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Abstract	
People make surprising but reliable perceptual errors. Here, we provide a unified 

explanation for errors in the perception of three-dimensional (3D) motion. To do so, we 

characterized the retinal motion signals produced by objects moving with arbitrary 

trajectories through arbitrary locations in 3D. Next, we developed a Bayesian model, 

treating 3D motion perception as optimal inference given sensory noise and the 

geometry of 3D viewing. The model predicts a wide array of systematic perceptual 

errors, that depend on stimulus distance, contrast, and eccentricity. We then used a 

virtual reality (VR) headset as well as a standard 3D display to test these predictions in 

both traditional psychophysical and more naturalistic settings. We found evidence that 

people make many of the predicted errors, including a lateral bias in the perception of 

motion trajectories, a dependency of this bias on stimulus contrast, viewing distance, 

and eccentricity, and a surprising tendency to misreport approaching motion as 

receding and vice versa. In sum, we developed a quantitative model that provides a 

parsimonious account for a range of systematic misperceptions of motion in naturalistic 

environments. 
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Introduction 
	

The accurate perception of visual motion is critical for everyday behavior. In the natural 

environment, motion perception involves determining the 3D direction and speed of 

moving objects, based on both retinal and extra-retinal sensory cues. In the laboratory, 

a large number of studies have reported systematic biases in the perception of 3D 

motion, despite the availability of many such cues (Fulvio, Rosen, & Rokers, 2015; 

Harris & Dean, 2003; Harris & Drga, 2005; Lages, 2006; Rushton & Duke, 2007; 

Welchman, Lam, & Bülthoff, 2008; Welchman, Tuck, & Harris, 2004). These perceptual 

errors may contribute to behavioral failures in real world scenarios, such as catching 

projectiles (Peper, Bootsma, Mestre, & Bakker, 1994) and driving under foggy 

conditions (Pretto, Bresciani, Rainer, & Bülthoff, 2012; Shrivastava, Hayhoe, Pelz, & 

Mruczek, 2010; Snowden, Stimpson, & Ruddle, 1998). Here we ask if a range of 

systematic errors in 3D motion perception can be understood as the consequence of 3D 

viewing geometry and reasonable prior expectations about the world.  

Bayesian observer models are a strong candidate for addressing this question. 

They provide a straightforward rule for the optimal combination of incoming sensory 
evidence with prior knowledge. The Bayesian framework has successfully explained a 

variety of perceptual phenomena (Girshick, Landy, & Simoncelli, 2011; Knill, 2007; Knill 
& Richards, 1996), including systematic biases in 2D motion perception (Weiss, 
Simoncelli, & Adelson, 2002). Specifically, when visual input is unreliable (for example, 

when a stimulus has low contrast), observers systematically underestimate the speed of 

visual motion in the fronto-parallel plane: low-contrast patterns appear to move more 

slowly than otherwise equivalent high contrast patterns (Stone & Thompson, 1992; 

Thompson, 1982). This misperception, along with several other seemingly unrelated 
phenomena in motion perception, can be elegantly accounted for by a Bayesian model 

that incorporates a prior assumption that objects in the world tend to move slowly 
(Stocker & Simoncelli, 2006; Weiss et al., 2002). 	

Errors occur in the domain of 3D motion perception as well. For example, 

observers systematically overestimate angle of approach in 3D, such that objects 

moving towards the head are perceived as moving along a path that is more lateral than 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 12, 2017. ; https://doi.org/10.1101/149104doi: bioRxiv preprint 

https://doi.org/10.1101/149104
http://creativecommons.org/licenses/by-nc-nd/4.0/


3	

the true trajectory (we call this a ‘lateral bias’) (Harris & Dean, 2003; Harris & Drga, 

2005; Lages, 2006; Rushton & Duke, 2007; Welchman et al., 2008, 2004). Bayesian 

models of 3D motion perception, also assuming a slow motion prior, have been shown 

to account for this bias (Lages, 2006; Welchman et al., 2008). However, existing models 

are restricted to specific viewing situations (stimuli in the midsagittal plane), and have 

been tested using tasks and stimuli that limit the kind of perceptual errors that can be 

observed. 	

Here, we provide a model of 3D motion perception that can predict systematic 

errors in the perception of motion, extending to arbitrary stimulus locations and 

naturalistic tasks. First, we derived a general Bayesian model for 3D motion estimation 

from retinal motion cues that does not depend on any specific viewing situation. The 

model generates predictions of perceived motion for stimuli in arbitrary locations in 3D 

space. The full model reveals that — contrary to previous conclusions — motion-in-

depth estimation is not fundamentally less reliable than lateral motion estimation (Tyler, 

1971; Welchman et al., 2008). Instead, the relative increase in sensory uncertainty for 

motion-in-depth derives from the geometry of typical viewing situations in the laboratory.  

Second, we used this model to quantify the relationship between stimulus 

contrast, stimulus location, and perceptual errors. Like previous models, the current 

model predicts a lateral bias in perception of motion trajectories towards the head, but 

also a clear effect of viewing distance. Since many different visual cues to 3D motion 

are present under natural viewing conditions, and the predicted errors are derived from 

only one visual cue (binocular retinal motion), we were particularly interested in 

determining whether these perceptual errors occur under conditions where a rich array 

of sensory cues is available. We therefore conducted experiments in a virtual reality 

(VR) environment, which provided an intuitive response paradigm and a rich array of 

cues to 3D motion. We established that the lateral bias does occur in a three-

dimensional environment that simulates these naturalistic conditions, and that the bias 

is modulated by distance and contrast as predicted by the model. 

Third, we examined a recently identified perceptual phenomenon in which the 

direction of motion-in-depth (but not lateral motion) is fundamentally misreported: 

approaching motion is reported to be receding and vice versa (Fulvio, Rosen, & Rokers, 
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2015). We established that the model also predicts these motion-in-depth misreports, 

and identified the relationship between these misreports and viewing conditions. We 

subsequently confirmed the presence of these misreports in the VR paradigm described 

above, and in a separate experiment using a conventional stereoscopic display.  

Finally, we generated model predictions specifically for perceived motion 

trajectories originating ‘off to the side’, outside of the observer’s midsagittal plane. We 

subsequently presented motion stimuli with the use of the wide-angle VR display, and 

confirmed the predicted lawful relationship between perceived motion trajectory and 

stimulus eccentricity. We thus provide a unified account of multiple perceptual 

phenomena in 3D motion perception, showing that geometric considerations, combined 

with optimal inference under sensory uncertainty, explain these systematic and, at 

times, dramatic misperceptions. 

	

	

Methods	
	

Here, we describe the methods for three experimental studies used to test a range of 

perceptual predictions made by the Bayesian model. 

 

Experiment 1 
 
The goal of Experiment 1 was to test the model predictions regarding the effects of 

viewing distance and stimulus contrast on perceptual errors (lateral bias and direction 

misreports) in the midsagittal plane using a naturalistic VR paradigm. 

 
Participants  

Sixty-eight college-aged members of the University of Wisconsin-Madison community 

(38 female, 30 male) gave informed consent to complete the study, and 47 (26 female, 

21 male) successfully completed all parts of the experiment. The participants that did 

not complete the study either had difficulty understanding the task, perceiving depth in 

the display, or wearing glasses inside the VR head-mounted display system. The 
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experiment was carried out in accordance with the guidelines of The University of 

Wisconsin–Madison Institutional Review Board. Course credits were awarded in 

exchange for participation.  

All participants had normal or corrected-to-normal vision and were screened for 

intact stereovision using the RANDOT Stereotest (Stereo Optical Company, Inc., 2011). 

To qualify for the study, participants were required to accurately identify all of the 

shapes in the RANDOT Form test, to identify the location of at least 5 out of 10 targets 

in the RANDOT Circle test, and to pass the suppression check. Although all participants 

passed the tests at these criteria, those with lower scores on the Form test (i.e., with a 

score of 5 or 6) were more likely to terminate their participation early (~50% of those 

who consented but did not complete the study).  

 

Apparatus  

The experiment was controlled by Matlab and the Psychophysics Toolbox (Brainard, 

1997; Kleiner, Brainard, Pelli, Ingling, & Murray, 2007; Pelli, 1997) on a Macintosh 

computer and projected through the Oculus Rift Development Kit 1 (DK1) 

(www.oculusvr.com), which was calibrated using standard gamma calibration 

procedures. The Oculus Rift DK1 is a stereoscopic head-mounted VR system with an 

18 cm LCD screen embedded in the headset providing an effective resolution of 

640x800 pixels per eye with a refresh rate of 60 Hz. The horizontal field of view is over 

90 deg (110 deg diagonal). Also embedded within the headset is a 1000 Hz Adjacent 

Reality Tracker that relies upon a combination of gyros, accelerometers, and 

magnetometers to measure head rotation along the yaw, pitch, and roll axes with a 

latency of 2 ms. Note that translations of the head are not tracked by the device. 

