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Abstract

Motivated by advances in the causal inference in mediation analysis and problems arising in the

analysis of metagenomic data, we consider the effect of treatment on an outcome transmitted through

compositional mediators. Compositional and high dimensional features of such mediators make the

standard mediation analysis not directly applicable. A sparse mediation model for high-dimensional

compositional data is proposed in this paper utilizing the algebraic structure of a composition under the

simplex space and a constraint linear regression model to achieve sub-compositional coherence. Under

this model, we develop estimation method for estimating direct and microbial mediation effects of a

randomly assigned treatment on an outcome. Tests for the total mediation effect of all bacterial taxa

and individual mediation effects are also proposed. We conduct extensive simulation studies to assess the

performance of the proposed method and apply the method to a real metagenomic dataset to investigate

the effect of fat intake on body mass index (BMI) mediated through the gut microbiome composition.
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1 Introduction

It has been shown that fat intake is associated with BMI (Bray and Popkin, 1998) and obesity is associated

with the gut microbiome (Ley et al., 2006; Turnbaugh et al., 2006). From this information, a natural

question to ask is whether fat intake has its effects on BMI mediated through the perturbation of the gut

microbiome. The study of this kind of relationship is known as “mediation analysis”. Mediation analysis

is a statistical method of studying the effect of treatment or exposure on an outcome transmitted through

intermediate variables, referred to as “mediators” or “intervening variables”. It has been widely applied

in various disciplines such as sociology, psychology, and epidemiology and become increasingly popular as

the causal inference advances (Rubin, 2005; Imai et al., 2010), which clarifies the assumptions needed for a

causal interpretation. Until recently most of the mediation analysis has been restricted to a single mediator

as depicted in Figure 1, and the effect of a mediator on an outcome is often formulated and implemented

within the framework of linear structural equation models (LSEMs).
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Figure 1: Path diagram for a single-mediator model: a, b and c are path coefficients and η and ε are random
errors for a mediator M and an outcome Y , respectively.

For instance, LSEM for the path diagram in Figure 1 can be formulated as

M = a0 + aT + η,

Y = c0 + cT + bM + ε,

where T ,M , and Y are a treatment variable, a mediator variable, and an outcome variable; a, b, and c are

path coefficients; η and ε are random errors for M and Y , respectively. Under this model, the effect of the

treatment T on the outcome Y transmitted through the mediator M , often called indirect effect, is generally

defined by the product of path coefficients a and b and the effect of T on Y not transmitted through M ,

direct effect, is defined by the path coefficient c. It is easy to see that under LSEM the total effect of T on

Y is the sum of direct and indirect effects.

In recent years, numerous studies have attempted to extend the applicability of mediation analysis:
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incorporating nonlinearity and interactions (Pearl, 2001; Imai et al., 2010; VanderWeele and Vansteelandt,

2010) and including multiple mediators (Preacher and Hayes, 2008; VanderWeele and Vansteelandt, 2014).

There have also been a few studies to develop mediation analyses for high-dimensional mediators. Chén

et al. (2015) proposed a method to estimate the path coefficients by finding linear combinations of mediators

that maximize the likelihood of LSEM, which is similar to the principal components. Huang and Pan (2016)

also introduced a transformation model using the principal components and included interaction terms in

their model. Zhao and Luo (2016) proposed a sparse mediation model using a regularized LSEM approach.

This paper considers the problem of mediation analysis when mediators are compositional data, which

are often observed in the microbiome and metagenomic studies. Compositional data refer to proportions

or percentages of a whole and arise frequently in a wide range of disciplines such as mineral components

of a rock in geology, vote shares of an election in psephology, and microbial components of a natural envi-

ronment in biological science. In microbiome studies, to account for different sizes of sequencing libraries

for either 16S rRNA sequencing or shotgun metagenomic sequencing, the sequencing reads count data are

often normalized into proportions. That the components of a composition sum to unity makes a radical

difference between the sample space for compositional data, which is known as (k − 1)-dimensional simplex

∇k−1 for k components, and the real Euclidean space Rk associated with unconstrained data, thus making

the models for unconstrained data inappropriate for compositional data. To deal with this special nature of

compositional data, Aitchison (1982) introduced an axiomatic approach with a variety of operations under

logratio transformation, which provides a one-to-one mapping between ∇k−1 and Rk, and various researchers

including himself have formalized and extended his approach. Aitchison and Bacon-Shone (1984) proposed

linear and quadratic log contrast modes for compositional covariates and Billheimer et al. (2001) formu-

lated the algebraic structure of a composition under the simplex space. Lin et al. (2014) and Shi et al.

(2016) developed and generalized high-dimensional log contrast modes for compositional data regression,

respectively.

