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Abstract

Drug discovery and subsequent availability of a new breakthrough therapeutic or ‘cure’
is a compelling example of societal benefit from research advances. These advances are
invariably collaborative, involving the contributions of many scientists to a discovery
network in which theory and experiment are built upon. To understand such scientific
advances, data mining of public and commercial data sources coupled with network
analysis can be used as a digital methodology to assemble and analyze component
events in the history of a therapeutic. This methodology is extensible beyond the
history of therapeutics and its use more generally supports (i) efficiency in exploring the
scientific history of a research advance (ii) documenting and understanding
collaboration (iii) portfolio analysis, planning and optimization (iv) communication of
the societal value of research. As a proof of principle, we have conducted a case study of
five anti-cancer therapeutics. We have linked the work of roughly 237,000 authors in
106,000 scientific publications that capture the research crucial for the development of
these five therapeutics. We have enriched the content of networks of these therapeutics
by annotating them with information on research awards as well as peer review that
preceded these awards. Applying retrospective citation discovery, we have identified a
core set of publications cited in the networks of all five therapeutics and additional
intersections in combinations of networks as well as awards from the National Institutes
of Health that supported this research. Lastly, we have mapped these awards to their
cognate peer review panels, identifying another layer of collaborative scientific activity
that influenced the research represented in these networks.

Introduction

Data mining of public data sources coupled with network analysis enables the
quantitative description of research discoveries that were influential in the development
of a breakthrough therapeutic or ‘cure’. The set of scientific publications, clinical trials,
patents, and regulatory approvals, linked to each other by citation or assignment, that
documents the progress of concepts from basic research to a cure is termed a ‘cure
network’ [1]. Reconstructing such networks enables a deeper contextual understanding
of knowledge diffusion across disciplines, scientific interests, culture, and time [2]. Such
studies also (i) provide evidence for the broad collaborative platform of basic and
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translational research underlying major scientific advances such as cures for diseases |3]
(ii) support strategic communications to oversight bodies, and (iii) help communicate
the societal value of research. The understanding of a therapeutic network, when
coupled with information from clinical use of a therapeutic, also enables a recursive
learning of the pathogenesis of the disease it is being used to treat, as has been noted
for the burgeoning field of immunotherapeutics [4].

Williams and colleagues have elegantly demonstrated the feasibility and value of
data mining and network analysis using, as case studies, ivacaftor and ipilimumab,
approved for the treatment of cystic fibrosis and melanoma respectively (vide supra).
They observed that ‘the nature of a cure discovery network is complex and
fundamentally collaborative’, noting in the case of ivacaftor, that at least 7,067
scientists with 5,666 unique affiliations contributed to ivacaftor-relevant research over a
period greater than 100 years. These authors also suggest that thoughtful metrics
derived from this concept could inform decision making by funders.

Extending the methodology to study additional cures and significant research
advances is a logical next step. Ascertaining the nature of the interactions, if any,
between networks, is also of considerable interest since it supports an understanding of
collaboration across networks as well as common features of science networks. Lastly,
even if ambitious, scaling from case studies to mapping the entire domain of drug
development is likely to be beneficial in planning, resource allocation and optimization
of drug development activities.

To address these questions, we have built upon prior art for single networks to (i)
incorporate enhanced data mining methods and network metrics (ii) include enriched
data from a commercially available bibliographic database with disambiguated author
identifiers (iii) include information on research awards and peer review of grants (iv)
extended single network analysis to map publications and authors across multiple
networks. Key assumptions in constructing these networks are that the references found
in relevant documents are appropriate citations of new knowledge relevant to a given
cure and that a further retrospective round of citation discovery will reveal previous
influential discovery |1]. For evaluation, we have conducted case studies of a cluster of
five FDA-approved therapeutics for cancer. We present the results of this case study as
a body of work for further study by other researchers, and a step towards mapping the
universe of FDA-approved drugs and biologicals.

Materials and Methods

A set of five anti-cancer therapeutics, three drugs and two biologicals, approved for use
in humans by the Food and Drug Administration (FDA) was selected for this study
(Table 1). Imatinib [5] and Sunitinib [6] are tyrosine kinase inhibitors, Nelarabine [7] is
a nucleoside analog, and Ramucirumab [8] and Alemtuzumab (Campath) [9] are
humanized antibodies that target the CD52 and vEGFR-2 cell surface receptors
respectively. For each of these therapeutics, a set of relevant scientific publications was
constructed as in Williams et al. [1] but with specific modifications detailed below. An
allowance of 2 months was also made for ‘publication lag’ when assembling referenced
material. For example, if a therapeutic was approved on Jan 1, 2017, documents
published on or before March 31, 2017 were included. For each of the five therapeutics,
a first-generation list of PubMed identifiers (citing_pmid) was harvested from the five
different data sources (Table 1).