Participants used a wireless keyboard to initiate trials and make responses.  

 

Stimulus & Procedure 

In a series of trials, participants were asked to indicate the perceived direction of motion 

of a target sphere that moved with a constant velocity in the virtual environment. The 

stimuli were presented in the center of a virtual room (3.46 m in height, 3.46 m in width, 

and 14.4 m in depth). The virtual wall, ceiling, and floor were all mapped with different 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 12, 2017. ; https://doi.org/10.1101/149104doi: bioRxiv preprint 

https://doi.org/10.1101/149104
http://creativecommons.org/licenses/by-nc-nd/4.0/


6	

textures. These textures were included to facilitate better judgment of distances 

throughout the virtual space and the relative positions of the stimuli (Figure 1a). 

 

  
Figure 1. Stimulus and procedure for Experiment 1. (a) Participants wore a head-mounted display and 

viewed a stereoscopic virtual room with a planar surface in the middle. (b) Zoomed in views of the left and 

right eye’s images show the critical aspects of the stimulus. Participants fixated nonius lines in the center 

of a circular aperture, and a virtual target (white sphere) appeared inside the nonius lines. (c) The target 

moved at a constant velocity in a random direction within the xz-plane (Presented direction). Afterwards, 

participants positioned a virtual paddle such that it would intersect the trajectory of the target (Reported 

direction). The setting denoted by the black paddle in this example would result in a successful target 

interception. 
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The stimuli were otherwise similar to those used in Fulvio et al. (2015). In the 

center of the virtual room, there was a planar surface with a circular aperture (7.5° in 

radius). The planar surface was mapped with a 1/f noise pattern that was identical in 

both eyes to aid vergence. In addition, nonius lines were embedded within a small 1/f 

noise patch near the center of the aperture. All stimulus elements were anti-aliased to 

achieve subpixel resolution. The background seen through the aperture was mid-gray 

(Figure 1b).  

 The planar surface was positioned in the room at one of two viewing distances 

from the observer’s location: 90 cm (n=15 participants) and 45 cm (n=32 participants). 

Participants were instructed to fixate the center of the aperture. However, participants 

were free to make head movements, and when doing so, the display updated according 

to the viewpoint specified by the yaw, pitch, and roll of the participant’s head. 

Translations of the head did not impact the display, such that stimulus viewing distance 

remained constant.  

On each trial, a white sphere (‘target”) of size 0.25° in diameter appeared at the 

center of the aperture and then followed a trajectory defined by independently chosen 

random speeds in the x (lateral) direction and the z (motion-in-depth) direction, with no 

change in y (vertical direction) before disappearing. The motion trajectory always lasted 

for 1 s. Velocities in x and z were independently chosen from a 2D Gaussian distribution 

(M = 0 cm/s, SD = 2 cm/s) with imposed cut offs at 6.1 cm/s and -6.1 cm/s. The 

independently chosen speeds resulted in motion trajectories whose directions spanned 

the full 360° space (Figure 1c, left side). Thus, the target came toward the participant 

(‘approaching’), and moved back behind fixation away from the participant (‘receding’) 

on approximately 50% of trials each. It is important to note that since x- and z- motion 

were chosen randomly and independently, the amount of perceived lateral movement 

on each trial did not carry information about the amount of motion-in-depth and vice 

versa. The target was rendered under perspective projection, so that both monocular 

(looming) and binocular cues to motion-in-depth were present. 

 Participants indicated the perceived target trajectory using a “3D pong” response 

paradigm (Fulvio et al., 2015). After the target disappeared, a 3D rectangular block 

(‘paddle’), whose faces also consisted of a 1/f noise pattern, appeared at the edge of 
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the aperture. The paddle dimensions were 0.25 cm x 0.5 cm x 0.25 cm. Participants 

were asked to extrapolate the target’s trajectory and adjust the paddle’s position such 

that the paddle would have intercepted the target if the target had continued along its 

trajectory. The paddle’s position could be adjusted along a circular path that orbited the 

fixation point in the x-z plane using the left and right arrow keys of the keyboard (Figure 
1c, right side). As the participant moved the paddle through the visual scene, it was 

rendered according to the rules of perspective projection. Thus, the stimuli were 

presented and the responses were made in the same 3D space. By asking participants 

to extrapolate the trajectory, we prevented participants from setting the paddle to a 

screen location that simply covered the last seen target location. We did not ask 

participants to retain fixation during the paddle adjustment phase of the trial. When the 

participant was satisfied with the paddle setting, they resumed fixation and pressed the 

spacebar to initiate a new trial. A stereoscopic movie demonstrating the general 

procedure is included in the Supplementary Material (Movie S1). 

 The target was presented at one of three Michelson contrast levels: 100% (high), 

15% (mid), and 7.5% (low), which were counterbalanced and presented in 

pseudorandom order.  

Participants carried out 10-15 practice trials in the presence of the experimenter 

to become familiar with the task. All participants completed the experimental trials in 

one session. No feedback was provided for either the practice or experimental trials. 

Participants completed 225 trials on average. 

 

Data Analysis 

To examine biases in the perceived direction of motion, we computed the mean angular 

error for each participant for each unique stimulus condition (viewing distance and 

target contrast). Errors were calculated as the angular distance of the reported direction 

relative to the presented direction in the xz-plane. We analyzed the data to determine 

whether this angular error tended to be towards the fronto-parallel plane (lateral bias) or 

towards the mid-sagittal plane (medial bias) (See Figure 1c). We assigned positive 

values to medial errors and negative values to lateral errors such that the average 

would indicate the overall directional bias. 
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To examine the frequency of motion direction errors, we computed the 

percentage of trials on which paddle settings were made on the opposite side of either 

the fronto-parallel plane or the mid-sagittal plane. Responses on the opposite side of 

the fronto-parallel plane (approaching vs. receding) were considered depth direction 

confusions. Responses made on the opposite side of the mid-sagittal plane (leftward vs. 

rightward) were considered lateral direction confusions.  

Statistical effects were tested through an analysis of variance (ANOVA) 

evaluated on generalized linear model fits. The model incorporated target contrast as a 

fixed effect (all subjects experienced all three levels) and viewing distance as a random 

effect (different groups of subjects performed the task for one of the two viewing 

distances). The model intercepts were included as random subject effects. Follow-up 

tests consisted of Bonferroni-corrected t-tests for multiple comparisons. 

 

Experiment 2 

 

To examine whether the motion direction confusions measured in Experiment 1 were 

particular to the VR set up, we compared these results to a second experiment 

conducted on a traditional stereoscopic display.  

  
Participants 

Three adults participated in the experiment. All had normal or corrected-to-normal 

vision. One participant (male, age 23) was naive to the purpose of the experiment and 

had limited psychophysical experience. The remaining two participants (the authors JP 

and BR, males aged 34–35) had extensive psychophysical experience. The experiment 

was undertaken with the written consent of each observer, and all procedures were 

approved by The University of Texas at Austin Institutional Review Board. 

  

Apparatus 

The experiment was performed using a similar setup to Experiment 1, however in this 

case the stimuli were presented on two 35.0 x 26.3 cm CRT displays (ViewSonic 

G90fB, one for each eye; 75 Hz, 1280 x 1024 pixels) at a single viewing distance of 90 
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cm (21.2 x 16.3 deg of visual angle). Left- and right-eye half-images were combined 

using a mirror stereoscope. The luminance of the two displays was linearized using 

standard gamma-correction procedures, and the mean luminance was 50.6 cd/m2.  

  

Stimulus & Procedure 

As in Experiment 1, all stimuli were presented within a circular mid-gray aperture (1 deg 

radius) that was surrounded by a 1/f noise texture at the depth of the fixation plane (90 

cm) to help maintain vergence. No virtual room was present. Additionally, a small 

square fixation point was placed at the center of the display. The fixation point was 

surrounded by horizontal and vertical nonius lines, and was placed on a circular 0.1 deg 

radius 1/f noise pattern.  

Rather than a single target, a field of randomly positioned dots moving in the xz-

plane was presented on each trial. The positions of the dots were constrained to a 

single plane fronto-parallel to the display (i.e., perpendicular to the observer’s viewing 

direction). The initial disparity of the plane was consistent with a distance of 93 cm (3 

cm behind the fixation plane). The plane then moved for 500 ms with an x and z velocity 

independently and uniformly sampled from a -4 to 4 cm/s interval, corresponding to a 

maximum possible binocular disparity of 0.21 deg (uncrossed) relative to the fixation 

plane.  