This paper develops a framework for mediation analysis when mediators are high dimensional composi-

tional data, as often observed in microbiome and metagenomic studies. Our mediation framework includes

two components. First, the compositional algebra of Billheimer et al. (2001) is used to quantify the effect

of a randomly assigned treatment on overall microbiome composition. Specifically, we propose a method

that minimizes a compositional norm to estimate the treatment effect on microbiome composition. Second,

the association between an outcome, treatment and microbial composition is modeled using the composi-

tional data regression in a high dimensional setting (Lin et al., 2014; Shi et al., 2016). Under this modeling

framework, both direct and microbial mediation effects of treatment on an outcome can be quantified and

estimated. Additionally, tests for a total microbiome mediation effect and each individual taxon mediation ef-
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fect are developed using a bootstrap procedure or extending the Sobel test (Sobel, 1982) for high-dimensional

mediators.

The rest of this paper is organized as follows. Section 2 introduces the compositional mediation model for

a continuous outcome and discusses model assumptions and identifiability. Section 3 proposes methods of

estimating parameters and their covariance matrices. We also discuss null hypotheses for a total mediation

effect and component-wise mediation effects. Section 4 compares the performance of our method with two

other methods that can be applied to compositional data in extensive simulation studies. Section 5 presents

an application of the proposed methods to gut microbiome data. Finally, Section 6 presents a brief discussion

of the model and its potential extensions.

2 Compositional Mediation Model and Causal Interpretation

2.1 Compositional Mediation Model

Suppose that we have n independent identically distributed (iid) samples, each consisting of an outcome yi, a

treatment τi, and k-dimensional compositional covariates Mi, where i = 1, . . . , n. Here Mi lies in the (k− 1)

dimensional simplex ∇k−1 for all i, that is, Mi = {(Mi1, . . . ,Mik) : Mij > 0, j = 1, . . . , k,
∑k
j=1Mij = 1}.

A model describing the effect of τ on y mediated through M is schematically depicted in Figure 2.

Mi1

Mi2

...

Mik

τi yi

A1

A2

Ak

B1

B2

Bk

c

Ei

εi

Figure 2: A compositional mediation model: Aj , Bj and c are path coefficients, j = 1, . . . , k. Ei and εi are

random errors for a k-component compositional mediator Mi and an outcome yi, respectively.
∑k
j=1Mij = 1.

Since Mi lies in the (k−1) dimensional simplex ∇k−1, multivariate regression is inappropriate to estimate

the effect of τ on M , which assumes Mi lies in the k-dimensional Euclidean space Rk. For the same reason,

multiple regression is not appropriate to estimate the effect of τ and M on y. Before we introduce the

compositional mediation model, we define two compositional operators. For two compositions η, ζ ∈ ∇k−1,
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a perturbation operator is defined by

η ⊕ ζ =

(
η1ζ1∑k
j=1 ηjζj

,
η2ζ2∑k
j=1 ηjζj

, . . . ,
ηkζk∑k
j=1 ηjζj

)
,

and a power transformation for a composition η by a scalar α by

ηα =

(
ηα1∑k
j=1 η

α
j

,
ηα2∑k
j=1 η

α
j

, . . . ,
ηαk∑k
j=1 η

α
j

)
.

To properly account for the nature of compositional data, we propose the following compositional medi-

ation model:

Mi =
(
M0 ⊕Aτ

∗
i

)
⊕ Ei (1)

yi = c0 + τ∗i c+ (logMi)
TB + εi, subject to BT1k = 0, (2)

where τ∗i = τi − τ̄ , where τ̄ is the mean of τ ; M0 is a vector of compositions at the baseline level (i.e., when

τi = τ̄); Ei is a vector of the random composition perturbation errors; εi ∼ N(0, σ2) is the random error of

the outcome; 1k is a k column vector of ones; A,B, c0, and c are parameters needed to be estimated. The

superscript > denotes the transpose operator. Model (1) models how a treatment τ∗i perturbs a compositional

mediator Mi from the baseline composition M0, which is measured by the compositional effect A. Model (2)

links a compositional mediator Mi and a treatment τ∗i to an outcome yi. In order to take the compositional

nature of Mi into account, a linear constraint BT1k = 0 is imposed so that the model is subcompositional

invariant (Lin et al., 2014; Shi et al., 2016).

In this compositional mediation model, the total effect of τ on y can be decomposed into a direct effect

c and a total indirect effect [log(kA)]TB or (logA)TB, which is the sum of component-wise indirect effects.

Note that under the model (1), A is interpreted as the expected change of M from the identity element Jk−1

in ∇k−1, where Jk−1 =
(

1
k ,

1
k , . . . ,

1
k

)
. Thus, A is divided by Jk−1, or multiplied by k, so that log(kAj)

represents the expected change of log(Mj) from 0 by one unit change of τ for the jth compositional mediator.

