction was done using R3 version 3.2.2, using the 

Caret package.  
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Statistics 

The statistical significance of differences in mtDNA SNP proportions between controls and SZ 

patients was assessed using a permutation version of Fisher’s exact test. Samples with missing 

sequence data were excluded. Calculations were performed using R.  Principal component analysis 

(PCA), was prepared using PLINK(v.1.90b3.31). For the PCA the reference population variants were 

extracted from the iPSYCH control sample, LD pruned (indep-pairwise 50 5 0.5) and allowing only 

SNPs with 99% genotyping rate. Prior to PCA of mtDNA data, samples were loaded into 

GenomeStudio (version 2011.a), a custom cluster was created using Gentrain (version 2), following 

automatic clustering, all positions with heterozygotes were manually curated. The data was 

exported relative to the forward strand using PLINK Input Report Plug-in (version 2.1.3). 

Eigenvectors were calculated using PLINK (v1.90b3.31). PCA plots were created using the package 

ggplot2 (version 1.0.1) in R (version 3.1.3).   
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Legends to tables and figures 

Table 1. The mtDNA alleles studied, their frequency, mtDNA haplogroup association, and link with 

disease.  

Table 2. Distribution of mtDNA haplogroups of controls with specific mtDNA SNP. 

Table 3. Autosomal genomic genogeographic affinity of studied mtDNA SNPs controls.  

Table 4. Association between individual mtDNA SNPs and schizophrenia as a function of the 

selection of the involved persons. All hgs: All persons, EU hgs: persons with a European 

haplogroup; Danish GGA: persons with a Danish genogeographic affinity and Danish GGA and Eu 

hgs: persons both with a European hg and a Danish GGA.    

Table 5. Association between mtDNA SNP and SZ in persons with Danish GGA and a defined 

mtDNA haplogroup. 

Figure 1. PCA of A. mtDNA (PC1 versus PC3) and B. nuclear genome (PC1 versus PC2), with the 

m.15043A (red) and m.15043G (blue) alleles. Only persons with “European” mtDNA haplogroup 

(H,HV,V,U,K,J & T) were included. The PCA was performed using PCs defined by control samples.  
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Table 1. Schizophrenia associated mtDNA SNPs. 

 

Variant  Locus Mol effect Effect on 
risk of SZ 

% DK iPSYCH 
controls (SZ)  

Theoretical mtDNA hg 
associations* 

m.1438A17 MT-RNR1 n.a. SZ↑ 4.6 (4.8) L0d, L1, C1b4, C4c2, M32´56, 
D5a2, I5c1, H1b1g, H2, 
H13a2b5, H14a2c, J1b1b1c, P2, 
P5 

m.3197C18 MT-RNR2 n.a. SZ↑ 7.3 (8.2) U5a´b, L3f1a1, H14b, U2e1a1a 

m.3666A16 MT-ND1 p.G120G SZ↑ 0.3 (0.4) L0d1c1a1a, L0d1b2b2c2, L1, 
M13c, H1ak, R9b2, F1a1c, 
U5a2b3a1 

m.4769A17 MT-ND2 p.M100M SZ↑ 4.4 (4.6) R2, B4a1a1c, B4a1a4, L0d2b1, 
H2a 

m.9377G16 MT-CO3 p.W57W SZ↓ 0.5 (0.6) G2a, Q2a1, D5b2, A2ac, H1c9a, 
U6a1b4, K1a4a1a2a, L2e, 
L3e2b1 

m.10398G23 MT-ND3 p.T114A SZ↑ 20.6 (19.1) K1,J, R11, B4m, B4c1c, R12´21, 
P4, U6a5c, K2a11, U8c, N1a1, 
W1e1a, W3a1d, N8, Y,S3,X2f1, 
R0a2k1 , B5 

m.15043A18 MT-CYB p.G99G SZ↑ 5.7 (4.6) M, N1a1, L2c2a, J1c2a3, T2f1a, 
U6a7, U2c1a 

m.15218G18 MT-CYB p.T158A SZ↑ 4.3 (5.2) U5a1, M7a1a2, M10a1, 
HV1a´b´c, H13a2c 

*Based on PhyloTree. 
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Table 2. MtDNA haplogroup distribution for each SNP allele. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Mitochondrial haplogroups (% of each allele) 