Each moving dot had a 200 ms limited lifetime to prevent tracking of individual 

stimulus elements. Dot radius was 0.11 cm and dot density was ~74 dots/deg2. Both dot 

size and dot density changed with distance to the observer according to the laws of 

perspective projection. Dots were presented at one of three Weber contrast levels (7.5, 

15, or 60%). Half of the dots were darker, and the other half of the dots were brighter 

than the mid-gray background.  

  The stereoscope was initially adjusted so that the vergence demand was 

appropriate for the viewing distance and given a typical interocular distance. Prior to 

each session, each participant made further minor adjustments so that the nonius lines 

at fixation were aligned both horizontally and vertically, and vergence was comfortable. 

Participants were instructed to maintain fixation for the duration of each experimental 

trial. 
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Trials proceeded as described for Experiment 1, except that participant 

responses were made differently. After the dots disappeared, a circle and a line were 

presented on screen, where one of the line endpoints was fixed to the center of the 

circle and the participant could adjust the other line endpoint with a computer mouse. 

Participants were instructed to treat this as a top-down view of the stimulus (see Figure 
1c), and to adjust the line such that the angle was consistent with the trajectory of the 

dots. We verified in pilot experiments that this method produced consistent, 

reproducible estimates. As in Experiment 1, no feedback concerning performance was 

provided. 

  

Data Analysis 

Data were analyzed in the same manner as Experiment 1. 

 

Experiment 3 
 

To test model predictions for stimuli presented at locations ‘off to the side’ – away from 

the midsagittal plane – we conducted a third experiment using the same virtual reality 

display as described in Experiment 1.  

 

Participants  

Twenty-two college-aged members of the University of Wisconsin-Madison community 

gave informed consent to complete the study. One participant did not complete the 

study because of difficulty in perceiving depth in the display, despite passing the 

stereovision screening (see below). The remaining 21 participants completed all 

aspects of the experiment.  The experiment was carried out in accordance with the 

guidelines of The University of Wisconsin–Madison Institutional Review Board. Course 

credits were awarded in exchange for participation. All participants had normal or 

corrected-to-normal vision and were screened for intact stereovision using the RANDOT 

Stereotest (Stereo Optical Company, Inc., 2011) in order to meet the criteria outlined in 

Experiment 1 above. 
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Apparatus  

The apparatus was the same as that described in Experiment 1. 

 

Stimulus & Procedure 

The stimulus and procedure were the similar to Experiment 1, with the exception that 

the planar surface in the center of the room had three circular apertures rather than just 

one. As in Experiment 1, one of the apertures appeared at the center of the planar 

surface directly in front of the participants (7.5 deg radius). The other two apertures 

were located 20 degrees to the left and right of the central location. These two apertures 

were slightly larger (10.5 deg radius) in order to ensure adequate visibility of the 

stimulus. All three apertures appeared on every trial, and the background seen through 

the aperture was black, which increased the contrast of the stimuli, and further improved 

visibility in the periphery (Figure 1b).  

 The planar surface was positioned in the virtual room at 45 cm from the 

participants. Participants were instructed to fixate the center of the central aperture on 

every trial, even when a target appeared at one of the peripheral locations. This 

instruction served to minimize head rotation, not eye-movements per se. As we will see 

model predictions critically depend on stimulus location in 3D space (relative to the 

observer), not stimulus position on the retina.  

On each trial, a white sphere (‘target”) appeared at the center of one of the three 

apertures randomly and counter-balanced across trials. To ensure that the peripheral 

targets were clearly visible while participants fixated the central aperture, the peripheral 

targets were rendered with a diameter of 0.5 deg, versus the 0.25 deg in the central 

location. The target was presented with full, 100% contrast – i.e., white on a black 

background. All other aspects of the target’s motion were identical to Experiment 1 

above. 

 Participants indicated the perceived target trajectory using a “3D pong” response 

paradigm as in Experiment 1 at each of the three aperture locations. They were free to 

move their eyes to the three apertures during the response phase of the trial. 

Participants carried out 10-15 practice trials in the presence of the experimenter to 

become familiar with the task. All participants completed the experimental trials in one 
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session. No feedback was provided for either the practice or experimental trials. All 

participants completed 360 experimental trials. 

 

Data Analysis 

Data were analyzed in the same manner as Experiment 1. 

 

 

Results 
 
Geometric explanation of biases in 3D motion perception 

The Bayesian brain hypothesis posits that perception is a probabilistic process in 

which the perception of the physical world is dictated by a probability distribution called 

the posterior (Knill & Richards, 1996; Knill & Pouget, 2004). This posterior specifies the 

conditional probability of the physical stimulus (s) given a sensory response (r) — 

denoted P(s | r). The posterior is determined by the product of two probabilistic 

quantities known as the likelihood and the prior. The likelihood is the conditional 

probability of the observed sensory responses (r) given the physical stimulus (s), 

considered as a function of s. The likelihood, written P(r | s), characterizes the 

information that neural responses carry about the sensory stimulus. Increased sensory 

uncertainty, due to ambiguity or noise in the external world, or internal noise in the 

sensory system, manifests as an increase in the width of the likelihood. The prior P(s) 

represents the assumed probability distribution of the stimulus in the world. The prior 

may be based on evolutionary or experience-based learning mechanisms. The 

relationship between posterior, likelihood, and prior is given by Bayes’ rule, which states 

that:  

	

.	 	 	 	 	 	 	 	 Equation 1	

	

When sensory uncertainty is high, the likelihood is broad and the prior exerts a 

relatively large influence on the posterior, resulting in percepts that are systematically 

P (s|r) / P (r|s)P (s)
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more biased towards the prior (but see Wei & Stocker, 2015). That is, the visual system 

relies on prior assumptions when current information is unreliable. Misperceptions will 

inevitably occur when actual stimulus properties diverge from these prior assumptions, 

particular when sensory uncertainty is high.  

Here we apply this Bayesian framework to the problem of 3D motion perception. 

While the derivation of the posterior distribution for 3D motion is lengthy, we first provide 

an intuition by examining a simple diagram illustrating the consequences of perspective 

projection on retinal signals to 3D motion. First, we consider that light from moving 

objects in the world will project through the optics of the eye and cast a pattern with a 

particular angular velocity on the retina. This is illustrated in Figure 2a. A simplified top-

down diagram illustrates the left and right eyes of an observer (projections are shown 

for the left eye only; the right eye is for reference). Two linear motion vectors are 

illustrated in orange and green. The vectors have the same length, indicating the same 

speed in the world, but they move in different directions, either in depth (towards the 

observer, shown in green) or laterally (to the left, shown in orange). Of course, the 

angular velocity signal in either eye alone does not specify the direction of motion in the 

world. While these signals do constrain the possible trajectories, estimates of 3D motion 

critically depend on the relationship of the retinal velocity signals between the two eyes. 

The angular subtense of each vector on the left eye is illustrated by the green 

and orange arcs, respectively. Note that although the vectors have the same length, 

and thus the same world speed, the angular subtense of the vector corresponding to 

motion-in-depth is considerably smaller than the one corresponding to lateral motion, 

and thus produces a considerably smaller retinal speed. 

Next, we consider that our perception of motion in the world (i.e., the motion 

vectors) relies on measuring these angular speeds (i.e., the arcs) and inferring the 

physical motion trajectories that caused them. To examine how the limits of the ability of 

the visual system to accurately encode angular speed on the retina propagate to 

different motion trajectories, we can project a fixed uncertainty in angular speed back 

into the world. This is illustrated in Figure 2b, again just for two sample directions of 

motion directly towards or to the left of the observer. Note that even though the angular 

speeds are the same, the amount of uncertainty for motion-in-depth (represented by the 
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vector length) is greater than for lateral motion. That is, a given uncertainty in angular 

speed results in greater uncertainty for motion-in-depth in the world. Vectors are 

reproduced side-by-side on the right for clarity. This difference is simply due to inverting 

the projection shown in Figure 2a. Based on this observation, it is clear that the motion-

in-depth stimulus will have greater sensory uncertainty for speed estimation in the 

world.	

However, is the high uncertainty for motion-in-depth universally true for all 

viewing situations? Simple geometric diagrams show that this is not the case. Figures 
2c and d illustrate two additional situations. In Figure 2c, the distance of the motion 

vectors from the eyes is decreased. Uncertainty is still larger for motion-in-depth, but the 

increase relative to lateral motion is substantially attenuated. In Figure 2d, the motion 

vectors are located off to the observer’s right. In this case, the relationship has actually 

inverted and uncertainty for lateral motion is greater. Note that we only illustrate motion 

directly lateral to or towards the observer. However, as we will show below, since any 

motion vector can be decomposed into its components along these orthogonal axes, 

these general principles will hold for any direction.	