2.2 Model assumptions for causal interpretation

The identification of causal direct and indirect effects requires several assumptions. Let X denote a vector

of covariates that are non-descendants of a treatment T and a compositional mediator M . Then, after
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controlling for X, the assumptions under the potential outcome framework can be given by

{Y (τ ′,m),Mj(τ)} ⊥⊥ T |X, (3)

Y (τ ′,m) ⊥⊥Mj(τ)|(T , X), (4)

for all j = 1, . . . , k. These assumptions are an extension of the sequential ignorability assumptions for the

single mediator model (Imai et al., 2010). The first assumption states that, given the observed covariates,

there is no unmeasured confounder associated with the treatment and the outcome and with the treat-

ment and each component of the compositional mediator. The second assumption states that there is no

unmeasured confounder associated with each component of the compositional mediator and the outcome

given the treatment and the observed covariates. These assumptions seem to be similar to a multivariate

extension of those for the single mediator model, which in general makes the assumptions much stronger

(VanderWeele and Vansteelandt, 2014). However, the assumptions (3) - (4) are not as strong as those for a

multiple-mediators model due to correlations among compositional mediators.

Theorem 1. (Model assumption for causal interpretation) If a compositional mediator Mj satisfies the

assumptions (3) - (4), then other compositional mediators Mi for all i 6= j satisfy the assumptions.

The proof of Theorem 1 is given in Appendix A. No interactions between the treatment and the mediators

and among the mediators are also assumed, which is a standard assumption in causal mediation inference

for LSEM. Under these assumptions, we have the following theorem to show that models (1) and (2) lead

to quantification of direct and indirect mediation effects.

Theorem 2. (Identification for the compositional mediation model) Under the assumptions (3) - (4) and no

interaction assumption, a direct effect δ(τ∗) and a total indirect effect ζ(τ∗) for the compositional mediation

model (1) - (2) are identifiable and given by

δ(τ∗) = c, (5)

ζ(τ∗) = (logA)
T
B. (6)

The proof of Theorem 2 is given in Appendix B.
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3 Parameter Estimation, Variance Estimation, and Tests of Me-

diation Effects

3.1 Estimation of composition parameters and covariance matrix

With the compositional operators, Billheimer et al. (2001) show that ∇k−1 constitutes a complete inner

product space, allowing the definition of a norm for a composition vector η, which is given by

‖η‖ =
(
ηTη

)1/2
=
(
θTN−1θ

)1/2

,

where θ = alt(η) and

N−1 = Ik−1 −
1

k
1k−11

T
k−1,

where Ik−1 is a (k − 1)-dimensional identity matrix.

To estimate the parameters in Model (1), we propose minimizing the norm of the difference between

observed and predicted compositions, that is,

Â = argmin
A,M0∈∇k−1

n∑
i=1

∥∥∥Mi 	M0 ⊕Aτ
∗
i

∥∥∥2

(7)

= argmin
A,M0∈∇k−1

n∑
i=1

k−1∑
j=1

(k − 1)

[
log

(
MijM0kA

τ∗
i

k

MikM0jA
τ∗
i
j

)]2

− log

(
MijM0kA

τ∗
i

k

MikM0jA
τ∗
i
j

)
k−1∑
` 6=j

log

(
Mi`M0kA

τ∗
i

k

MikM0`A
τ∗
i

`

) ,

where an inverse operator 	 is defined by

η 	 ζ =

(
η1ζ
−1
1∑k

j=1 ηjζ
−1
j

,
η2ζ
−1
2∑k

j=1 ηjζ
−1
j

, . . . ,
ηkζ
−1
k∑k

j=1 ηjζ
−1
j

)
.

The objective function Eq. (7) is not convex. However, since the square of a logarithmic function in the form

of log(axb), where a > 0 and b 6= 0 are constants and x ∈ R+, has only one stationary point (i.e., a point

at which the derivative of a function vanishes) and the minimum occurs at this point, its optimal solution
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(i.e., a solution of an M-estimator) can be obtained by solving the system of linear equations,



(k − 1)cτ∗ −cτ∗ . . . −cτ∗

−cτ∗ (k − 1)cτ∗ . . . −cτ∗

...
...

. . .
...

−cτ∗ −cτ∗ . . . (k − 1)cτ∗





f1

f2

...

fk−1


=



m1

m2

...

mk−1


with a constraint AT1k = 1, where cτ∗ =

∑n
i=1 τ

∗2
i , fj = log(Aj/Ak), and mj = k

∑n
i=1 τ

∗
i logMij −∑n

i=1

∑k
`=1 τ

∗
i logMi`. The matrix in the above equation is always invertible by Sherman-Morrison formula

(Sherman and Morrison, 1950) since it can be expressed as the sum of a diagonal matrix of kcτ∗ and a

constant matrix of −cτ∗ . Note that in Model (1) and (2), for brevity, we assume no confounding variable

X and exclude it. However, including X in the models does not add much complexity. For instance, if

nx confounding variables are included, the system of nx(k − 1) linear equations needs to be solved for the

model (1); see Appendix C for details.

