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Abstract

Exome sequencing approach is extensively used in research and diagnostic laboratories to discover

pathological variants and study genetic architecture of human diseases. Even if present platforms

produce high quality sequencing data, false positives variants remain an issue and can confound

subsequent analysis and result interpretation. 

Here,  we  propose  a  new tool  named  GARFIELD-NGS (Genomic  vARiants  FIltering  by  dEep

Learning moDels in NGS), which uses deep learning algorithm to dissect false and true variants in

exome  sequencing  experiments  performed  with  Illumina  or  ION  platforms.  GARFIELD-NGS

consists  of  4  distinct  models  tested  on  NA12878  gold-standard  exome variants  dataset  (NIST

v.3.3.2): Illumina INDELs, Illumina SNPs, ION INDELs, and ION SNPs. AUC values for each

variant category are 0.9267, 0.7998, 0.9464, and 0.9757, respectively. GARFIELD-NGS is robust

on low coverage data down to 30X and on Illumina two-colour data, as well.

Our tool outperformed previous hard-filters, and calculates for each variant a score from 0.0 to 1.0,

allowing application of different thresholds based on desired level of sensitivity and specificity.

GARFIELD-NGS processes standard VCF file input using Perl and Java scripts and produces a

regular VCF output. Thus, it can be easily integrated in existing analysis pipeline. GARFIELD-

NGS is freely available at https://github.com/gedoardo83/GARFIELD-NGS.
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Introduction

Whole exome sequencing (WES) is a powerful method ideally designed to rapidly investigate all 

the coding sequences in human genome at base resolution, allowing to detect a wide spectrum of 

genetic variations1–3. In the latest years great advances were taken in Next Generation Sequencing 

(NGS) field and WES experiments have become faster, cheaper and easier to perform. These 

improvements encouraged the diffusion of WES through research laboratories, and allowed its 

translation from basic research to clinical use4,5. Indeed, WES has rapidly become a popular 

approach to discover new disease genes in rare Mendelian disorders6–8, as well as to evaluate risk 

alleles in complex disorders9,10.

Even if WES is now easy and affordable to perform, data analysis remains a critical and difficult 

step due to the quantity and complexity of information obtained from each experiment11,12. Previous 

studies have shown that genetic variants identified by exome sequencing often carries a significant 

proportion of false positive calls, especially INDELs1,13–15. This issue often implies additional costs 

for variants validation by Sanger sequencing, at least in diagnostic settings5,16. False positive calls 

pose serious challenges in downstream data analysis, introducing erroneous missense and loss of 

function variants, like frameshift INDELs, that are targets of most analysis work-flows17,18.

Effective bioinformatic approaches to filter out false positive calls have been developed for 

Illumina NGS data and Variant Quality Score Recalibration (VQSR) method from GATK best 

practises19 is now the most adopted filtering method. Besides its robust performances, VQSR gives 

optimal results when applied to large datasets, since it needs a large set of variants to train a 

machine learning algorithm20. This limits its application on single sample data, that could often 

occur in rare disease research projects or in diagnostic settings. Moreover, few filtering methods are

available for ION WES data, since the low spread of WES on this platform has led to low interest in

developing specific bioinformatic tools. As results, variant filtering strategies for single samples or 

trio analysis are today usually limited to hard filtering of variants based on a combination of quality 

parameters. For Illumina sequencing data, GATK best practises are the most widely adopted hard-

filters19, while for ION data there are only few reported strategies14. 

Machine learning (ML) approaches have been proven effective in solving classification problems in

complex systems21 and are rapidly diffusing also in the genomic field22. Indeed, ML algorithms 

revealed especially useful when the state of an object can not be deduced by single features or their 

linear combination, since they can integrate different layer of information and reveal hidden 

patterns in input data. In this way, ML models are often able to compute a robust probability value 

useful in object state classification. This approach has been successfully applied to the analysis of 
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genomic variants and several ML based models have been developed to predict impact of genomic 

variants on protein functionality23,24 or regulatory region25,26. ML algorithms are also implemented in

GATK VQSR strategy for false variant filtering on large datasets20. 