Indeed, if we model the eye as a circle and assume the center of projection is at 

the circle’s center, it is easy to see that there is no consistent increase in uncertainty for 

motion-in-depth relative to lateral motion at all. Intuitively, for a given distance, 

whichever vector is closest to being parallel to the tangent of the circle (at the point 

where a line connecting the center of projection to the vector intersects the circle) will 

have the least uncertainty (Figure 2e). In the derivation that follows, we quantitatively 

determine the predicted uncertainty for 3D motion trajectories in all directions under any 

viewing situation and use these predictions to formulate a Bayesian model for 3D 

motion perception.	
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Figure 2. Schematic top down view illustrating how uncertainty in retinal velocity propagates 
asymmetrically to motion trajectories in the world. (a) Two orthogonal motion vectors with the same 

speed in the world (motion-in-depth in green and lateral motion in orange) project to different angular 

speeds on the retina. (b) A fixed retinal speed projects to a larger speed for motion-in-depth than for 

lateral motion. The same geometry applies to the transformation of uncertainty. (c) This difference is 

much reduced at near viewing distances. (d) This relationship can invert for trajectories that occur off of 

the midline. (e) Illustration of how the tangent line of a circle determines the vector direction with the 

minimum length for a given angle and distance. Note that when motion is directly towards either eye, this 

will project to zero retinal velocity in one eye (ignoring looming/optical expansion) and non-zero velocity in 

the other.	
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Relationship between 3D motion trajectories and retinal velocities	
We can describe the motion of any object in space relative to an observer in a 3D 

coordinate system with the function  

	

, 	 	 	 	 	 	 	 Equation 2	

	

where p is the position of the object as a function of time (t) in a coordinate system 

defined over x, y, and z axes. Here, we use a head-centered coordinate system and 

place the origin at the midpoint between the two eyes of the observer (see icon in upper 

left corner of Figure 3). In this left-handed coordinate system, the x-axis is parallel to 

the inter-ocular axis (positive rightward), the y-axis is orthogonal to the x-axis in the 

plane of the forehead (positive upward), and the z-axis extends in front and behind the 

observer (positive in front). 	

We will model the retinal information available from horizontal velocities, and thus 

consider the projection of points onto the xz-plane (y=0 for all points) (Figure 3). Note, 

however, that this does not mean that this model is only valid for stimuli in the plane of 

the interocular axis. As long as retinal angles are represented in an azimuth-longitude 

coordinate system, the horizontal retinal velocities can be computed from the x and z 

components of 3D motion vectors alone. Also note that this geometry is independent of 

the point of fixation but assumes that fixation does not change over the course of the 

stimulus motion. In this coordinate system, the (x,z) coordinates of the left and right eye 

are defined as (xL,0) and (xR,0), respectively. The distance between the eyes along the 

inter-ocular axis, denoted by a, is xR – xL.	

	

p(t) = [x(t), y(t), z(t)]
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Figure 3. Diagram of 3D motion coordinate system. The icon in the upper left shows the origin and 

axes of the coordinate system, with arrowheads indicating the positive direction on each axis. The top-

down view shows a slice through the inter-ocular axis in the xz-plane. Large circles indicate the left and 

right eyes. The smaller gray circle and arrow indicate the location and trajectory of motion of an object. 

The coordinates of key points are indicated in x and z (y=0 for all points), as well as several line segments 

and angles. Note that x0 and z0 denote the coordinates of the object with the motion defined by Equation 

2, evaluated at time point t=t0.	

	

At any time point, an object with coordinates (x(t), z(t)) will project to a different 

horizontal angle in each eye. If we define these angles relative to the x-axis in the xz-

plane, they are: 

	

,     Equation 3	

	

�L,R(t) = arctan

✓
z(t)

x(t)� xL,R

◆
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where βL(t) and βR(t) indicate the angles in the left and right eye, respectively. The 

object will generally have a different distance from each eye. These distances are given 

by: 

	

,      Equation 4	

	

where hL(t) and hR(t) indicate the distance from the left and right eye, respectively. 	

Since we are interested in motion cues, we differentiate Equation 3 with respect 

to time to determine the relationship between object motion and motion on the retina. 

Here, we denote first derivatives of functions with the convention df(x)/dt = f’(x). This 

yields:  

	

. Equation 5	

	

Rearranging Equation 5 and substituting in Equation 4 allows us to simplify to: 

	

.	 	 	 Equation 6	

	

In the case of motion estimation, βL’(t) and βR’(t) are the sensory signals, and the object 

motion in the world that generated them are unknown. We next solve for x’(t) and z’(t) 

as a function of βL’(t) and βR’(t). From now on, we will define β’L,R, hL,R, z0, z’, x0, and x’ 

to be equal to β’L,R(t), hL,R(t), z(t), z’(t), x(t), and x’(t), each evaluated at the same time 

point t=t0. To determine the equation for x’ in terms of retinal velocities, we rearrange 

Equation 6 for the left eye to solve for z’, substitute the result back into Equation 6 for 

the right eye, and solve for x’, yielding: 

	

hL,R(t) =
q

(x(t)� xL,R)2 + z(t)2

�

0
L,R

(t) =
1

1 +
⇣

z(t)
x(t)�xL,R

⌘2

"
z

0(t)(x(t)� x

L,R

)� z(t)x0(t)

(x(t)� x

L,R

)2

#

�

0
L,R(t) =

1

hL,R(t)2

"
z

0(t)(x(t)� xL,R)� z(t)x0(t)

#
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.	 	 	 	 Equation 7	

	

Recall that a refers to the interocular separation. To determine the equation for z’ in 

terms of retinal velocities, we rearrange Equation 6 for the left eye to solve for x’, and 

substitute this back into Equation 6 for the right eye, yielding the equation for z’, also in 

terms of retinal velocities: 

	

.	 	 	 	 	 	  Equation 8	

 
 
Propagating uncertainty for 3D motion	
We assume that the measurements of retinal motion in each eye, β’L and β’R are 

corrupted by independent additive noise: 

 

	 	 	 	 	 	 	 	 	 Equation 9A 

.		 	 	 	 	 	 	 	 Equation 9B	

	

Here,  		and	 	denote the measured retinal velocities in the left and right eye, 

respectively, and noise samples (  and ) are drawn independently for both eyes 

from a zero mean Gaussian distribution with variance of . Note that the assumption 

of constant additive noise is inconsistent with Weber’s Law (which would predict that the 

noise increases proportionately with speed). However, psychophysical experiments 

have shown that for relatively slow speeds (less than ~2-4 deg/s), speed discrimination 

thresholds are more stable than predicted by Weber’s Law (McKee, Silverman, & 

Nakayama, 1986; Stocker & Simoncelli, 2006; Freeman, Champion, & Warren, 2010). 

Most stimuli in our experiments moved at speeds slower than 4 deg/s.  
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We should note that our derivation only depends on the locations of the eyes and 

the object, and is independent of where the observer fixates. Under the assumption that 

the object’s 3D location – its distance z0 and its location relative to each eye (x0 – xL) 

and (x0 – xR) – are known, we can use Equations 7 and 8 (which specify x’ and z’ as 

linear combinations of 	and ) to determine the noise covariance of the sensory 

measurements of speed in x and z	(  and ). First, we rewrite the linear transformation 

from retinal velocities	  to real-world velocities  in terms of the 

matrix equation	 . In this formulation, A is given by: 

 

 

       Equation 10 

 

 

If we assume independent and equal noise distributions for the two eyes, the noise 

covariance of the sensory measurements (denoted M) is given by  : 

 

 

 . 

Equation 11 

	

To gain more intuition for the relative noise effects on the x and z velocity components 

of a motion trajectory, we plot the sensory uncertainty (the noise standard deviation) for 

each velocity component (the square root of the diagonal elements of Equation 11, 

denoted   and ) as a function of horizontal distance (x0) and distance in depth (z0) 

in Figure 4a and b (assuming an interocular distance a = 6.4cm). Each panel contains 

an isocontour plot showing the log of the sensory uncertainty at each true spatial 
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location. Several features are notable. The uncertainty in x’ is at its minimum for points 

that fall on or near the midsagittal plane, and increases for points to the left and right. 

The uncertainty in z’ is at its minimum for points closest to the eyes, and increases 

radially away from the mid-point between the eyes. Note that uncertainty in x’ also 

increases with distance, but not as sharply as z’. In the central visual field, the 

uncertainty in z’ is generally much greater than the uncertainty in x’.  