In Model (1), we do not specify the distribution of Ei. Therefore, we use a bootstrap distribution of Â

to estimate its covariance matrix Σ̂A, specifically using the percentile method (Machado and Parente, 2005).

We define a matrix H as

H =

 Ik 0

C D−2

 ,
where Ik is a k× k identity matrix; 0 is a k× k(k− 1)/2 matrix of zeros; C is a k(k− 1)/2× k binary matrix

whose rows are all possible combinations of 2 ones and k − 2 zeros; D−2 is a k(k − 1)/2× k(k − 1)/2 scalar

matrix with −2. Then, Σ̂A can be obtained by solving the system of linear equations,

Hu = v,

where u = (σ̂11, . . . , σ̂kk, σ̂12, . . . , σ̂(k−1)k)T is a vector of all the unique elements in a covariance matrix

of Â and v = (s2
h1
, . . . , s2

hk(k+1)/2
)T is a vector of bootstrap estimators of σ̂h. For instance, from the first,

second, and (k + 1)th rows, we can obtain σ̂11 = s2
h1

, σ̂22 = s2
h2

, and σ̂11 + σ̂22 − 2σ̂12 = s2
hk+1

or σ̂12 =

(s2
h1

+ s2
h2
− s2

hk+1
)/2. For the estimators of σ̂H , we use functionals censored at the top and bottom 5% of

the bootstrap distribution,

shi
=

1

0.847nb

∑̀
j=s

Φ−1(j/nb)q
∗
hi

(j/nb) + 0.103
[
q∗hi

(`/nb)− q∗hi
(s/nb)

]

with s = b0.05nbc and ` = B−b0.05nbc, where bxc denotes the integer part of x; nb is a bootstrap sample size;
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Φ−1(α) is the α-percentile of the standard normal distribution; q∗hi
(α) is the α-percentile of the bootstrap

distribution of
{√

n(hTi Â
∗
b − hTi Â), b = 1, . . . , nb

}
. Â∗b is a vector of bootstrap estimations and hi is a vector

satisfying hTi Σ̂Ahi = σ̂hi
. For the (k + 1)th row, as an example, hk+1 = (1,−1, 0, . . . , 0)T .

3.2 Estimation of compositional regression parameters and covariance matrix

Aitchison and Bacon-Shone (1984) introduced linear log-contrast models for a mixture of k components,

yi = ZTi β + εi, subject to
k∑
j=1

βj = 0, (8)

where Zi = {(logPi1, . . . , logPik) : Pij > 0, j = 1, . . . , k,
∑k
j=1 Pij = 1}. Note that for simplicity the

intercept is excluded in the model, which can be eliminated by centering all the variables in the model. An

`1 penalization method for high-dimensional linear log-contrast models was proposed by Lin et al. (2014),

and extended by Shi et al. (2016) to accommodate subcompositional log-contrasts and estimate de-biased `1

regularized estimates and their covariance matrix.

Model (2) can be analyzed by a method for the linear log-contrast model. Specifically, define

Z̃i = ZTi

(
Ik+1 − 1̃k+11̃

T

k+1/k
)
, (9)

where Zi = (logMi1, . . . , logMik, τ
∗
i )
T

and 1̃k+1 = (1k, 0)T . Then, Model (2) can be expressed as

yi = Z̃Ti β + εi, subject to

k∑
j=1

βj = 0, (10)

where β = (B1, . . . , Bk, c)
T

, that is, we solve the penalized constrained convex optimization problem,

β̂ = argmin
β

(
1

2n

∥∥∥y − Z̃β∥∥∥2

2
+ λ ‖β‖1

)
, subject to

k∑
j=1

βj = 0. (11)

As proposed by Shi et al. (2016), we then apply the de-biasing procedure to the solution of Equation (11)

to compensate the bias introduced by the `1 penalty and obtain de-biased estimates and their covariance

matrix.
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3.3 Hypothesis test of mediation effect

The null hypothesis of no total compositional mediation effect is given by

H0 : (logA)TB = 0, (12)

and the null hypothesis of no component-wise mediation effects is given by

H0 : (log kAj)Bj = 0, ∀j ∈ {1, 2, . . . , k}. (13)

Null Hypothesis (12) reflects a total mediation effect on an outcome that we could observe; however, it

can disguise actual mediation effects, which can be captured by Null Hypothesis (13). If for instance, the

magnitude of mediation effects of Mi and Mj are equal, but their direction is opposite, then a total mediation

effect is zero. In other words, Null Hypothesis (12) will not be rejected while Null Hypothesis (13) will be.