Here we propose a new tool, Genomic vARiants FIltering by dEep Learning moDels in NGS 

(GARFIELD-NGS), that relies on neural networks algorithm to effectively classify true and false 

variants. GARFIELD-NGS can be applied in single sample WES analysis and it is particularly 

effective on INDELs variants derived from both Illumina or ION platform. It is robust on medium 

and low coverage dataset and can be applied to experiments based on the recent 2-colour Illumina 

chemistry, as well.
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Results

Prediction models

To develop a new tool for variant filtering based on neural network machine learning algorithm, we 

first collected 22 different WES experiments for the NA12878 sample (Supplementary Table S1), 

generating a dataset of 178,450 Illumina variants (173,116 SNPs / 5,334 INDELs) and 181,479 ION

variants (177,362 SNPs / 4,117 INDELs). True and false calls were determined by comparison with 

the gold-standard calls provided by Genome in a Bottle Consortium (GIAB). Variants datasets were 

then randomly splitted in pre-training, training, validation and test sets as described in Material and 

Methods (Supplementary Table S2).

We developed 4 distinct models addressing INDELs and SNPs for both Illumina and ION 

platforms. After optimization of hyper-parameters and model refinement, we generated 4 prediction 

models optimized for each class of variants. All 4 models present 5 hidden layers, using Tanh or 

Rectifier activation functions for SNPs and INDELs models, respectively. Different specific values 

of rho, epsilon, l1, and l2 were obtained for each model as shown in Supplementary Table S3.

AUC values of final models on training and validation sets were > 0.90 for all variants groups but 

Illumina SNPs, showing a slightly worst performance with AUC almost 0.80 (Supplementary Fig. 

S1). Predictions of the proposed models resulted stable over 1,000 simulations (see Methods), 

showing high rate of prediction label concordance and low standard error values (Supplementary 

Fig. S2).

Features importance

To better understand contribution of the single features, we computed features importances for each 

prediction models and compared results with features distributions in the corresponding variants 

dataset. Features importance computed by H2O are reported in Figure 1, while a summary 

description of all features is provided in Supplementary Table S4. Most features in Illumina 

INDELs / SNPs and ION INDELs / SNPs revealed low performances in distinguishing false and 

true calls, as suggested by low r2 values and AUC scores (Supplementary Fig. S3-S7). Only for 

Illumina INDELs, QD (a specific score developed to predict variants confidence in Illumina 

dataset) and QUAL (variant quality) features emerged as good single predictors and they are 

confirmed as the most important features in the corresponding model (Figure 1a).  As expected, for 

most features we observed good concordance between ranking based on variable importance within 

each model and ranking based on AUC values. 

Interestingly, coverage related and strand-bias metrics are usually within the top discriminating 
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variables in each model, such as SOR and FS for Illumina SNPs or SSSB and FDP for ION SNPs 

and INDELs, respectively (Figure 1). For ION models we observed high impact for platform 

specific features evaluating the flow-space data, such as MLLD (mean log-likelihood delta per read)

and RBI (distance of bias parameters from zero). Other features related to known platform-specific 

issues also resulted with high importance, such as PBP (position of variants along the reads) for 

ION SNPs and HRUN (length of homopolymer run) for ION INDELs (Figure 1b,d). Analaysis of 

features scaled importance over 1,000 simulated models (see Methods) resulted in very low 

standard errors, suggesting features stability (Supplementary Table S5).

Prediction models performances on test sets

GARFIELD-NGS contains 4 models specifically optimized for Illumina INDELs, Illumina SNPs, 

ION INDELs, and ION SNPs datasets. Based on each model, our tool calculates for each variant in 

VCF file a confidence probability (CP) ranging from 0.0 to 1.0, with higher values associated to 

true variants. Actual performances of our models were evaluated using independent test sets of ~ 

80,000 SNPs and ~ 2,000 INDELs. 

AUC values > 0.90 were obtained for Illumina INDELs, ION INDELs and ION SNPs, while 

Illumina SNPs model showed slightly reduced performances with test set AUC 0.7998 (Figure 2). 

Accuracy is > 0.90 for all variants categories. CP values clearly distinguish true from false variants 

in test set for Illumina INDELs, ION INDELs, and ION SNPs (Figure 3). Differences are smaller 

between median values for Illumina SNPs: true calls 0.955, false calls 0.926. 