To illustrate the relative magnitude of uncertainty in x’ and z’, we plot the ratio of 

the two values for a subset of points close to the observer in Figure 4c (within 25cm 

left/right and 100cm in depth). Ratios greater than 1 (red) indicate that uncertainty in z’ 

is greater than x’, and ratios less than 1 (blue) indicate the reverse. In the central visual 

field, this ratio is greater than 1. This is consistent with previous work (Welchman et al., 

2008). However, the ratio varies considerably as a function of both viewing distance and 

viewing angle. At steep viewing angles (> 45 degrees), the relationship reverses and x’ 

uncertainty is actually greater than z’. We should note that our model only includes 

uncertainty in object speed, not in object location. Uncertainty in object location would 

likely increase for objects projecting to larger retinal eccentricities.  

 Equation 11 indicates that the uncertainties in x’ and z’ are not independent. To 

visualize this relationship, in Figure 4d, we show the covariance ellipses for a set of 

locations within 100cm in depth (the inset shows a zoomed view of the points with 50cm 

in depth). For most locations, the ellipses are highly elongated, indicating that for each 

location, uncertainty about different motion components differs strongly.  As expected 

from the geometric analysis (Figure 1), the axis of minimal uncertainty is orthogonal to 

a line connecting each location back to the interocular axis, independent of the direction 

of gaze. This creates a radial pattern, in which uncertainty is highest for motion 

extending radially from the observer’s location. Along the midsagittal plane (x0 = 0), the 

covariance is zero and the axes of minimal and maximal uncertainty align with the x and 

z axes, respectively.  
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Figure 4. Uncertainty for x and z motion vary with stimulus distance and head-centric eccentricity. 
(a) Uncertainty in the x component of a motion vector is plotted in arbitrary units as a function of location 

in x and z. (b) Same as (a), except for the z component of motion. The color map scales of panels a and 

b are the same. (c) The ratio between the values in the boxed region in (a) and (b). (d) Ellipses illustrate 

the noise covariance of x’ and z’ for a range of spatial locations. Ellipse scale indicates the relative 

uncertainty for each location, and orientation indicates the axis of maximal uncertainty. All ellipses have 

been reduced by scaling with an arbitrary factor to fit within the plot. Inset shows the same ellipses for a 

small spatial region (also with a different scaling). 	
 

Indeed, if we consider only cases in which the stimulus is presented in the 

midsagittal plane, as is often done in perceptual studies, the off-diagonal elements of 

the covariance matrix become zero, and we can simplify   and  to: 

	

	 	 	 	 	 	 	 	  Equation 12 

	

,	 	 	 	 	 	 	 	 	 Equation 13	

	

where h = . During typical viewing a << z0, resulting in substantially larger 

uncertainty for the z component of velocity than for the x component. However, if z0 is 
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equal to half of the interocular separation, the variances in x’ and z’ will be equal as 

well. Thus, while uncertainty for motion in depth in the midsagittal plane clearly tends to 

be substantially higher than for lateral motion, the relative uncertainty is reduced for 

near viewing distances. 

	

	

Application of Bayes rule to predict perceived motion in the midsagittal plane	
In order to predict how sensory uncertainty in motion measurement affects actual 

percepts, we need to define a formal relationship between sensory measurements and 

perceived motion. For this, we derive a Bayesian ideal observer that combines this 

sensory information with a prior distribution over 3D motions. We will first consider only 

motion in the midsagittal plane (x0 = 0), such that uncertainty in x’ and z’ from the 

likelihood come out as independent (Equations 12 and 13).  

The full likelihood function in real-world coordinates – that is the conditional 

probability of the (transformed) velocity measurements ( , ) given the true velocities 

(x’, z’) – can be given by the a 2D Gaussian probability density function. For simplicity, 

we specify this as the product of two 1D Gaussians,  , where  and  denote 

the mean and standard deviation of a 1D Gaussian, respectively. Thus, for motion in the 

midsagittal plane: 

 

       Equation 14A 

	 	 	 	 	 	 	 Equation 14B	

 

where  and 	  are derived from the measurements of retinal velocity in the left and 

right eyes (Equations 7-9).	

We assumed that the prior for slow speeds is isotropic in world coordinates (a 

Gaussian with equal variance in all directions) and centered at zero, as has been done 

previously (Welchman et al., 2008, but see Lages, 2006 for an alternative approach). 

We can then express the prior as: 
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	 	 	 	 	 	 	 Equation 15A	

,       Equation 15B 

	

where   is the variance of the prior. 	

The posterior distribution, according to Bayes’ rule, results from multiplying the 

likelihood and prior, and renormalizing.  For Gaussian likelihoods and priors, the 

posterior distribution also takes the form of a Gaussian, with mean and variance that 

can be computed according to standard formulas. The means of the posterior in x’ and 

z’ are given by: 

 

	  	 	 	 	 	 	 Equation 16A 

,		 	 	 	 	 	 	 	 Equation 16B	

	

and the variances by: 

 

		 	 	 	 	 	 	 	 Equation 17A	

,	 	 	 	 	 	 	 	 Equation 17B	

	

where these means are denoted by   and  because they also correspond to the 

sensory estimate of each motion component determined by the maximum a posteriori 

(MAP) method. In Equations 16 and 17,  is a “shrinkage factor” that determines how 

much the measured velocity components are shrunk towards zero (the mean of the 

prior). The equations for each factor (  and ) are: 

	

        Equation 18A  
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.        Equation 18B 

 

In brief, the estimated speeds correspond to the measured speeds in each direction, 

scaled towards zero by the shrinkage factor in each direction. Similarly, the posterior 

variance equals the variance of the sensory measurements also scaled by the 

shrinkage factor.  

The full posterior distribution, that is, the probability of a given world velocity 

given a particular measured velocity, can therefore be written:  

 

		 	 	   Equation 19A 

.     Equation 19B  

	

We can examine the trial-to-trial performance of the Bayesian ideal observer by 

deriving the sampling distribution of the MAP estimate, that is, the distribution over the 

estimates of a Bayesian ideal observer given a fixed stimulus.  (The ideal observer 

exhibits variability because it receives a new set of noisy measurements on each trial). 

This distribution is given by: 

 

     Equation 20A 

.    Equation 20B 

 

Here  and  can again be understood as “shrinkage factors” that determine how 

much the observer’s reports are scaled towards zero (on average) relative to the true 

velocity. The variance of the ideal observer’s estimates are scaled by  and	  

relative to the variance of a maximum likelihood estimator (due to the fact that a 

Gaussian random variable scaled by  will have its variance scaled by ). This shows 
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that the ideal observer exhibits a reduction in variance even as it exhibits an increase in 

bias (in this case, bias towards slower speeds). 
	

Application of Bayes rule to predict perceived motion at arbitrary locations	
For the case of motion occurring away from the midsagittal plane, we can derive the full 

covariance matrix of the ideal observer’s estimates (which is not aligned with cardinal 

x/z axes). We already have the noise covariance of the sensory measurements from 

Equation 11. The covariance of the posterior of the Bayesian ideal observer (denoted by 

, the covariance of   and ) can be determined from this matrix (M) and the 

covariance of the prior (denoted as C, a diagonal matrix with variance in x’ and z’ of  : 

 

.       Equation 21 

 

Given a pair of sensory measurements , the vector of posterior means in x’ 

and z’ (i.e., , the MAP estimate in x’ and z’) is then: 

 

.        Equation 22 

	

Here, the matrix  provides a “shrinkage factor” on the maximum likelihood 

estimate analogous to the role played by  in the previous section.  

 Lastly, the sampling distribution of the MAP estimate can be described as a 2D 

Gaussian: 

 

.      Equation 23 

 

In the next sections, we describe the results of our 3D motion perception 

experiments and compare the results to the predictions of this ideal observer model. For 

all model predictions, we assumed an observer with a typical interocular separation of 
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6.4 cm and a stimulus speed of 1 cm/s (typical of the experiment). Model predictions for 

a range of speeds presented in the experiment were qualitatively similar. With the mean 

of the likelihood determined by the stimulus speed and the viewing geometry, the 

variance of the sensory noise is not specified by the model, and neither are the mean 

and variance of the prior. To address this, the mean and standard deviation of the prior 

were fixed at 0 and 1 cm/s, respectively. Differences in stimulus contrast were modeled 

as differences in the variance of the retinal velocity measurement noise (which 

determines the variance of the likelihood). This variance was selected such that the 

Bayesian model predicted a lateral angle bias that matched the average bias for one 

condition in Experiment 1. Specifically, we matched the prediction for the stimulus with 

100% contrast at 45cm, the condition with the least perceptual bias. All other predictions 

were then made based on this parameter, assuming that reductions in stimulus contrast 

resulted in a proportionate increase in the noise variance. Since the Bayesian model 

considers only one 3D motion cue, and the experimental stimuli contained a range of 

cues, analyses were performed to explore whether the overall patterns predicted by the 

model were borne out in the data, not with the goal of numerically fitting the model to 

the experimental data. 