Therefore, both need to be tested to interpret mediation effects properly.

To test Null Hypothesis (12) and (13), we propose two approaches: an extension of the Sobel test (Sobel,

1982) for high-dimensional mediators and a bootstrap procedure. To test Null Hypothesis (12) with the

former, the square root of the first order asymptotic variance of a total indirect effect, which is computed

with estimated covariance matrices of log(kÂ) and B̂ by the method described in (Bollen, 1987), is used as a

standard error for the total indirect effect in the Z-test. The formulae for the first order asymptotic variance

of a total indirect effect and component-wise indirect effects are given in Appendix D.

Note that our estimator for a total indirect effect ζ(τ∗) is an unbiased estimator since our model is under

the framework of LSEM as shown in the proof of Theorem 2. Also, the distribution of compositions Mi is not

known, but the log-ratio of compositions (e.g., logMij/Mik) is well approximated by a normal distribution

(Aitchison, 1986), that is, the distribution of log(Âj/Âk) is well approximated by a normal distribution.

Therefore, ζ(τ∗) can also be approximated by a normal distribution assuming the product of two normal

variables approximately follows a normal distribution. In general, the product of two normal variables does

not follow a normal distribution. However, a misspecified distribution of the product of two normal variables

will just reduce the power to detect the indirect effects when the null hypothesis of no indirect effect is false,

not affecting type I error rates (MacKinnon et al., 2002; Shrout and Bolger, 2002).

A bootstrap approach can be used to avoid the assumptions of normality for the product of two normal

variables (Shrout and Bolger, 2002; VanderWeele and Vansteelandt, 2014). To this end, we use a non-

parametric bootstrap for log(kÂ) and a parametric bootstrap for B̂ using the estimated multivariate normal

distribution to approximate the sampling distribution of ζ(τ∗). The p-value for ζ(τ∗) is then approximated
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by utilizing the fact that any bootstrap replicate ζ(τ∗)b − ζ(τ∗) should have a distribution close to that

of ζ(τ∗) when the null hypothesis is true, where ζ(τ∗)b denotes the estimated total indirect effect derived

from the bootstrap samples (Efron and Tibshirani, 1993). In other words, the p value can be approximated

by 2
∑nb

b=1 I(ζ(τ∗)b − ζ(τ∗) > ζ(τ∗))/nb when ζ(τ∗) ≥ 0 and 2
∑nb

b=1 I(ζ(τ∗)b − ζ(τ∗) < ζ(τ∗))/nb when

ζ(τ∗) < 0, where I(·) is the indicator function and nb is a number of bootstrap samples. Similarly, Null

Hypothesis (13) can be tested. In the simulation, we observed no significant difference in performance

between the two methods in terms of power and type I error, concurring with Huang and Pan (2016).

4 Simulation Studies

Mediation analysis for multiple or high dimensional mediators typically assumes independence between

mediators to establish a causal interpretation so principal components of mediators are often used. This

principal component regression (PCR) approach is also applicable for compositional mediators to estimate

a total indirect effect (TIDE). Another possible approach for compositional mediators is utilizing an `1

regularization, which has a tendency of dropping correlated variables. We used these two approaches to

evaluate the performance of our compositional mediation model (CMM). For the hypotheses tests, we used

the extension of the Sobel test for fair comparison.

In data generation, a treatment variable τ was generated by a normal distribution, τi ∼ N(0, 1). A

vector of compositions at the baseline level M0 was randomly generated with the unit-sum constraint. The

parameters A, B and c were selected such that a total indirect effect is approximately 0.00, 0.50, 0.75 or

1.00 and a direct effect is 1.00. For the random errors, we used Ei ∼ LN(0k−1, 2N ) and εi ∼ N(0, 2),

where LN denotes a logistic normal distribution and N =
[
Ik−1 + 1k−11

T
k−1

]
. Note that our model does

not specify the distribution of Ei. A vector of compositions Mi and an outcome yi were generated according

to Model (1) and Model (2), respectively. All variables were centered so the intercept c0 = 0.

We first estimated the power and type 1 error rate of testing the TIDE from 1500 simulations for each k

mediators with a sample size n = 100 at various probability thresholds, where k = 5, 49, 99: 250 simulations

with each of TIDE = 1.00, 0.75, 0.50 and 250 simulations with each of the following: no effect of τ on M (i.e.,

Aj = 0, ∀j), no effect of M on y (i.e., Bj = 0, ∀j) and inconsistent TIDEs (i.e. the sum of component-wise

indirect effects is zero). For the PCR approach, only the first kpc principal components that explain 90% of

the total variance were included. As an `1 regularization approach, we used the two stage adaptive Lasso

(TSAL), which uses the standard Lasso in the first stage to screen irrelevant variables and the adaptive

Lasso in the second stage to select consistent variables (Bühlmann and van de Geer, 2011). As shown in

Table 1, while all three methods roughly control the type 1 errors, CMM outperforms both the PCR and
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TSAL approaches in power, especially when k is large.

