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ABSTRACT We present vqtl, an R package for mean-variance QTL mapping. This QTL mapping approach
tests for genetic loci that influence the mean of the phenotype, termed mean QTL, the variance of the
phenotype, termed variance QTL, or some combination of the two, termed mean-variance QTL. It is unique in
its ability to correct for variance heterogeneity arising not only from the QTL itself but also from nuisance factors,
such as sex, batch, or housing. This package provides functions to conduct genome scans, run permutations
to assess the statistical significance, and make informative plots to communicate results. Because it is
inter-operable with the popular qtl package and uses many of the same data structures and input patterns,
it will be straightforward for geneticists to analyze future experiments with vqtl as well as re-analyze past
experiments, possibly discovering new QTL.
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INTRODUCTION

Traditional quantitative trait locus (QTL) analyses have focused on
discovering “mean QTL” (mQTL), regions of the genome where
allelic variation drives heterogeneity of phenotype mean, while
assuming that the residual variance, that is, the intrinsic stability
or noisiness of the phenotype, is identical for every individual
in the mapping population. It has long been recognized, how-
ever, that the residual variance is itself heritable (Falconer 1965;
Lynch and Walsh 1998), a phenomenon that has been described
theoretically (Hill and Zhang 2004; Hill and Mulder 2010), demon-
strated in inbred model organisms (Sorensen et al. 2015) and crops
(Yang et al. 2012b), and exploited in livestock improvement efforts
(Mulder et al. 2008; Ibáñez-Escriche et al. 2008). Correspondingly,
several groups have proposed statistical methods for mapping QTL
controlling the extent of this residual variance, these sometimes
termed “variance QTL” (vQTL) (Paré et al. 2010; Rönnegård and
Valdar 2011, 2012; Cao et al. 2014; Soave and Sun 2017; Dumitrascu
et al. 2018). However, although detection of vQTL has started to
enter the mainstream of genetic analysis (Yang et al. 2012a; Hulse
and Cai 2013; Ayroles et al. 2015; Forsberg et al. 2015; Wei et al. 2016;
Wang and Payseur 2017; Wei et al. 2017), statistical tools for this
purpose remain heterogeneous.

We have developed a standardized method for QTL mapping in
experimental crosses, in particular F2 intercrosses and backcrosses,
that simultaneously models mean and variance effects in order
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to detect mQTL, vQTL and a generalization of the two that we
term “mvQTL”. Our approach, which we term “mean-variance
QTL mapping”, is based on a double generalized linear model
(DGLM) (Smyth 1989), following the proposed use in this context
by Rönnegård and Valdar (2011). In the first of two companion
articles, we characterize the method and competitors in the setting
where variance heterogeneity is driven by a background factor,
such as sex, batch or housing, and show that modeling these (ex-
ternal) variance effects improves power to detect mQTL, vQTL
and mvQTL (Corty and Valdar 2018+). In the second companion
paper, we demonstrate the approach on two existing datasets and
discover new mQTL and vQTL (Corty et al. 2018+).

Here, we provide a practical guide to the approach using its
associated R package vqtl, which is currently suitable for F2 in-
tercrosses and backcrosses, and is inter-operable with the well-
established mean QTL-oriented package for this purpose, qtl (Bro-
man et al. 2003). First, to generate illustrative data, we simulate
an F2 intercross and four phenotypes: one phenotype determined
entirely by random noise, and one with each of the three kinds of
QTL. On each phenotype we then conduct a genome scan using
standard approximations to interval mapping (Lander and Bot-
stein 1989; Martínez and Curnow 1992), and mean-variance QTL
mapping, which includes a test for mQTL, a test for vQTL, and
a test for mvQTL. The association statistics of all four tests are
initially plotted in LOD score units, with drawbacks of this plot-
ting unit discussed; then permutation scans are used to determine
empirically-adjusted p-values, and plotting in these units is shown
to to make the results of the four tests more easily comparable.
Plots are then described that communicate effects that led to the
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QTL’s detection, and the bootstrap is used to estimate its confi-
dence interval. Last, we benchmark performance, using one of the
datasets examined in Corty et al. (2018+) to report how computa-
tion time varies with marker density and number of permutations.