 We summarized both model and experimental data using various descriptive 

statistics. First, we examined the average errors predicted by the Bayesian model for 

each direction of motion in the world. This is simply the derived MAP for each possible 

motion direction between 0 deg and 359 deg in steps of 1 deg (Figure 1c). Next, to 

examine the trial to trial variance of the Bayesian model (and therefore determine the 

predicted percentage of motion direction misperceptions), we examined the sampling 

distribution of the MAP and determined the percentage of MAP samples that would 

result in judgments in the opposite direction of the stimulus for motion-in-depth (towards 

versus away) and lateral motion (leftward versus rightward). Model predictions were 

otherwise analyzed using the same methods described earlier for the experimental 

data.  

	

Predicted and observed biases towards lateral motion in the midsagittal plane 
vary with stimulus distance and contrast	
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Recall that previous perceptual experiments have demonstrated that observers tend to 

overestimate the angle of approach of objects. That is, an object on a trajectory towards 

the observer tends to be perceived as moving more laterally than the true stimulus 

trajectory. We refer to this as a ‘lateral bias.’  Figure 5a clearly shows that the current 

model predicts this lateral bias. Here, the simulated stimulus is located at 90cm directly 

in front of the observer (i.e., x0 = 0, z0 = 90). For simplicity, we convert the stimulus 

motion (both actual and predicted) into a single direction value in degrees, given by the 

angle between the motion trajectory and a vector centered on the object and parallel to 

the x-axis in the positive direction (i.e., 0 deg = rightward motion, see inset). 

Counterclockwise angles are positive. The direction of stimulus motion ( ) was varied 

across the full 360 deg range (abscissa) and the predicted perceived direction for each 

value was calculated (ordinate). Arrows indicate motion directions from a top-down view 

as shown in Figure 1. Veridical perception is indicated by the dashed diagonal line. The 

weaving pattern of the predictions indicates that on average the motion-in-depth 

trajectories, except for those that are directly towards or away, tend to get pulled 

towards more lateral motion. For example, when the stimulus moves directly towards 

the observer (270 deg), the average predicted percept is veridical (also 270 deg). 

However, when the trajectory towards the observer is slightly off to the left or right, the 

average predicted percept is biased more leftwards or rightwards. The same is true for 

trajectories away from the observer. 	

However, these model predictions are made based only on retinal motion cues, 

and during natural behavior there are many other cues available that may improve the 

estimate of an object’s motion trajectory. To determine the extent to which these biases 

contribute to 3D motion perception during natural behavior, we conducted an 

experiment in a virtual environment (Experiment 1). The stimulus was rendered with 

perspective projection, so that monocular cues (looming) were available. In addition, 

participants were free to move their head during the experiment, and the view of the 

stimulus was updated based on any head rotation. Thus, the use of the virtual reality 

headset made some extra-retinal head motion cues available as well. For comparison, 

in Figure 5b we show the average perceived direction for the same range of motion 

trajectories presented to observers in this virtual reality environment (90 cm distance, 

✓
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100% contrast). The weaving pattern again indicates that there is a lateral bias in these 

experimental data, as predicted by the model. The presence of other cues may reduce 

the lateral bias, but they do not eliminate it.	

	

 
Figure 5. Comparison between model predictions and average human performance in Experiment 
1. (a) Predicted reports of perceived target direction as a function of the true stimulus direction for a 

participant viewing a stimulus from a distance of 90 cm. (b) Averaged results for the 15 participants who 

took part in the experiment viewing the stimulus within the virtual-reality environment at 90 cm in the 

same format as (a). Data are binned in 10 degree increments. Error bars correspond to +/-1 standard 

error of the mean (SEM) across participants.	
	

Figure 6 expands upon this result and shows how this bias changes as a function of 

two stimulus features: the viewing distance and the contrast of the stimulus. Each bar 

indicates the average signed error between the stimulus and the percept predicted by 

the model (Figure 6a) or the measured participant responses from the experiment 

(Figure 6b). Larger values of this error indicate larger laterality biases (see Methods). 

The model (Figure 6a) predicts a decrease in the laterality bias with decreased viewing 

distances (i.e., 45 cm versus 90 cm). The model also predicts an increase in the 

laterality bias for lower contrast stimuli. This predicted increase is more substantial for 

the near viewing distance (dark bars), and is relatively weak for the farther viewing 

distance (light bars), for which the lateral bias is substantial at all contrasts. Both of 

these effects are present in the observed errors in the behavioral experiment (Figure 
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6b); however, the overall magnitude of the errors is smaller. Because the model 

considers only one depth cue (motion), and the experiments contain many more, it is 

reasonable to expect a somewhat reduced magnitude of the observed errors. Recall 

that the model was matched to the data using a single free parameter: setting the 

variance of the likelihood for a single stimulus (45cm distance, 100% contrast). 	

A two-way ANOVA performed on the experimental data showed a significant 

main effect of viewing distance on human performance (F(1,135)=6.67, p=0.01), with a 

reduction in perceptual bias for object motion nearer to the head. Moreover, the data 

reveal the predicted effect of target contrast on human performance. Specifically, 

viewing distance interacts with target contrast. Multiple comparisons revealed that the 

relative decrease in perceptual bias at the nearer viewing distance is significantly 

greater for the mid and high target contrast levels (p<0.0167, Bonferroni-corrected 

alpha). The perceptual bias is also impacted by an increase in viewing distance for low 

contrast targets, however, the difference reported here failed to reach significance 

(p=0.026) at the Bonferroni-corrected alpha level. 	

	

	
Figure 6. Comparison between model predictions and human lateral bias in Experiment 1. (a) 
Mean signed error in predicted perceived target direction for viewing three target contrast levels at two 

viewing distances. Negative values (increasing on the ordinate) correspond to reports that are laterally 

biased. (b) Results for the 47 participants (n=15 for 90 cm and n=32 for 45 cm) who took part in the 

experiment viewing the stimulus within the virtual-reality environment in the same format as (a). Error bars 

correspond to +/-1 SEM. 	
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While a previous model did predict an effect of viewing distance (Welchman et 

al., 2008), prior experimental studies concluded that distance does not modify the lateral 

bias (Harris & Dean, 2003; Poljac, Neggers, & van den Berg, 2006). Until now, this 

inconsistency between model and data had not had a clear explanation. However, as 

demonstrated in Figure 6a, the amount of the predicted difference between viewing 

distance interacts with other properties of the stimulus uncertainty (here shown as 

contrast, but generally summarized as the variance of the likelihood). Thus, it is possible 

that some experimental set ups would reveal a distance effect, and others might not, 

particularly with relatively small sample sizes such as those used in the previous studies 

(3 and 6 participants, respectively). The current set of experimental data are clearly 

consistent with an impact of Bayesian inference on biases in 3D motion perception.	

In addition to the dependence of the laterality bias on viewing distance, the 

model also predicts a dependence on stimulus eccentricity. The model predicts that the 

relative stimulus uncertainty in depth (and therefore the laterality bias) should be 

reduced when an object is located off to the left or right, rather than directly in front of 

the observer (Figures 2 and 4). We will return to this prediction in last section of the 

Results. 

 

Misperceptions in motion direction in the midsagittal plane 

Recent work has shown that motion trajectory judgments can be subject to direction 

reversals for approaching and receding motion, but much less so for leftward and 

rightward motion (Fulvio et al., 2015). That is, observers sometimes report that 

approaching stimuli appear to move away, and vice versa, but rarely if ever report 

leftward-moving stimuli as appearing to move rightward, and vice versa. Can such 

reversals be explained by our Bayesian model? The preceding analysis of laterality 

biases is based on taking the MAP in order to predict the average perceived motion 

trajectory for a given stimulus. However, the Bayes observer model is fundamentally 

probabilistic. On any given stimulus presentation, the percept is expected to be drawn 

from the sampling distribution of the MAP.  

To examine whether perceived direction reversals can be accounted for by the 

model, we first plot the full sampling distribution of the MAP for two example stimuli: 
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motion directly towards an observer (270 deg) and motion directly to the right (0 deg) 

(the left panels of Figure 7a and b, respectively). Specifically, for each example 

stimulus, we show a heat map of this distribution, with x’ plotted on the horizontal axis 

and z’ plotted on the vertical axis. These plots demonstrate that a large percentage of 

the sampling distribution for a stimulus moving towards an observer can occur for 

trajectories that recede in depth. In other words, the variance of the MAP sampling 

distribution in the z-direction can be large enough so that it extends into the opposite 

direction of motion. For rightward motion however, very little of the distribution occurs 

for leftward trajectories, and vice versa. To examine the percentage of trials in which 

observers should misreport motion direction, we converted the trajectories in the 

sampling distribution of the MAP to direction angles and replotted the normalized 

frequency in polar coordinates as a function of motion direction (Figure 7a and b, right 

panels). Non-zero values in the opposite direction of motion (away or leftward) indicate 

that the model predicts a certain percentage of trials will include direction confusions.	