Table 1: Power and type 1 error rate of testing TIDE for k = 5, 49, 99 with a sample
size n = 100 at the significance level α = 0.001, 0.01, 0.05. A total of 1500 simulations
for each k were used: 750 simulations with non-zero TIDE and 750 simulations for zero
TIDE. CMM: proposed compositional mediation model; PCR: principal component
regression; TSAL: two-stage adaptive Lasso.

Power Type 1 error
α 0.001 0.01 0.05 0.001 0.01 0.05

CMM 0.452 0.623 0.752 0.001 0.011 0.035
k = 5 PCR 0.381 0.604 0.732 0.000 0.007 0.040

TSAL 0.413 0.621 0.740 0.001 0.008 0.037
CMM 0.476 0.675 0.820 0.001 0.015 0.043

k = 49 PCR 0.051 0.207 0.423 0.000 0.005 0.029
TSAL 0.277 0.487 0.631 0.001 0.012 0.067
CMM 0.397 0.645 0.791 0.001 0.007 0.040

k = 99 PCR 0.023 0.105 0.273 0.000 0.004 0.028
TSAL 0.304 0.495 0.628 0.003 0.016 0.064

We then examined the estimated direct and indirect effects at various sample sizes to see the bias and

variance of the three methods. Figure 3 shows the results for k = 49 based on 100 simulations. When

the sample size is small, the estimates obtained by CMM are slightly biased. However, as the sample size

increases, the estimates obtained by all three methods converge to the true values.
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Figure 3: Estimated direct and indirect effects at various sample sizes for k = 49 with a direct effect of 1.00
and an indirect effect of 0.75. The results are based on 100 simulations. CMM: proposed compositional
mediation model; PCR: principal component regression; TSAL: two-stage adaptive Lasso.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 13, 2017. ; https://doi.org/10.1101/149419doi: bioRxiv preprint 

https://doi.org/10.1101/149419
http://creativecommons.org/licenses/by/4.0/


The PCR approach is not capable of testing component-wise IDEs. Therefore, we compared the perfor-

mance of CMM on component-wise IDEs just with TSAL. In data generation, we selected the parameters A

and B such that the first 7 IDEs are at a non-zero constant level with varying values of B and the remaining

43 IDEs are at zero. The level of IDEs was increased by 0.1 from 0.0, and the sample size of 100 and 200

were used. For multiple testing corrections, we used false discovery rate (FDR) using the Benjamini-Yekutieli

procedure (Benjamini and Yekutieli, 2001) at 0.05. As a comparison measure, the F1 score, which is the

harmonic mean of precision and recall, was used. Figure 4 shows results: better performance of CMM over

TSAL.
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Figure 4: F1 score versus levels of IDEs at FDR ≤ 0.05. P-values are adjusted by FDR using the Benjamini-
Yekutieli procedure. CMM: proposed compositional mediation model; TSAL: two-stage adaptive Lasso.

5 Real Data Application

We applied CMM to the dataset reported in Wu et al. (2011), which is the source of motivation for this

study. The dataset consists of 16S rRNA sequences from fecal samples of 98 healthy volunteers from the

University of Pennsylvania. It also contains demographic and clinical information including fat intakes and

BMI. We summarized OTUs at the genus level and then filtered out the genera that appear less than 10%

of the samples, leaving 45 genera in 96 samples. Due to different total counts throughout the samples, the

OTU counts assigned to these genera were transformed into proportions after replacing zero counts by the

maximum rounding error 0.5, which is commonly used in compositional data analysis (Aitchison, 1986).

The gut microbiota can influence host adiposity through energy extraction from the diet, with variable
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efficiency depending on community composition; furthermore, the microbiota can also affect host adiposity by

influencing metabolism throughout the body. It is therefore highly likely that gut microbiome can potentially

mediate the effect of diets such as fat on host adiposity and BMI. Since the 98 samples were roughly randomly

sampled, it was reasonable to assume that fat was randomly sampled. CMM was applied to the dataset with

BMI as the outcome, fat intake as the treatment, and the 45 genera as the compositional mediators. The

estimated DE and TIDE are reported in Table 2 with their 95% confidence intervals (CIs). The estimated

component-wise IDEs are shown in Figure 5.

Table 2: The estimated DE and TIDE of fat intakes on BMI through the gut mi-
crobiome using the proposed compositional mediation model (CMM). The values in
parenthesis represent 95% CIs. The second row presents the percentages of DE and
TIDE in the total effect of fat intakes on BMI.