EXAMPLE DATA: SIMULATED F2 INTERCROSS

To illustrate the use of the vqtl package, we first simulated an
example F2 intercross using the R package qtl (Broman et al. 2003),
on which vqtl is based. This cross consisted of 200 male and
200 female F2 offspring, with 3 chromosomes of length 100 cM,
each tagged by 11 equally-spaced markers and estimated genotype
probabilities at 2cM intervals with qtl’s hidden Markov model.
We then generated four phenotypes:

1. phenotype1 consists only of random noise and will serve as
an example of negative results for all tests.

2. phenotype2 has an mQTL that explains 4% of phenotype vari-
ance at the center of chromosome one.

3. phenotype3 has a vQTL at the center of chromosome two.
This vQTL acts additively on the log standard deviation scale,
and results in residual standard deviation of [0.8, 1, 1.25] for
the three genotype groups.

4. phenotype4 has an mvQTL at the center of chromosome three.
This mvQTL has a mean effect that explains 2.7% of pheno-
type variance and a variance effect that acts additively on
the standard deviation scale, resulting in residual standard
deviation of [0.85, 1, 1.17] for the three genotype groups.

We additionally consider phenotype1x through phenotype4x,
which have the same type of genetic effects as phenotype1 through
phenotype4, but have the additional feature that females have
greater residual variance than males. All the same analyses and
plots that are shown for phenotype1 through phenotype4 are
shown for phenotype1x through phenotype4x in the appendix.

SCAN THE GENOME

The central function for genetic mapping in package qtl is scanone
(Broman et al. 2003). Analogously, the central function for mean-
variance QTL mapping in package vqtl is scanonevar, building
on an early version of scanonevar in package qtl. It takes three
required inputs:

1. cross is an object that contains the genetic and phenotypic
information from an experimental cross, as defined in package
qtl.

2. mean.formula is a two-sided formula, specifying the pheno-
type to be mapped, the covariates to be corrected for, and
the QTL terms to be fitted, with keywords mean.QTL.add and
mean.QTL.dom

3. var.formula is a one-sided formula, specifying the variance
covariates to be corrected for as well as the QTL terms to be
fitted, using keywords var.QTL.add and var.QTL.dom.

For example, to scan a phenotype named p1, we run:

scanonevar(
cross = test_cross,
mean.formula = p1 ~ sex + mean.QTL.add + mean.QTL.dom,
var.formula = ~ sex + var.QTL.add + var.QTL.dom

)
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Figure 1 For each of the four simulated phenotypes, the genome
scan shows the LOD score of each test — mQTL, vQTL, and
mvQTL — in blue, red, and black, respectively. The traditional
test is in green and globally similar to the mQTL test.

At each locus in turn, this function tests for the presence of an
mQTL, a vQTL, and an mvQTL. The basis of these tests is a com-
parison between the fit of an alternative model of the form

mean = covariate effects + locus effects

log(variance) = covariate effects + locus effects

with a null model that omits specific terms: for the mQTL test,
the null model omits locus effects on phenotype mean; for the
vQTL test, the null omits the locus effects on phenotype variance;
and for the mvQTL test, the null omits locus effects on both mean
and variance. (Note that the mQTL test in mean-variance QTL
mapping is different from the traditional test: the traditional test
does not have variance predictors of any kind in either null or
alternative models.)

LOD scores and nominal p-values

Each type of test (mQTL, vQTL, and mvQTL) yields two associ-
ation statistics: the LOD score, and the (nominal) p-value. The
LOD is a raw measure of association equal to the base 10 loga-
rithm of the likelihood ratio (LR) between the fitted alternative
and null models. Higher values indicate greater association when
considered across loci for the same type of test; but LOD scores
between different types of tests, namely between mvQTL test vs ei-
ther mQTL or vQTL tests, are not readily comparable. The p-value,
which is comparable between different types of tests, transforms
the LOD score to take account of the number of parameters being
fit: it is calculated from the asymptotic distribution of 2 loge (LR)
under the null model, namely the χ2 distribution with degrees
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Figure 2 For each of the four simulated phenotypes, the genome
scan shows the -log10 of the FWER-corrected p-value for each
test — mQTL, vQTL, and mvQTL — in blue, red, and black, re-
spectively. The traditional test is in green and globally similar to
the mQTL test. A value of 2 implies that the quantity of evidence
against the null is such that we expect to see this much or more
evidence once per hundred phenotypes no QTL.

of freedom equal to the difference in the number of parameters
between the alternative and null models.