Next, we examined the effects of distance and contrast on predicted and 

observed direction confusions, averaging across all directions of motion in the world. 

Figure 7c and d show that the Bayesian model predicts that direction confusions for 

motion-in-depth (Figure 7c) will greatly exceed lateral motion confusions (Figure 7d). 

Each bar represents the predicted percentage of trials in which direction will be 

confused, and the dashed line indicates chance performance (50%). 	

For motion-in-depth confusions, the model predicts that direction confusions will 

decrease with reduced viewing distance (90 cm versus 45 cm). The model also predicts 

that direction confusions will increase as sensory uncertainty increases (contrast 

decreases from 100% to 15% to 7.5%), most markedly at the nearer viewing distance 

(dark bars). The upper right-hand panel in Figure 7c shows the results from Experiment 

1, plotted in the same manner as the model predictions. Overall fewer confusions occur 

in the experimental data than are predicted by the model, likely due to the presence of 

visual cues to motion-in-depth in the experiments, that were not incorporated into the 

model. Importantly, however, the overall effects of stimulus distance and contrast are 

well-matched to the model predictions.  
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A two-way ANOVA conducted on the data from Experiment 1 revealed a main 

effect of viewing distance on human performance (F(1,135)=5.8, p=0.02), with a 

reduction in direction confusions for object motion nearer to the head. There was also a 

significant interaction between viewing distance and target contrast (F(2,135)=4.3, 

p=0.02). Multiple comparisons revealed that direction confusions significantly increased 

for all target contrast levels (p<0.0167, Bonferroni-corrected alpha) as the viewing 

distance doubled from 45cm to 90cm.  

Because direction confusions might seem surprising, we compared these results 

to a second experiment (Experiment 2, lower right-hand panel for Figure 7c). This 

experiment used a standard stereoscopic display and a random dot stimulus. Note that 

Experiment 2 included a contrast manipulation, but stimuli were always presented at 

one distance, and the high contrast condition was 60% rather than 100% Weber 

contrast. As predicted, a one-way ANOVA on the data from Experiment 2 revealed a 

main effect of target contrast (F(2,4)=160.99, p<0.001). 

The model predicts that lateral motion direction confusions will be much less 

frequent, but will be similarly affected by viewing distance and stimulus contrast (Figure 
7d, left panels). That is, in the fronto-parallel plane, direction confusions will decrease 

with reductions in viewing distance and increase with reductions in stimulus contrast. 

These predicted effects were present in both experiments (Figure 7d, right panels). A 

two-way ANOVA on the data from Experiment 1 revealed main effects of both viewing 

distance (F(1,135)=32.8, p<0.001) and contrast (F(2,135)=35.2, p<0.001). The 

interaction between viewing distance and contrast was also statistically significant 

(F(2,135)=14.4, p<0.001). Follow up comparisons revealed that direction confusions 

significantly increased with viewing distance for the lowest contrast stimulus. Although 

the average percentage of lateral misperceptions was highest in the low contrast 

condition of Experiment 2, the effect of stimulus contrast was not statistically significant 

(F(2,6)=3.4, p=0.1).  

To summarize, while overt confusions in the direction of motion seem surprising 

on their own, they are clearly predicted by the same Bayesian motion perception model 

that accounts for other perceptual phenomena. 
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Figure 7. Direction confusions for motion-in-depth and lateral motion. (a,b) Illustrations of the 

predicted sampling distribution of the MAPs for motion directly towards an observer (a) and directly to the 

right of an observer (b) in Cartesian and polar coordinates. Model parameters used were for a 90cm 

viewing distance, and 100% stimulus contrast. (c,d) Predictions of the model and experimental results for 

motion-in-depth confusions (c) and lateral motion confusions (d). Experiment 1 and Experiment 2 are 

shown in separate panels. Error bars correspond to +/-1 SEM.	
 

In addition to these overall motion-in-depth direction confusions, it is well 

documented that motion trajectories towards the observer have some amount of 

‘privileged’ perceptual processing (Lin et al., 2008, 2009; Schiff et al., 1962). Indeed, 

using similar random dot stimuli to those from Experiment 2, our prior work has shown 

an overall bias to perceive motion-in-depth stimuli as approaching rather than receding 

(Fulvio, Rosen, Rokers, 2015; Cooper, van Ginkel, & Rokers, 2016). Still under some 

(low contrast) stimulus conditions, this bias is reversed, and motion tends to be 
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perceived as receding. Indeed, this same pattern was observed in the current 

experiments – for the low contrast stimuli, there were substantially more motion-in-depth 

misreports when the stimuli moved towards the observer (a ‘receding bias’), and for the 

high contrast stimuli, this tended to reverse (a ‘towards bias’). The current Bayesian 

model does not predict these asymmetries – although the sampling distribution of the 

MAP extends into reversed directions, the average of this distribution (the MAP itself) is 

always in the same direction as the stimulus. An additional prior assumption, a prior that 

shifts away from zero speeds for some stimuli, or attentional effects would need to be 

incorporated to account for these asymmetries in how direction confusions occur. 

 

3D motion perception outside of the midsagittal plane  
The previous sections have considered motion trajectories originating in the midsagittal 

plane. Of course, in the real world, stimuli need not be confined to this plane and may 

originate in any location relative to the observer. The model reveals that while the 

uncertainty for motion estimates in both x and z increases with distance from this plane, 

it does so at different rates (Figure 4). While uncertainty of the z motion estimate is 

typically much larger than the corresponding x motion estimate in the midsagittal plane, 

the relative uncertainty decreases away from that plane. In fact, at an angle of 45 deg 

away from that plane the relative uncertainty becomes unity, predicting unbiased 

estimates of motion trajectory. Beyond 45 degrees the relationship reverses, such that 

the model will predict a medial, rather than a lateral bias. Another way to think about this 

is that the axis of maximal uncertainty shifts from being aligned with the z axis in the 

midsagittal plane to becoming aligned with the x axis for motion originating directly to 

the left or right of the observer (see Figure 2). Because of this, estimated motion 

trajectories predicted by the model will differ between midsagittal and peripheral motion 

trajectories. 

 In Experiment 3, we tested whether the observed lateral bias and motion 

direction confusions are affected by stimulus location, in accordance with model 

predictions. Figure 8a and c show the model predictions for lateral bias and direction 

confusions for motion trajectories originating in the midsagittal plane (central) and 20 

deg to the left or right (peripheral). At this eccentricity, the lateral bias is predicted to 
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change only slightly, decreasing for peripheral targets by just 0.7 deg relative to central 

targets (Figure 8a). In contrast, the model predicts that the percentage of motion 

direction confusions will increase substantially for lateral motion (x) and decrease 

slightly for motion-in-depth (z) at peripheral locations, relative to the midsagittal location 

(Figure 8c). These model predictions are qualitatively similar to the experimental data: 

we observed a small decrease in lateral bias and motion-in-depth confusions at the 

peripheral location, and a large increase in lateral direction confusions (Figure 8b and 

d). It is also notable that performance was overall worse in this experiment (the lateral 

bias was larger than in the 45 cm midsagittal stimulus from Experiment 1). This is 

potentially because of the additional demand placed by asking the observers to attend 

to all three possible stimulus locations at the start of a trial. 

 A paired-sample t-test on the data from Experiment 3 revealed no difference in 

lateral bias in response to targets located at the center and at the periphery (t(20)=-

1.45, p=.16). However, on average the lateral bias decreased for peripheral targets by 

3.7 deg. There was a small decrease in motion-in-depth direction confusion at the 

peripheral locations of ~1.38% of trials on average, but this difference was also not 

significant (t(20)=0.78, p=.44). By contrast, there was a substantial and significant 

increase in lateral motion direction confusion at the peripheral locations of 20.9% on 

average (t(20)=-10.82, p<0.001). Thus, consistent with the model predictions, 

confusions of the lateral motion (x) component of 3D motion stimuli increased 

significantly with an increase in stimulus eccentricity, whereas confusions for motion-in-

depth and the lateral bias did not.  
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Figure 8. Lateral bias and direction confusions in central and peripheral locations. (a,b) Predictions 

of the model (a) and experimental results for stimuli present in the midsagittal plane (center) and 20 deg 

to the left or right (periphery). (c,d) Predictions of the model (c) and experimental results (d) for lateral 

motion confusions (x) and motion-in-depth confusions (z). Error bars correspond to +/-1 SEM.	