DE TIDE
0.949 (0.003, 1.901) 0.732 (-0.331, 2.114)

56.5% 43.5%

The estimated DE and TIDE are 0.949 and 0.732, respectively, which correspond to 56.5% and 43.5% of

the total effect of fat intakes on BMI. Note that under LSEM the total effect of treatment can be decomposed

into direct and indirect effects. The estimated DE is statistically significant at the significance level of 0.05,

but the estimated TIDE, as well as all component-wise IDEs, are not. It is most likely due to an insufficient

sample size. In the simulation, we observed that TIDE of 0.75 has a significant probability of its CI containing

zero, and component-wise IDEs at around 0.2 can be rarely detected with a sample size of 100.

As shown in Figure 5, the potential genera that would have statistically significant non-zero component-

wise IDEs with a sufficient sample size are Alistipes, Oscillibacter, Acidaminococcus, and Allisonella. All

these genera have positive values for IDEs, but their responses to fat intakes are quite different. The

abundance of Alistipes and Oscillibacter is negatively correlated with fat intake and BMI, whereas that of

Acidaminococcus and Allisonella is positively correlated with fat intake and BMI. Based on this information,

we can hypothesize that the increase in fat intake causes the decrease in the abundance of Alistipes and

Oscillibacter and the increase in the abundance of Acidaminococcus and Allisonella which in turn cause the

increase in BMI. Lam et al. (2012) identified Oscillibacter-like organisms as a potentially important gut

microbe that mediates high fat-induced gut dysfunction and gut permeability and showed that decrease of

Oscillibacter led to increased gut permeability, which was shown to be associated with obesity (Teixeira

et al., 2012). These observations were largely consistent with what were observed in mice fed with high-fat

diet (Daniel et al., 2014).
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Figure 5: The estimated component-wise IDEs of fat intakes on BMI through the gut microbiome.

6 Discussion

In this study, we propose a compositional mediation model for a continuous outcome. Our method takes

the characteristics of compositional data into account and treats the whole compositional mediators as a

unit, that is, it estimates the effect of treatment on compositional mediators simultaneously instead of each

mediator separately. In our simulation studies, we have shown better performance of our method over the

two potential methods for compositional mediators. Our method also provides a clear interpretation of

component-wise indirect effects. Its application to gut microbiome and BMI dataset has clearly indicated

a potential mediation effect of the gut microbiome in linking the association between fat intake and BMI.

Although the results were not statistically significant, several bacterial genera have been shown to be directly

associated with gut permeability and therefore BMI. It would be interesting and important to replicate these

results in larger datasets.

In many clinical microbiome studies, the outcome variable is binary such as whether a subject is diseased

or not. In these cases, Model (2) can be rewritten for logistic or probit regression, assuming the outcome

variable is a latent continuous variable indicated by an observed dichotomous variable. Then, Model (1)

and the modified Model (2) will provide the identifiability of direct and indirect effects (Winship and Mare,

1983). Another interesting extension of our method is for longitudinal compositional data, which is also very

common in microbial studies.

Even though we used only a continuous treatment variable in the simulation study, a binary treatment
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variable can be used without any modification in our method. However, a treatment variable with more than

two categories cannot be used since it requires k− 1 parameters to fully represent the effect of a categorical

variable with k mutually exclusive categories on a dependent variable. A compositional mediation model

with a general categorical treatment variable is another interesting extension of our method.

Appendix A Proof of Theorem 1

Given Y ⊥⊥Mj |(T , X), Y ⊥⊥M c
j |(T , X) since

p(y ∩mc
j |τ, x) = p(y|τ, x)− p(y ∩mj |τ, x) = p(y|τ, x)− p(y|τ, x)p(mj |τ, x)

= p(y|τ, x) [1− p(mj |τ, x)] = p(y|τ, x)p(mc
j |τ, x).

Since Y ⊥⊥M c
j |(T , X) and Mi,∀i 6= j are disjoint,

p

y ∩ k⋃
i 6=j

mi

∣∣∣∣τ, x
 = p(y|τ, x)p

 k⋃
i 6=j

mi

∣∣∣∣τ, x
 = p(y|τ, x)

 k∑
i 6=j

p(mi|τ, x)


=

k∑
i 6=j

p(y|τ, x)p(mi|τ, x). (14)

By the distributive law, we can also have

p

y ∩ k⋃
i 6=j

mi

∣∣∣∣τ, x
 = p

 k⋃
i 6=j

(y ∩mi)

∣∣∣∣τ, x


=
k∑
i 6=j

p (y ∩mi|τ, x) . (15)