Applying the maximum accuracy filtering thresholds, GARFIELD-NGS correctly classifies more 

than 95% of true variants and reduced false positive variants significantly as shown in 

Supplementary Fig. S8. Performances at different thresholds are reported in Supplementary Table 

S6. Moreover, GARFIELD-NGS was tested on medium and low coverage experiments, using 

variants sets obtained from sequence data downsamped to 60X and 30X mean coverage. AUC 

values calculated on downsampled sets (60X / 30X) are similar to those obtained with full data, as 

shown in Figure 2. Finally, we tested our Illumina models on variants generated by the recent two-

colour Illumina chemistry, using data from HiSeqX experiments. GARFIELD-NGS predictions 

achieved AUC values of 0.9676 in INDELs and 0.8584 in SNPs from HiSeqX variant sets (Figure 

2a, b).

Comparison between GARFIELD-NGS, hard-filters and VQSR

Variants in our 4 test sets were re-analysed using hard-filters for Illumina19 and ION14 data, as 

described in methods. In Illumina INDELs, ION INDELs and ION SNPs groups, GARFIELD-NGS
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outperformed hard-filters, showing higher accuracy, while obtaining comparable performances on 

Illumina SNPs (Figure 4, and Supplementary Table S6).  

Largest improvements are seen for INDELs. Accuracy of GARFIELD-NGS reached 0.93 and 0.91 

for Illumina and ION INDELs, respectively, compared to 0.86 and 0.80 calculated for previous 

hard-filters. GARFIELD-NGS confirmed better performances also at 0.99 TPR threshold. 

Furthermore, we compared GARFIELD-NGS performances with GATK VQSR filters on Illumina 

data. VQSR calculated a VQLOD value for each variant and then different filtering thresholds could

be set based on desired level of sensitivity. GARFIELD-NGS outperformed GATK VQSR when 

applied on INDELs variants: VQLOD reached an AUC value of 0.6783, with 0.79 accuracy 

applying the 99.9 tranche filter, while GARFIELD-NGS reached 0.92 AUC and 0.93 accuracy when

applying maximum accuracy threshold. We obtained comparable performances for SNPs: VQLOD 

AUC value was slightly higher and the two methods showed comparable accuracy, with 

GARFIELD-NGS recognizing more false positive variants. Comparisons with VQSR filters are 

reported in Figure 4, and detailed in Supplementary Table S6. VQLOD ROC curve is reported in 

Supplementary Fig. S9.

Characterization of false positive variants identified by GARFIELD-NGS

Comparing false variants filtered by each method, GARFIELD-NGS models identified most of 

false variants also reported by hard filters. Meanwhile, the proportion of false variant missed by our 

method and identified by other filters remains generally low (Supplementary Fig. S10). Overall, 

GARFIELD-NGS models variants seems less dependent on single variant quality metrics like QD, 

QUAL and GQ, being able to recognize also false variants with high values that are usually 

classified as true by hard-filters and VQSR. When dealing with ION variants, our models are less 

influenced by coverage metric (FDP) and distribution of alternate allele observation between 

forward and reverse (FSAF, FSAR, STB, STBP) reads, being able to filter also variants with high 

coverage and balanced representation, that are usually retained by hard-filters. Distributions of 

features values differentially filtered by GARFIELD-NGS and other filters are reported in 

Supplementary Fig. S11-16.  

Assessment of GARFIELD-NGS on external replication datasets

To verify generalization of our models for practical use, we first applied GARFIELD-NGS on 35 

Illumina and 32 ION WES experiments performed on distinct samples. The percentage of variants 

filtered as false positive by our models is significantly higher when applied to rare variants (ExAC 

MAF < 10-5) compared to common variants for both Illumina and ION data (p-value 8.84x10-11 and 
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6.15x10-10, respectively), as shown in Supplementary Fig. S17.

To further verify GARFIELD-NGS performances and estimate optimal threshold for practical use, 

we tested our models on a set of variants validated by Sanger sequencing. We obtained 0.958 and 

0.878 accuracy on Illumina INDELs and SNPs, respectively. Test on ION variants resulted in 0.804 

and 0.955 accuracy for INDELs and SNPs, respectively. Results of external validation and 

suggested filtering thresholds are reported in Table 1.
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Discussion

Filtering out false variants from WES results is a long standing challenge in data analysis. Indeed, 

the high proportion of false calls, especially INDELs, generated by both Illumina and ION 

platforms1,13–15 poses serious challenges for downstream data analysis and result interpretation. 