	

	

Discussion	
	

We have presented a Bayesian model of 3D motion perception that predicts systematic 

errors in perceived motion direction, including a lateral bias, a surprising tendency to 

report approaching motion as receding and vice versa, and a dependency of these 

errors on viewing distance, contrast, and eccentricity. We tested these predictions in a 

VR environment where monocular, binocular, and head motion cues to 3D motion were 

available, and established that the errors persist under such conditions. Thus, our 

results demonstrate that uncertainty in retinal velocity signals, coupled with a prior for 

slow motion and simple geometric considerations, accounts for a number of motion 
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perception phenomena in the three-dimensional world. Our model provides a framework 

through which to understand errors in 3D motion perception at arbitrary locations, and 

further supports the idea that visual perception can be accurately and parsimoniously 

modeled as a process of probabilistic inference. 	

	

Previous Bayesian Models of Motion Perception	
This work extends a line of Bayesian models that account for errors in motion 

perception for stimuli presented in the fronto-parallel plane (Yuille & Grzywacz, 1988; 

Weiss et al., 2002, Stocker & Simoncelli, 2006). Critically, these models make the 

assumption that motion percepts are perturbed by the uncertainty in the sensory input 

combined with a prior for slow motion.   

Why would observers employ a prior for slow speeds in the world? A slow motion 

prior presumably reflects the fact that objects in the world are most likely stationary, and 

if moving are more likely to move slowly rather than quickly. This prior would thus have 

to disregard the contributions of eye, head, and body motion to the visual input. 

Nonetheless, even during head-free fixation, it has been shown that retinal velocity 

signals are biased towards slower speeds (Aytekin, Victor, & Rucci, 2014). Thus, there 

is both strong theoretical and experimental evidence that a slow-motion prior would be 

adaptive for humans. 	

Two groups have previously extended motion perception models to account for 

errors in the perception of 3D motion based on binocular cues (Lages, 2006; Welchman 

et al., 2008). The model proposed by Welchman provides an account for the lateral bias 

and predicts an effect of viewing distance. However, since the derivation relies on the 

small angle approximation, this model supports the idea that the perception of motion-

in-depth is inherently less reliable than equivalent lateral motion. While this is generally 

the case for motion in the midsagittal plane, we show that this is by no means a general 

property of motion-in-depth throughout the visual space. A second added contribution of 

the current work is to derive the full sampling distribution of the MAP, and therefore 

account for trial-to-trial variability in judgments of motion direction. Examination of trial-

to-trial variability in the experimental data reveals that, in addition to a well-documented 

lateral bias for motion moving towards the head, observers systematically misreport 
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direction of motion-in-depth such that they judge approaching motion as receding, and 

vice versa.  

While the Welchman model relied on retinal velocity cues, the model proposed 

by Lages considered the separate contributions of two binocular cues to 3D motion – 

interocular velocity differences (IOVD) and changing binocular disparity (CD) signals. 

The Lages study concluded that disparity rather than velocity processing introduced the 

lateral perceptual bias. However, the Lages model assumed that prior assumptions 

operate in retinal coordinates (Lages, 2006; Lages & Heron, 2008).	Here we have 

assumed that the combination of the prior and the likelihood takes place in world 

coordinates. While these assumptions are essentially equivalent for predicting percepts 

in the fronto-parallel plane, they can produce different predictions for motion-in-depth, 

depending on whether binocular disparity or binocular motion cues are assumed to be 

the key visual cue (Lages, 2006). In particular, a model based on combining a prior for 

motion in retinal coordinates does not predict a lateral bias in 3D motion perception 

(Lages, 2006). 

Interestingly, in the experiments reported in Lages (2006), performance in 

response to both approaching and receding motion was measured, providing an 

opportunity to observe the misreports of motion-in-depth reported here. However, in the 

data analysis, misreports of the depth direction were treated as indications that 

participants were unable to do the task (if occurring on a large proportion of trials) or 

‘bad’ trials in which participants did not see the stimulus. Therefore, such misreports 

were not treated as a meaningful feature of visual processing until now. 

What is the natural coordinate system in which to formulate a Bayesian 

perceptual model? We would argue that combining the prior and likelihood in world 

coordinates makes the most sense because it is ultimately motion in the world and not 

motion on the retina that is relevant to an organism. Thus, the prior and likelihood 

should be combined in world coordinates to generate a posterior distribution that 

represents the best-guess for motion in the world, not motion on the retina. However, 

the extension of a prior for slow speeds into a probability distribution over 3D velocities 

does not have a single solution. For the current model, we assumed (as has been done 

previously) that the prior distribution (as well as the likelihood and posterior) is 
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represented in a Cartesian world-space over x’ and z’, where motions towards/away 

and left/right are continuous with each other (i.e., positive and negative arms of the 

same axis; see Figure 7a and b heatmaps). This type of coordinate system is 

necessary in order for the model to predict the prevalence of direction confusions in 

depth because the resulting posterior distribution often straddles the z’=0 but not the 

x’=0 line. From a purely computation perspective, it would be reasonable to consider 

that the probabilities of motion trajectories might be represented in terms of polar 

direction/speed. But in such a coordinate system, it is unclear if the same pattern of 

direction confusions would result. The clear match between the direction confusion 

predictions of our model and the experimental data provide strong support that the 

current model captures essential features that describe the inferences that underlie 

motion perception.  

	

Errors in the Real World	
The errors predicted by the current model will no doubt be most apparent in the real 

world under demanding conditions, such as when there is limited time, or poor visibility 

(Pretto, Bresciani, Rainer, & Bülthoff, 2012; Shrivastava, Hayhoe, Pelz, & Mruczek, 

2010; Snowden, Stimpson, & Ruddle, 1998). In situations where sensory uncertainty is 

very low, the model predicts that these perceptual errors will be negligible. It is difficult 

to quantify what level of sensory uncertainty a person will be subject to at any particular 

time during day-to-day life under natural viewing conditions. However, we do know that 

when stimulus contrast is very high (>100% Michelson contrast), the lateral bias can 

effectively disappear for practiced observers (Fulvio, Rosen, Rokers, 2015). While the 

motion-in-depth confusions persist longer in the laboratory, we expect that these may 

be similarly reduced by the presence of additional and more reliable visual cues. In fact, 

the presence of these systematic errors may provide a way to compare and quantify the 

performance of different virtual reality display systems, especially those that incorporate 

less well-understood cues such as predictive head motion, or defocus blur. 
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Implications for Neural Processing of Motion	
While the current model is perceptual and not mechanistic, our predictions and results 

are relevant to investigating the neural mechanisms that underlie motion perception. 

The central role of area MT in the processing of binocular 3D motion signals is now 

well-established, based on both neuroimaging (Rokers, Cormack, Huk, 2009) and 

electrophysiology studies (Czuba, Huk, Cormack, & Kohn, 2014; Sanada & DeAngelis, 

2014). Our model highlights the fact that both position and binocular speed tuning are 

essential for inferring the trajectory of a stimulus moving in 3D. Take the case of an 

object moving directly towards the mid-point between the two eyes. If this object is 

located in the midsagittal plane, it will cast equal and opposite horizontal velocities in 

the two eyes. However, if this object has an eccentric location to the left of the 

midsagittal plane, the velocities cast on the two eyes will not be equal and opposite – 

they will have opposite signs but the velocity in the left eye will be greater. Thus, the 

interpretation of an MT neuron’s tuning profile and preference for 3D motion must 

somehow take location of the stimulus relative to the observer into account, 

independent of retinotopic location. 

When it comes to the slow motion prior, there remains significant debate on how 

prior assumptions for visual motion factor into the neural computations, and where 

perceptual biases arise along the visual motion processing pathway. Results from 

neuroimaging show that responses to 2D motion stimuli can depend on perceived rather 

than presented speed as early as V1, suggesting that motion priors interact with 

sensory evidence at the earliest stage of cortical processing (Vintch & Gardner, 2014). 

However, evidence from electrophysiology has been decidedly more mixed (Pack, 

Hunter, Born, 2005; Krekelberg, van Wezel, & Albright, 2006; Livingstone & Conway, 

2007). Since the biases for the lateral motion and motion-in-depth components for 3D 

stimuli have different magnitudes, these differences provide an additional signature for 

determining whether the responses of particular neuronal populations are driven by the 

stimulus or the percept.  
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Conclusion	
Understanding how Bayesian inference plays out during natural vision and natural 

behavior requires not only characterizing the prior assumptions of an observer, but also 

having a deep understanding of the sensory signals available at a given point in time. 

The current model predicts perceived 3D motion under a wide range of scenarios and 

viewing conditions, and in doing so provides a parsimonious account of multiple 

seemingly disparate perceptual errors. 
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