SNP-allele H U T J K V I R X M W N L 

m.1438A 97.4 0.1 0.1 0.2 0.3 0.2 0.5 0.1 0.0 0.1 0.0 0.1 1.0 

m.1438G 43.0 14.2 9.6 9.4 7.7 3.5 2.9 2.9 1.7 1.7 1.4 1.3 0.7 

m.3197C 0.2 98.7 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.2 0.7 

m.3197T 49.2 6.7 9.9 9.7 8.0 3.6 3.0 2.9 1.8 1.8 1.4 1.3 0.7 

m.3666A 24.3 14.9 4.1 31.1 1.4 0.0 1.4 2.7 1.4 1.4 0.0 0.0 17.6 

m.3666G 45.6 13.5 9.2 8.9 7.4 3.4 2.7 2.7 1.6 1.6 1.3 1.3 0.7 

m.4769A 99.0 0.2 0.0 0.0 0.0 0.0 0.0 0.5 0.0 1.7 0.0 0.1 0.0 

m.4769G 43.1 14.1 9.6 9.4 7.7 3.5 2.9 2.8 1.7 1.7 1.4 1.3 0.8 

m.9377G 38.5 1.5 0.8 0.8 50.0 0.0 0.0 1.5 0.0 5.4 0.0 0.8 0.8 

m.9377A 45.6 13.6 9.2 9.0 7.1 3.4 2.8 2.7 1.7 1.6 1.4 1.2 0.7 

m.10398G 0.3 0.2 0.3 42.4 29.7 0.0 13.4 0.6 0.0 7.9 0.1 1.5 3.5 

m.10398A 57.3 16.9 11.5 0.3 1.6 4.2 0.0 3.3 2.1 0.0 1.7 1.2 0.0 

m.15043A 0.1 0.5 16.5 0.5 0.0 0.1 48.6 0.0 0.0 28.6 0.0 5.1 0.0 

m.15043G 48.3 14.3 8.8 9.4 7.8 3.5 0.0 2.9 1.7 0.0 1.4 1.0 0.8 

m.15218G 6.4 88.3 0.0 0.2 0.0 0.0 0.1 4.5 0.0 0.0 0.0 0.1 0.3 

m.15218A 47.3 10.2 9.6 9.3 7.7 3.5 2.9 2.6 1.7 1.7 1.4 1.3 0.7 
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Table 3. Distribution of genogeographic affinities of controls with specific SNPs.  

 
Geographical origin (number of persons) 

SNP-allele Denmark 
(716) 

Greenland 
(592) 

Europe 
(161) 

Middle 
East 
(178) 

Central 
South 
Asia 
(210) 

East Asia 
(241) 

Africa 
(101) 

Oceania 
(27) 

m.1438A 93.1 0.0 5.5 0.9 0.5 0.0 0.0 0.0 

m.1438G 87.9 0.0 6.7 3.1 1.6 0.6 0.1 0.0 

m.3197C 91.3 0.0 6.4 2.0 0.3 0.0 0.0 0.0 

m.3197T 87.8 0.0 6.7 3.1 1.6 0.6 0.1 0.0 

m.3666A 77.0 0.0 14.9 6.8 0.0 1.4 0.0 0.0 

m.3666G 88.1 0.0 6.6 3.0 1.5 0.6 0.1 0.0 

m.4769A 93.8 0.0 4.9 0.7 0.6 0.0 0.0 0.0 

m.4769G 87.8 0.0 6.7 3.2 1.6 0.6 0.1 0.0 

m.9377G 86.9 0.0 10.0 1.5 1.5 0.0 0.0 0.0 

m.9377A 88.1 0.0 6.7 3.1 1.5 0.6 0.1 0.0 

m.10398G 82.1 0.0 7.4 5.6 3.1 1.5 0.3 0.0 

m.10398A 89.7 0.0 6.5 2.4 1.1 0.3 0.0 0.0 

m.15043A 69.3 0.0 10.7 5.6 10.0 4.3 0.1 0.0 

m.15043G 89.2 0.0 6.4 2.9 1.0 0.3 0.1 0.0 

m.15218G 89.6 0.0 6.0 4.0 0.4 0.0 0.0 0.0 

m.15218A 88.0 0.0 6.7 3.0 1.6 0.6 0.1 0.0 
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Table 4. Association of SNPs with SZ for different selections of cohort. 