Even if numerous tools have been proposed to analyse Illumina and/or ION data27,28, GATK remains

the most adopted variant caller for Illumina data, while the Torrent Variant Caller (TVC) is almost 

the only one adopted for ION data. Both approaches produce a discrete percentage of false positive 

calls, as we observed in our datasets as well (Supplementary Table S2). Taken singularly, variants 

features calculated by variants callers showed poor performance in predicting false and true calls 

(Supplementary Fig. S3-7), suggesting that their integration in a prediction model could be a more 

effective strategy. Thus, we decided to develop GARFIELD-NGS, a filtering method based on 

neural networks that integrates variant features reported by GATK or TVC (Supplementary Table 

S4) and can be applied directly to variant callers output to improve performances of current WES 

analysis pipelines. Deep neural networks have been widely applied in genomic studies29 and 

provided effective solutions to generate predictions from complex data, such as splicing prediction 

from RNA-Seq30 or identification of binding domains in DNA or RNA sequences31,32. The 

multilayer-perceptron alghoritm used here is especially effective to extrapolate useful classification 

when a large number of labeled data area available, as in our training datasets. To developed 

GARFIELD-NGS, we used WES data obtained by sequencing the NA12878 reference sample 

(Supplementary Table S1) and determined false and true variants by comparison with the gold-

standard calls provided by Genome In A Bottle consortium (GIAB) (Supplementary Table S2). In 

2013, GIAB has distributed the first set of gold standard calls for NA12878 sample based on 

integration of 13 different datasets obtained using different NGS technologies33. This constantly 

updated set of variants is now broadly accepted as a standard for variant identification 

benchmarking. Given a standard VCF4.2 file, GARFIELD-NGS calculates for each variant a score 

ranging from 0.0 to 1.0, with higher values associated to true calls (confidence probability, CP). The

tool is composed of 4 models, specifically developed on INDELs or SNPs variants coming from 

Illumina or ION experiments (Supplementary Table S3). 

Our method revealed robust performances on all 4 variants categories, showing high AUC values: 

0.9041 for Illumina INDELs, 0.7998 for Illumina SNPs, 0.9464 for ION INDELs, and 0.9757 for 

ION SNPs. GARFIELD-NGS predictions maintain robust performances when applied to results 

from medium (60 X) or low (30 X) mean coverage data or to data from the recently introduced 

Illumina 2-colour chemistry (Figure 2). While hard-filters only perform a boolean classification of 
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variants in true or false categories, GARFIELD-NGS calculates a prediction values ranging from 

0.0 to 1.0, with distinct distributions between false and true variants (Figure 3). This allows tuning 

of variant filtering threshold depending on the desired accuracy and specificity or even integration 

of CP value as prioritization score rather than variant filter. The maximum accuracy thresholds 

retain > 95 % of true calls while reducing false calls by 36-80 %, depending on variant category 

(Supplementary Fig. S8). Even when applying a threshold corresponding to 0.99 TPR, GARFIELD-

NGS maintains > 0.86 accuracy (Figure 4 and Supplementary Table S6). Overall, lower 

performances emerged for Illumina SNPs model. This may be explained by the peculiar nature of 

Illumina false SNPs, which are often systematic errors induced by specific sequence context34,35. 

This kind of information are not captured by variant annotations generated by GATK and evaluated 

by GARFIELD-NGS models, making our approach less effective on Illumina SNPs. This 

hypothesis is supported by the analysis of sequencing context around the identified SNPs as shown 

in Supplementary Fig. S18. 

Nowadays, the most applied strategy for false positive variants filtering on Illumina are the GATK 

hard-filters and VQSR method19,20. Alternative pipelines have been proposed such as GotCloud36, 

VarScan37 and SNPSVM38, which combine variant calling and variant filtering, or 

VariantMetaCaller39 and BAYSIC40, which integrate results of different variant callers to increase 

sensitivity and specificity. However, only few tools are available to refine SNPs and INDELs called 

using the widely adopted GATK. Moreover, these filtering tools are usually developed for specific 

experimental settings, like tarSVM for microfluidic based sequencing41, or require additional 

information or pedigree data to perform variant filtering, such as VarBin42 and LR43. Concerning 