The p-values described above, however, are nominal: they do
not take into account multiple testing across the genome. They also
rely on asymptotic theory that assumes the underlying phenotype
being residually normal; this may not always be the case and when
violated will lead to inflated significance. More robust p-values
that are corrected for genomewide significance via control of the
family-wise error rate (FWER) can be obtained empirically, through
a permutation procedure described below.

Robust, genomewide-adjusted p-values

To calculate the empirical, FWER-controlled p-value of each test
at each locus we advocate use of a permutation procedure (Corty
and Valdar 2018+). Like previous work on permutation-based
thresholds for genetic mapping (Churchill and Doerge 1994; Carl-
borg and Andersson 2002), this procedure sidesteps the need to
explicitly estimate the effective number of tests.

In brief, this approach involves conducting many genomes
scans on pseudo-null data generated through permutation to main-
tain as much of the character of the data as possible, while breaking
the tested phenotype-genotype association. Specifically, the design
matrix of the QTL is permuted in the mean portion of the mQTL
alternative model, the variance portion of the vQTL alternative
model, and in both portions of the mvQTL alternative model.

For each test (mQTL, vQTL, and mvQTL), the highest observed

test statistic is extracted from each permutation scan and the col-
lection of statistics that results is used to fit a generalized extreme
value (GEV) density (Stephenson 2002; Dudbridge and Koele-
man 2004; Valdar et al. 2006). The observed LOD scores from
the genome scan are then transformed by the cumulative distribu-
tion function of the extreme value density to estimate the FWER-
controlling p-values. This approach is implemented in the function,
scanonevar.perm, which requires two inputs:

1. sov is the scanonevar object, the statistical significance of
which will be assessed through permutation.

2. n.perms is the number of permutations to conduct.

The object returned by scanonevar.perm is a scanonevar object
with two additional pieces of information: an empirical p-value for
each test at each locus and the per-permutation maxima that were
used to calculate those p-values. These FWER-corrected p-values
are straightforwardly interpretable: p = 0.05 for a specific test at a
specific locus implies that in 5% of similar experiments where there
is no true genotype-phenotype association, we would expect to
observe some locus with this much or more evidence of association
in this test.

Accurate estimation of the FWER-controlled p-values requires
many permutation scans: traditionally recommended is 1,000 (e.g.,
Churchill and Doerge 1994; Carlborg and Andersson 2002), al-
though the efficiency gain of using the GEV rather than raw quan-
tiles means that fewer may be adequate in practice (Valdar et al.
2006). These permutation scans can be run on multiple processors
by specifying the optional n.cores argument, which defaults to
the total number of cores on the computer minus 2. On an Intel
Core i5, running 100 permutations on this dataset takes about five
minutes. When many phenotypes are studied, or if faster runtimes
are needed, these permutation scans can be broken into groups
with different values for random.seed, run on separate computers,
and combined with the c function. This function combines the
permutations from all the inputted scans, re-estimates the extreme
value density, re-evaluates the observed LOD scores in the con-
text of new extreme value density, and returns a new scanonevar
object with more precisely estimated empirical p-values.

Reporting and plotting genome scans

The results of scanonevar can be plotted by calling plot on the
scanonevar output object. This produces a publication-quality
figure that shows the association of the phenotype for each location
in the genome as different colors for type of test, with y-axis scale
being specified by the user, via option plotting.units as the
LOD (Figure 1), nominal p-value, or, provided permutations have
been run, empirical, FWER-controlling p-value (Figure 2). Of the
available y-axis scales, we recommend using the FWER-controlled
p-values since this scale puts all tests on a level-footing (unlike the
LOD), and allows direct identification of genomewide significance
and thereby relevance (unlike the nominal p-value).

Calling summary on the output of scanonevar produces a sum-
mary of how the scan was conducted and what the results were.