Selection mtDNA Odds-ratio (95%cf. Interval) P-Value 

EU_hgs 1438A 1.04 (0.85-1.27) 0.651 

ALL_hgs 1438A 1.04 (0.85-1.26) 0.689 

EU_hgs_DANES 1438A 1.03 (0.83-1.26) 0.755 

ALL_hgs_DANES 1438A 1.03 (0.84-1.27) 0.716 

EU_hgs 3197C 1.13 (0.96-1.31) 0.126 

ALL_hgs 3197C 1.13 (0.97-1.31) 0.119 

EU_hgs_DANES 3197C 1.14 (0.97-1.34) 0.101 

ALL_hgs_DANES 3197C 1.15 (0.98-1.35) 0.085 

EU_hgs 3666A 1.33 (0.55-2.80) 0.401 

ALL_hgs 3666A 1.27 (0.58-2.48) 0.456 

EU_hgs_DANES 3666A 1.43 (0.59-3.05) 0.377 

ALL_hgs_DANES 3666A 1.32 (0.54-2.79) 0.402 

EU_hgs 4769A 1.04 (0.85-1.27) 0.682 

ALL_hgs 4769A 1.06 (0.86-1.29) 0.573 

EU_hgs_DANES 4769A 1.01 (0.82-1.23) 0.874 

ALL_hgs_DANES 4769A 1.02 (0.82-1.26) 0.832 

EU_hgs 9377G 0.89 (0.43-1.65) 0.810 

ALL_hgs 9377G 1.05 (0.55-1.82) 0.885 

EU_hgs_DANES 9377G 0.95 (0.46-1.77) 1.000 

ALL_hgs_DANES 9377G 0.94 (0.46-1.75) 1.000 

EU_hgs 10398G 0.97 (0.86-1.09) 0.634 

ALL_hgs 10398G 0.91 (0.81-1.01) 0.064 

EU_hgs_DANES 10398G 0.97 (0.86-1.10) 0.686 

ALL_hgs_DANES 10398G 0.92 (0.82-1.03) 0.153 

EU_hgs 15043A 0.94 (0.59-1.43) 0.834 

ALL_hgs 15043A 0.80 (0.65-0.98) 0.023 

EU_hgs_DANES 15043A 0.94 (0.58-1.46) 0.913 

ALL_hgs_DANES 15043A 0.77 (0.60-0.97) 0.029 

EU_hgs 15218G 1.27 (1.04-1.53) 0.016 

ALL_hgs 15218G 1.25 (1.03-1.51) 0.021 

EU_hgs_DANES 15218G 1.24 (1.01-1.52) 0.037 

ALL_hgs_DANES 15218G 1.23 (1.01-1.50) 0.044 
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Table 5. Association of SNPs with SZ in Danish GGA and a specific mtDNA haplogroup. 

GGA mtDNA hg Allele Odds-ratio (95% cfi) p SZ (N) Controls (N) 

Danish H m.1438A 1.05 (0.84 – 1.29) 0.67 110 1,000 

Danish U m.3197C 1.08 (0.85 – 1.38) 0.55 189 1,572 

Danish H m.3666A 1.12 (0.13 – 4.71) 0.70 2 17 

Danish U m.3666A 2.59 (0.46 – 10.13) 0.15 3 10 

Danish J m.3666A 0.74 (0.08 – 3.06) 1.00 2 22 

Danish H m.4769A 1.03 (0.83 – 1.28) 0.74 105 966 

Danish H m.9377A 0.95 (0.38 – 3.07) 0.81 1,046 9,917 

Danish K m.9377A 0.90 (0.38 – 2.58) 0.82 133 1,509 

Danish H m.10398A 0.79 (0.18 – 7.14) 0.67 1,049 9,947 

Danish K m.10398A 1.40 (0.90 – 2.12) 0.11 33 106 

Danish T m.15043A 0.99 (0.59 – 1.58) 1.00 22 208 

Danish H m.15218A 1.09 (0.47 – 3.09) 1.00 1,045 9,900 

Danish U m.15218A 0.81 (0.63 – 1.04) 0.09 211 1,939 
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Figure 1 

A. 
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B.  
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