ION data, widely adopted strategies for variant filtering are lacking, and only few filtering methods 

are reported14. GARFIELD-NGS predictions outperformed hard-filters for Illumina19 and ION14 data

in 3 variants categories, while results are comparable on Illumina SNPs (Figure 4 and 

Supplementary Table S6). A strong improvement in variant filtering was observed for INDELs on 

both Illumina (maximum accuracy 0.9355, TPR 0.9779, FDR 0.06) and ION data (maximum 

accuracy 0.9117, TPR 0.9542, FDR 0.0707). Even if Illumina SNPs AUC value is lower than those 

obtained from other models, GARFIELD-NGS performs as well as GATK hard-filters, showing a 

maximum accuracy of 0.9435, 0.9949 TPR and 0.0535 FDR. Compared to GATK VQSR, 

GARFIELD-NGS confirmed better performance on INDELs and comparable results on SNPs, with 

a slight increase in false positive detection (Figure 4, Supplementary Fig. S9).

We compared false positive variants filtered by GARFIELD-NGS and other strategies 

demonstrating that our models recognize most false calls identified by other filters on both ION and

Illumina data (Supplementary Fig. S10). Features distributions in false positive variants recognized 
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specifically by GARFIELD-NGS suggested that our tool can identify also challenging false calls 

with high coverage and quality, which escape hard-filters and VQSR. Overall, GARFIELD-NGS 

models seem less dependent on single variant quality metrics like QD, QUAL and GQ and ION 

models are less influenced by coverage metric (FDP) and distribution of alternate allele observation 

between forward and reverse reads (FSAF, FSAR, STB, STBP) (Supplementary Fig. S11-16).

When applied on replication WES datasets, the percentage of variants filtered as false positive by 

our models is significantly higher when applied to rare variants  (ExAC MAF < 10-5) compared to 

common variants for both Illumina and ION data (p-value 8.84x10-11 and 6.15x10-10), as shown in 

Supplementary Fig. S17. This supports the general applicability of our methods, since sequencing 

errors are expected to generate stochastic alterations presenting as rare or private variants, instead of

common polymorphisms. When applied to Sanger validated variants GARFIELD-NGS confirmed 

to be effective in variants filtering, reaching 0.804 – 0.958 accuracy (Table 1).

Overall, our tool effectively reduces false INDEL calls and could be useful to improve WES results 

interpretation considering that many work-flows search for variants that potentially alter gene 

function, especially loss of function variants like frameshift INDELs17,18.  GARFELD-NGS can be 

successfully applied to SNPs filtering as well, with performances comparable to hard-filters or 

VQSR.

These results define GARFIELD-NGS as a robust tool for all type of Illumina and ION exome data,

with particular focus on single or small multi-sample experiments. GARFIELD-NGS script 

performs automated variant scoring on VCF files and returns a standard VCF output with prediction

score added as INFO tags. Thus, it can be easily integrated in already established analysis pipelines.
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Materials and Methods

Data sources

Data used in model training, validation and test were based on 19 high-coverage exome sequencing 

experiments on the NA12878 reference sample, produced by either Illumina or Ion Torrent 

platforms (Supplementary Table S1 and Supplementary Fig. S19). Illumina dataset contains 9 

exome sequencing experiments from Sequence Read Archive (SRA), produced on Illumina HiSeq 

2000 / 2500 platforms. Mean coverage ranges from 77X to 164X, with > 85% of bases covered at 

least 20X. ION dataset includes 10 exome sequencing experiments produced on ION Proton 

platform: 6 obtained as aligned reads from Ion Community, and 2 as in-house exome experiments. 

For in house sequencing, NA12878 gDNA was obtained from Coriell Cell Repository and exome 

libraries were prepared from 100ng gDNA using ION AmpliSeq Exome RDY kit. Hi-Q PI OT2 200

kit was used for ISP template preparation using 8 μl of 100pM exome library and products were 

sequenced using Hi-Q PI Sequencing 200 kit and PI v3 chips on Ion Proton platform. The mean 

coverage ranges from 120X to 270X, with > 92% of bases covered at least 20X. To generate 

medium and low coverage datasets for models validation, BAM file of Illumina and ION 

experiments were downsampled to 30X and 60X mean coverage by random sampling using 

samtools. Additionally, we included an HiSeqX dataset consisting of 3 genome sequencing 

experiments produced on Illumina HiSeqX platform. Mean coverage ranges from 27X to 52X, with 

> 76% of bases covered at least 20X.