To satisfy the equality of Equations (14) and (15) for any y and mi,∀i 6= j satisfying Y ⊥⊥ M c
j |(T , X),

p(y ∩mi|τ, x) = p(y|τ, x)p(mi|τ, x), ∀i 6= j, that is, Y ⊥⊥Mi|(T , X),∀i 6= j. �

Appendix B Proof of Theorem 2

It has been shown that under the assumption (3) - (4), direct and indirect effects are identifiable and equal to

c and (logA)TB, respectively, within the framework of LSEM (Imai et al., 2010). Thus, showing the proposed

compositional mediation model falls into LSEM suffices to prove Theorem 1. Applying the additive logratio
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transform to both sides of Model (1), we have

log
Mij

Mik
= log

M0j

M0k
+ τ∗i log

Aj
Ak

+ εij , ∀j ∈ {1, 2, . . . , k − 1}, (16)

where εij = log (Eij/Eik). Because of the unit sum constraint of Model (2), we can write Model (2) as

yi = c0 + τ∗i c+ (logMi1)B1 + · · ·+ (logMi(k−1))Bk−1 (17)

− (logMik)(B1 + · · ·+Bk−1) + εi

= c0 + τ∗i c+

(
log

Mi1

Mik

)
B1 + · · ·+

(
log

Mi(k−1)

Mik

)
Bk−1 + εi.

Let gij ≡ log
Mij

Mik
and fj ≡ log

Aj
Ak

, then we have

gi1 = g01 + τ∗i f1 + εi1,

gi2 = g02 + τ∗i f2 + εi2,

...

gi,k−1 = g0,k−1 + τ∗i fk−1 + εi,k−1,

and

yi = c0 + τ∗i c+ gi1B1 + · · ·+ gi,k−1Bk−1 + εi.

Therefore, Equations (16) - (17) belongs to LSEM. �

Appendix C Model with confounding variables

Let X be a covariate and Ψ be a vector of its parameter. Then, the parameters A and Ψ can be estimated

by solving

(Â, Ψ̂) = argmin
A,Ψ,M0∈∇k−1

n∑
i=1

∥∥∥Mi 	M0 ⊕Aτ
∗
i ⊕Ψx∗

i

∥∥∥2

= argmin
A,Ψ,M0∈∇k−1

n∑
i=1

k−1∑
j=1

(k − 1)

[
log

(
MijM0kA

τ∗
i

k Ψ
x∗
i

k

MikM0jA
τ∗
i
j Ψ

x∗
i
j

)]2

− log

(
MijM0kA

τ∗
i

k Ψ
x∗
i

k

MikM0jA
τ∗
i
j Ψ

x∗
i
j

)
k−1∑
` 6=j

log

(
Mi`M0kA

τ∗
i

k Ψ
x∗
i

k

MikM0`A
τ∗
i

` Ψ
x∗
i

`

) ,
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or solving the system of 2(k − 1) linear equations:

 D(τ∗2) D(x∗τ∗)

D(x∗τ∗) D(x∗2)


fα
fφ

 =

m(τ∗)

m(x∗)


with a constraint AT1k = 1 and ΦT1k = 1, where

D(ξ) =



(k − 1)
∑n
i=1 ξi −∑n

i=1 ξi . . . −∑n
i=1 ξi

−∑n
i=1 ξi (k − 1)

∑n
i=1 ξi . . . −∑n

i=1 ξi
...

...
. . .

...

−∑n
i=1 ξi −∑n

i=1 ξi . . . (k − 1)
∑n
i=1 ξi


,

fα = [log(A1/Ak), log(A2/Ak), . . . , log(Ak−1/Ak)]
T
,

fφ = [log(Φ1/Φk), log(Φ2/Φk), . . . , log(Φk−1/Φk)]
T
,

m(ξ)j = k

n∑
i=1

ξi logMij −
n∑
i=1

k∑
`=1

ξi logMi`, ∀j ∈ {1, . . . k − 1}.

Similarly, the estimate of the parameter A with additional covariates can be obtained as long as the

covariates are not highly correlated. The number of linear equations to be solved with nc covariates is

nc(k − 1).

Appendix D Variance of indirect effects

To approximate the variances of a total indirect effect and component-wise indirect effects, the first order

asymptotic method described in (Bollen, 1987) is used. That is, the variance of each component-wise indirect

effect is approximated by

Var(log(kÂj)B̂j) ≈ [E(log(kÂj))]
2Var(B̂j) + [E(B̂j)]

2Var(log(kÂj))
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and the variance of a total indirect effect is approximated by

Var((log Â)T B̂) ≈
k∑
j=1

[E(log Âj)]
2Var(B̂j) +

k∑
j=1

[E(B̂j)]
2Var(log Âj)

+ 2
k∑
j<`

Cov(log Âj , log Â`)E(B̂j)E(B̂`)

+ 2
k∑
j<`

Cov(B̂j , B̂`)E(log Âj)E(log Â`).
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