New Results
DeepARG: A deep learning approach for predicting antibiotic resistance genes from metagenomic data
G. A. Arango-Argoty, E. Garner, A. Pruden, L. S. Heath, P. Vikesland, L. Zhang
doi: https://doi.org/10.1101/149328
G. A. Arango-Argoty
1Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
E. Garner
2Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
A. Pruden
2Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
L. S. Heath
1Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
P. Vikesland
2Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
L. Zhang
1Department of Computer Science, Virginia Tech, Blacksburg, VA, USA

Article usage
Posted June 12, 2017.
DeepARG: A deep learning approach for predicting antibiotic resistance genes from metagenomic data
G. A. Arango-Argoty, E. Garner, A. Pruden, L. S. Heath, P. Vikesland, L. Zhang
bioRxiv 149328; doi: https://doi.org/10.1101/149328
Subject Area
Subject Areas
- Biochemistry (9546)
- Bioengineering (7068)
- Bioinformatics (24768)
- Biophysics (12560)
- Cancer Biology (9924)
- Cell Biology (14297)
- Clinical Trials (138)
- Developmental Biology (7930)
- Ecology (12074)
- Epidemiology (2067)
- Evolutionary Biology (15954)
- Genetics (10904)
- Genomics (14706)
- Immunology (9844)
- Microbiology (23582)
- Molecular Biology (9454)
- Neuroscience (50691)
- Paleontology (369)
- Pathology (1535)
- Pharmacology and Toxicology (2674)
- Physiology (3997)
- Plant Biology (8639)
- Synthetic Biology (2388)
- Systems Biology (6415)
- Zoology (1344)