Variant calling

Illumina data were analysed following GATK best practices19,20. Briefly, sequencing reads were 

aligned to hg19 reference genome using BWA-mem v.0.7.1, followed by duplicate marking with 

Picard v.1.119 and BAM file realignment using GATK 3.6. Variants were then identified using 

GATK Haplotype Caller 3.6 with stand_emit_conf and stand_call_conf set to 10 and 30, 

respectively.  Ion Torrent data were processed using Torrent Suite v.5.0.2 and Torrent Variant Caller 

(TVC) v.5.0.2. Briefly, sequencing reads were aligned to hg19 reference genome using TMAP, 

followed by BAM file realignment and variant identification with TVC v.5.0.2, using standard 

parameters provided by manufacturer for AmpliSeq Exome protocol. The same pipelines were used 

to identify variants in 30X / 60X downsampled experiments. GATK and TVC were selected as the 

most widely adopted variant callers for Illumina and Ion Torrent data. To provide comparable 

representation of alleles across VCF 4.2 files, variants were decomposed, normalized and left 

aligned using vt tool44. Focusing on exome regions, we considered for further analysis only variants 
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located in RefSeq coding exons plus 5bp flanking regions and overlapping high confident regions 

defined in NIST v.3.3.2 data (ftp://ftp-

trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/NISTv3.3.2/).  

True and false variants in these regions were determined based on comparison with NA12878 gold-

standard calls from NIST v.3.3.233. This set of gold standard calls is based on integration of 13 

different datasets obtained using different NGS technologies and represents a broadly accepted 

standard for variant identification benchmarking. Detailed description of variants identified for each

experiment is given in Supplementary Table S1.

Definition of variant datasets for model development

For both Illumina and ION platforms we merged variants from all experiments resulting in 178,450 

Illumina variants (173,116 SNPs / 5,334 INDELs) and 181,479 ION variants (177,362 SNPs / 4,117

INDELs). SNP and INDEL variants were considered separately in subsequent analysis, generating 

four groups: Illumina INDELs, Illumina SNPs, ION INDELs, and ION SNPs. Variants in each 

group were then splitted randomly in 4 independent datasets to be used in models development: pre-

training, training and validation sets were used to develop and refine prediction models; test sets 

contained ~ 50% of overall variants and were used to assess prediction performances. Since both 

Illumina and ION platforms have high accuracy on SNP calls, SNPs sets contained a strongly 

unbalanced proportion of true calls. To avoid overfitting on true calls, pre-training and training sets 

were balanced by randomly removing true calls so that they contain at least 20 % of false variants.

Additionally, we assembled a 60X and a 30X test sets merging variants derived from downsampled 

experiments (see data sources) and randomly selecting ~ 50% of overall variants. HiSeqX test set 

was obtained merging variants from 3 HiSeqX experiments (see data sources). Detailed description 

of the final datasets used in this study is reported in Supplementary Table S2. The defined variant 

datasets consider only variants identified in WES data sources, so that true negative calls are 

represented only by called variants not present in NIST reference dataset and correctly identified as 

false by the model. Similarly, false positive variants are represented by calls not present in the NIST

reference dataset and not filtered by the model.

Model description

H2O's deep learning method is based on multi-layer perceptron algorithm implemented in a neural 

network model with feedforward multilayer architecture, trained with stochastic gradient descent 

using back-propagation. In this model, the weighted combination α =∑n 
i=1wi xi + b of input signals 

is aggregated, and then an output signal f(α) is transmitted by the connected neuron. Here, xi and wi 
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represent the firing neuron’s input values and their weights, respectively. The function f represents 

the nonlinear activation function used throughout the network and the bias b represents the neuron’s

activation threshold. The network contains multiple hidden layers of nonlinearity consisting of 

numerous interconnected neuron units with Tanh, Rectifier, or Maxout activation functions f.

The l1 and l2 regularization parameters are implemented to prevent overfitting. They act modifying 

loss function to minimize loss: L'(W, B | j) = L(W, B | j) + λ1R1(W, B | j) +  λ2R2(W, B | j).

In l1 regularization R1(W, B | j) represents the sum of all l1 norms of the weights and biases in the 

network. l2 regularization via R2(W, B | j) represents the sum of squares of all the weights and biases

in the network. Learning process occurs by tuning weighs to minimize the errors in labeled training 

data.