COMMUNICATE SIGNIFICANT FINDINGS

Having identified interesting QTL, we want to visualize the their
estimated genetic and covariate effects. Because the vqtl package
models effects for both mean and variance, existing plotting util-
ities are not able to display the entirety of the modeling results.
To understand and communicate the results of a vqtl scan at one
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Figure 3 mean_var_plots show the estimated genotype effects
at a locus with mean effects on the horizontal axis and variance
effects on the vertical axis. Horizontal lines indicate standard
errors for mean effects and vertical lines indicate standard er-
rors for variance effects. For phenotype1, the pattern of overlap-
ping estimates and standard errors is consistent with the fact
that there are no genetic effects, and the p-value was not statis-
tically significant at any locus. For phenotype2, the pattern of
horizontal, but not vertical, separation visually illustrates the
identified mQTL. For phenotype3, the pattern of vertical, but not
horizontal, separation visually illustrates the identified vQTL.
For phenotype4, the pattern of two-dimensional separation illus-
trates an mvQTL.

particular locus, we developed the mean_var_plot. This plot il-
lustrates how the mean sub-model and variance sub-model of the
DGLM fit the data at a given locus.

In each mean_var_plot in Figure 3, the location of the dot shows
the estimated mean and standard deviation of each genotype
group, with the mean indicated by the horizontal position and
the standard deviation indicated by the vertical position. The hor-
izontal lines extending to the left and right from each dot show
the standard error of the mean estimate, and the vertical lines ex-
tending up and down from each dot show the standard error of
the standard deviation estimate. There are two types of grouping
factors considered by the function mean_var_plot_model_based:
(1) focal.groups are groups that are modeled and the prediction
for each group is plotted. For example, a genetic marker is the
focal.group in each plot in Figure 3; D1M1 in the top left, D1M6
in the top right, D2M6 in the bottom left, and D3M6 in the bottom
right. (2) nuisance.groups are groups that are modeled, but then
averaged over before plotting. When there are many grouping fac-
tors thought to play a role in determining the mean and variance
of an individual’s phenotype, such as sex, treatment, and batch,
we recommend putting just one or two in focal.groups and the
others in nuisance.groups for clarity, cycling through which are
displayed to gain a thorough understanding of the factors that
influence the phenotype.

Additional plotting utilities, phenotype_plot, effects_plot
and mean_var_plot_model_free are described in the online docu-
mentation, available on CRAN.
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Figure 4 Time taken to run scanonevar.perm on the data from
Kumar et al. (2013) which contains 244 individuals and 582 loci,
varying the number of permutations desired and the number
of computer cores used. For a given number of cores, there is a
linear relationship between number of permutations conducted
and time required. The slope the the line indicates time required
per permutation and is dependent on the number of cores, rang-
ing from ≈ 6.3 seconds per permutation with 4 cores to ≈ 1.2
second per permutation with 32 cores.

ESTABLISH A CONFIDENCE INTERVAL FOR THE QTL

Last, to assess the genetic precision of a discovered QTL for bioin-
formatic follow-up, the function scanonevar.boot estimates con-
fidence intervals via the non-parametric bootstrap (Visscher et al.
1996). This function takes, as arguments, a scanonevar object, the
type of QTL detected, the name of the chromosome containing the
QTL, and num.resamples, the number of bootstrap resamplings
desired. As with scanonevar.perm, the n.cores argument can be
used to spread the bootstraps over many computational cores and
defaults to the number of cores available minus two, and boot-
straps can be run on separate computers and combined with c to
increase the precision of the estimate of the confidence interval.

We recommend 1000 resamples to establish 80% and 90% con-
fidence intervals. With the datasets simulated here, it takes 20
minutes to run 1000 bootstrap resamples on an Intel core i5.

PERFORMANCE BENCHMARKS

By far, the most computationally-intensive step in the mean-
variance QTL mapping process is the assessment of genome-wide
statistical significance by permutation. The original genome scan
is much faster, because it involves only a single scan, and the boot-
strap is much faster because it involves only a single chromosome.

For the first benchmark, we ran scanonevar.perm on the data
from Kumar et al. (2013) and Corty et al. (2018+), which contains
244 individuals and 582 loci, varying the number of permutations
desired and the number of computer cores used. For a given
number of cores, the relationship between time and the number
of permutations is linear (Figure 4), the slope depending on the
number of cores and ranging from ≈ 6.3 seconds per permutation
with 4 cores to ≈ 1.2 second per permutation with 32 cores.