Evaluation of features importance

We used variant features reported in VCF file version 4.2 produced by GATK and TVC variant 

callers to train deep learning algorithms predicting true out of false variants. Detailed description of 

features is reported in Supplementary Table S4. To estimate contribution of each feature, we 

analysed their distributions across all variants using logistic regression model to estimate their 

ability to distinguish false and true calls (Supplementary Fig. S3-S6). Classification capability of 

each feature on different class of variants was also evaluated using ROC curve (Supplementary Fig. 

S7). Features importance within each prediction model was calculated using the Gedeon 

method45 as implemented in H2O package, reporting scaled variable importances. The scaled 

importance represents the relative importance across all variables, scaled to 1.

Development of prediction models

We used variant features reported in VCF4.2 file output by GATK and TVC variant callers to train

deep learning algorithms predicting true out of false variants. We included 18 features for ION 

variants and 10 for Illumina variants (Supplementary Table S4). INDELs and SNPs were treated 

separately for each platform, generating 4 distinct prediction models: Illumina INDELs, Illumina 

SNPs, ION INDELs, and ION SNPs. Deep learning models development was performed using H2O

3.10.4.5 (http://www.h2o.ai).

First, hyper-parameters were optimised for each model using corresponding training sets and 10 

fold cross-validation. We used random search to explore space of 6 hyper-parameters: l1, l2, rho, 

epsilon, hidden layers and activation function. Search was conducted with early stopping based on 

log-loss (5 stopping rounds with 10E-03 stopping tolerance), generating at least 10,000 different 

models. Models were ranked according to cross-validation AUC and the best five hyper-parameters 
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combinations were used for further model refinement. For each combination we first performed 

unsupervised pre-training with autoencoder on pre-training sets using 1,000 epochs and early 

stopping based on log-loss (10 stopping rounds with 10E-5 stopping tolerance). Prediction models 

were than initiated with the corresponding pre-training model and refined on training and validation

sets using 1,000 epochs and early stopping as above (Supplementary Fig. S20). For each group of 

variants, a final prediction model was selected based on AUC value on validation set. The 

architecture of each model is reported in Supplementary Table S3. Finally, GARFIELD-NGS 

prediction performance for each variants category was evaluated on test sets using the 

corresponding model.

Features and models stability

Stability were assessed by 1,000 simulations for each of the four models. In each simulations we 

removed a random 1% of the original training set and then performed model training with the same 

parameters used for the original model. To evaluate models stability, we analysed concordance of 

predictions on test sets across the 1,000 simulated models, measuring concordance of prediction 

label and standard error of the output value. Features stability were assessed measuring the standard

error of scaled importance for each feature across the simulated models.

Comparison with hard-filters and VQSR

Variants in our 4 test sets were re-analysed using hard-filters for Illumina, as described in GATK 

best practises19,and ION14 data. For Illumina data we created 2 sets of filtered variants using quality 

based metrics and then adding genotype quality (GQ) filter after GQ refinement, as described in 

GATK protocols. Instead, for ION data we created 3 sets of filtered variants applying hard, medium 

and low stringency filters proposed in the original paper.

Variant Quality Score Recalibration (VQSR) was applied separately to VCF files from each sample 

according to parameters described in GATK best practises for WES experiments19, to reproduce 

filtering on single samples. This method reports for each variant a VQLOD value and it can be 

applied as hard filter, choosing the desired filtering tranche. We compared performances of VQSR 

and GARFIELD-NGS on the test sets variants, considering both VQLOD value distribution or the 4

suggested hard-filtering thresholds (100, 99.9, 99, 90 tranches). VQSR could not be applied 

effectively to ION data, since the VCF file produced by TVC lack several features evaluated by this 

filtering method.

GARFIELD-NGS validation on external dataset
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To test GARFIELD-NGS on completely independent data, we assessed how our models filter 

variants from WES data not processed by our pipeline. We obtained VCF files for 35 Illumina 

(mean coverage >60 X) and 32 ION (mean coverage > 90 X) WES experiments. Illumina data were 

generated on either HiSeq 2000 or HiSeq 1000, using Agilent SureSelect All Exon v4 or v5 kits for 

exome capture. Variants were identified using GATK v.3.3 or v.3.4 following GATK best practices. 