For the second benchmark, we ran scanonevar.perm on sim-
ulated data, always conducting 1000 permutations and using 32
cores, but varying the number of individuals in the mapping pop-
ulation and the number of markers in the genome. For a given
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Figure 5 Time taken to run 1000 permutation scans on 32 cores
on simulated data using scanonevar.perm, varying the number
of individuals in the mapping population and the number of
markers in the genome. For a given population size, there is a
slightly supra-linear relationship between number of markers
and time required. The average slope of the line indicates the
average time required per locus and is dependent on the popu-
lation size, ranging from ≈ 1.4 seconds per locus with a popula-
tion of size 100 to ≈ 3.3 seconds per locus with a population of
size 800.

population size, there is a slightly curvilinear relationship between
number of markers and time required (Figure 5), which reflects a
linear increase in the time taken to conduct the permuted genome
scans plus an increase in the time taken for “bookkeeping” tasks
like organizing and reshaping genetic data. The slope (minutes per
locus) depends on the population size, ranging from ≈ 1.4 seconds
per locus with a population of size 100 to ≈ 3.3 seconds per locus
with a population of size 800.

Based on these benchmarks, the workflow presented here is
practical for QTL mapping F2 intercross and similar populations on
modern, multi-core scientific computers. Populations with many
recombinations, where dense genotyping arrays that interrogate
> 10,000 loci, could not be practically analyzed with package vqtl
in this way, although it is likely that statistical and computational
steps could be taken to make such studies feasible: statistically,
techniques could be used that allow for large-scale analysis without
permutation testing (Efron 2004); computationally, the software
could be modified to run on a computer cluster, rather than on a
single computer (Jette and Grondona 2003; Marchand 2017).

CONCLUSION

We have demonstrated typical usage of the R package vqtl for
mean-variance QTL mapping in an F2 intercross. This package
is appropriate for crosses and phenotypes where genetic factors
or covariates or are known or suspected to influence phenotype
variance. In the case of genetic factors, they can be mapped, as
illustrated in one companion article (Corty et al. 2018+). In the
case of covariates, they can be accommodated, which can increase
power and improve false positive rate control, as illustrated in
another companion article ((Corty and Valdar 2018+)).

RESOURCES

The scripts used to simulate genotypes and phenotypes, conduct
the genome scans, and plot the results are available as a pub-
lic, static Zenodo repository at DOI:10.5281/zenodo.1336302. The
package vqtl and its documentation are freely available on CRAN
at https://CRAN.R-project.org/package=vqtl.
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APPENDIX
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Figure A1 For each of the four simulated phenotypes with back-
ground variance heterogeneity, the genome scan shows the LOD
score of each test – mean, variance, and joint – in blue, red, and
black, respectively. The traditional test is in green and globally
similar to the mean test.
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Figure A2 For each of the four simulated phenotypes with back-
ground variance heterogeneity, the genome scan shows the -
log10 of the FWER-corrected p-value of each test – mean, vari-
ance, and joint – in blue, red, and black, respectively. Thus, a
value of 3 implies that the quantity of evidence against the null is
such that we expect to see this much or more evidence once per
thousand genome scans when there is no true effect.
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Figure A3 mean_var_plots show the estimated genotype effects
at a locus, with mean effects on the horizontal axis and variance
effects on the vertical axis. Horizontal lines indicate standard
errors for mean effects and vertical lines indicate standard errors
for variance effects. For phenotype1x, the pattern of overlap-
ping estimates and standard errors is consistent with the fact
that there are no genetic effects, and the p-value was not statis-
tically significant at any locus. For phenotype2x, the pattern of
horizontal, but not vertical, separation visually illustrates the
identified mQTL on a background of variance heterogeneity. For
phenotype3x, the pattern of vertical, but not horizontal, sepa-
ration visually illustrates the identified vQTL on a background
of variance heterogeneity. For phenotype4x, the pattern of two
dimensional separation without either total horizontal or ver-
tical separation illustrates an mvQTL with neither mean nor
variance effect strong enough to define an mQTL or vQTL on a
background of variance heterogeneity.
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