ION data were generated on Ion Proton, using Hi-Q chemistry and AmpliSeq Exome RDY kit for 

exome capture. Variants were identified using TVC v.5.0 or v.5.2. Variants were decomposed, left 

aligned and normalized using vt tool and then annotated with MAF in human population from 

ExAC v0.3.1. We analysed the percentage of rare (MAF < 10-5) and common variants that were 

filtered by our models using the max accuracy thresholds in each sample.

To validate GARFIELD-NGS and estimate optimized thresholds for practical usage, we applied our

models to a set of external variants that were previously validated by Sanger sequencing. We 

collected 65 (41 SNPs, 24 INDELs) and 101 (67 SNPs, 34 INDELs) variants from 95 and 46 

different samples for Illumina and ION based sequencing, respectively (Table 1). Illumina variants 

are derived from gene panel target resequencing (86 samples) and WES experiments (9 samples). 

Gene panel data were generated on MiSeq platform using TruSeq custom amplicon assay (64 

samples) or Nextera rapid capture assay (22 samples) for target region capture. Samples resulted in 

mean coverage between 70 and 650X. WES data were generated on HiSeq 2000 platform using 

Agilent SureSelect All Exon v4 / 5 for target region capture. Samples resulted in mean coverage 

between 70 and 650X.Variants were aligned to hg19 reference genome using BWA and variants 

were identified using GATK UnifiedGenotyper. ION data were generated on Ion Proton platform, 

using Hi-Q chemistry, PI v3 chip and AmpliSeq Exome RDY kit for exome capture. Samples 

resulted in mean coverage between 80 and 120X. Sequencing reads were aligned to hg19 and 

variants were identified using TVC v.5.2. Based on results from Sanger sequencing, we assessed the

performance of our models to distinguish false and true variants and estimated optimal thresholds 

for variant filtering.

Data availability and implementation

The Illumina and ION datasets analysed in the present study are available from the SRA archive 

repository or Thermo Fisher Cloud as described in Supplementary Table S1. Releases are freely 

available at: https://github.com/gedoardo83/GARFIELD-NGS
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Figure Legends

Figure 1. Features importances in GARFIELD-NGS models

Importance of each feature in prediction models is reported as scaled importance in Illumina 

INDELs (a),  ION INDELs (b),  Illumina SNPs (c), and ION SNPs (d) models. The scaled 

importance represents the relative importance across all variables, scaled to 1.

Figure 2. ROC curves of GARFIELD-NGS final models on test datasets

Performance of prediction models were assessed using ROC curves on test sets, 60X and 30X 

downsampled sets, and HiSeqX sets. Performances were evaluated separately on Illumina data 

(INDELs in a, SNPs in b) and ION data (INDELs in c, SNPs in d). Values of area under the curve 

(AUC) are indicated in the graphical plots.

Figure 3. Distributions of GARFIELD-NGS score for true and false variants

GARFIELD-NGS models assign a score from 0.0 to 1.0 to each variant. Distributions of 

GARFIELD-NGS score for true and false variants are clearly separated for Illumina INDELs (a), 

ION INDELs (c), and ION SNPs (d) test sets. Smaller difference is observed for Illumina SNPs (b). 

Black dots indicate median values. True and false distribution are significantly different in all 

groups (t-test p values < 2.2e-16).

Figure 4. Comparison between GARFIELD-NGS and hard-filters

Performances of GARFIELD-NGS, hard-filters and VQSR were compared for Illumina (a) and 

ION (b) datasets, reporting accuracy, true positive rate (TPR) and specificity (left to right in each 

panel).
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Tables

Table 1. GARFIELD-NGS performance on independent replication data.

Performance of GARFIELD-NGS prediction when applied to external variants validated by Sanger 

sequencing. The number of samples and the number of true / false calls in each category is reported,

together with the optimal threshold for filtering. Variants with CP < threshold are classified as false. 

TPR: true positive rate, TNR: true negative rate.

Platform Samples Category TRUE FALSE Threshold Accuracy TPR TNR

Illumina 95
SNPs 17 24 0.025 0.878 0.941 0.833

INDELs 13 11 0.630 0.958 0.923 1.000

ION 46
SNPs 37 30 0.139 0.955 0.972 0.933

INDELs 12 22 0.320 0.804 0.916 0.727
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