Clinical trials The national clinical trials database (clinicaltrials.gov) was searched
for clinical trials of the five therapeutics that completed by the data of FDA approval.
Both cited references and publications from these clinical trials were collected if they
were published within the approval date plus two months. To capture publications
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Therapeutic FDA Approval Date | Unique Identifier | US Patent | Publication Date
Alemtuzumab | May 2001 BLA: 103948 US5846534 | Dec 1998
Imatinib May 2001 NDA: 021335 USH521184 | May 1996
Nelarabine Oct 2005 NDA: 021877 US5424295 | Jun 1995
Ramucirumab | Apr 2014 BLA: 125477 US7498414 | Mar 2009
Sunitinib Jan 2006 NDA: 021938 US6573293 | Jun 2003

Table 1. Case Studies of Five Anti-Cancer Agents Five anti-cancer therapeutics, with
FDA approval dates ranging from 2001 to 2014, were selected as case studies. The unique
identifier for each therapeutic is an FDA assigned NDA or BLA number. While multiple patents
are typically associated with a drug or biological, the single US patent number displayed
represents the primary invention that preceded approval of the therapeutic. The publication
date for each patent is listed in the last column.

associated with the clinical trials that were not displayed in clinical trials.gov, PubMed
was also searched with the unique identifier (NCT number) of any clinical trials that
were identified. To capture publications of clinical trials not registered in
clinicaltrials.gov, PubMed was searched using the therapeutic name as keyword,
publication type as “clinical trial”, and an appropriate date restriction as in searches of
clinicaltrials.gov. For example, the search term (((“alemtuzumab” [Supplementary
Concept] OR “alemtuzumab”[All Fields]) OR (“alemtuzumab” [Supplementary Concept]
OR “alemtuzumab”[All Fields] OR “campath”[All Fields])) AND (“1900/0101” [PDAT] :
“2001/07/31”[PDAT])) AND “clinical trial” [Publication Type| was used to identify
publications of clinical trials for Alemtuzumab.

FDA documents The drugs@fda website [10] was searched for each of the five
therapeutics and cited references in the medical review document were manually
extracted and matched to pmids. FDA Approval Summaries published in journals by
FDA staff, were available for all five therapeutics and contain cited references. If the
published date of a cited reference in an Approval Summary exceeded the approval date
plus two months, the publication was not included.

Patents For each therapeutic a single patent was identified that best represented
the most relevant invention to the therapeutic at hand. Identification of this patent was
performed using multiple web sources. The US patent number was then used to identify
the patent and the non-patent citation list from Google Patents [11] was manually
processed by searching PubMed for appropriate pmids. The accuracy of manual
searches was far higher than a citation matching tool that we developed for for this
purpose,and were used to generate the data in this study.

Post-approval literature reviews Review articles published after a therapeutic’s
approval by the FDA are independent studies of the the development of a therapeutic.
Accordingly, PubMed was searched for review articles on these five therapeutics that
were published between the date of FDA approval and a year following the date of
approval. Cited references in these reviews were extracted using PubMed and Scopus.
The review articles themselves were not included.

Pre-approval literature searches Literature searches were performed using
PubMed with a date range of 1900/01/01 to two months post-FDA approval. For
example, the search term ((alemtuzumab) OR campath) AND (“1900/01/01” [Date -
Publication] : “2001/07/31” [Date - Publication]) was used to retrieve articles of interest
relevant to alemtuzumab.

PubMed and Scopus Citing_pmids from the five different sources above were
combined and deduplicated. Using the Scopus database and its APIs. The
manually-generated list of pmids taken from the five sources mentioned (Clinical Trials,
FDA Documents, Patents, Post-Approval Literature, and Pre-Approval Literature
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Searches) were searched in Scopus, using the basic Scopus Search API, to arrive at a list
of Scopus IDs (citing_sid) for the publications. The Scopus Abstract Retrieval API was
then used to retrieve a more comprehensive record for each of the SIDs comprising that
list of publications Next, for each of these publication records citing sid), we used the
Scopus Author Retrieval API to retrieve a full record for each unique author in the
publication set. We also used the Abstract Retrieval API to collect records for each of
the publications cited by the first generation of publications. This set of cited
publications is the cited_sid set. Using the same Author Retrieval API, we then
gathered data for each of the unique authors affiliated with the cited_sid publications.
Completion of the process yields two sets of publications, citing_sid and cited_sid, with
citation links between them and full information on all authors for both generations.
Finally, for each author in the study, we used the standard Scopus Search API once
more to retrieve a smaller record for every publication affiliated with them in Scopus, in
order to tally their overall publication output. While author records in Scopus have
overall publication counts as part of the record, by manually downloading each of them,
we can store and count them by type (i.e. article, book chapter, Editorial, review, etc.).
This allowed us to more precisely arrive at publication totals for only those publication
types that are relevant for this study. [which are]

Whereas mapping between PubMed and Scopus identifiers at the citing_pmid and
citing_sid stage resulted in 1% or less information loss, mapping at the cited_sid to
cited_pmid resulted in a loss of roughly 15-20 % of target records. Accordingly the
Scopus data was used as the backbone of the publication component of the network and
the cited_pmid information was treated as an annotation layer. These observations are
summarized in Table 2.

Therapeutic citing_pmid count | citing_sid count | cited_sid count | cited_pmid count
Alemtuzumab | 599 587 (1%) 8840 (2%) 7071(20%)
I'matinib 1380 1373(1%) 27326(1%) 23340(17%)
Nelarabine 104 104(0%) 2476(1%) 1990(20%)
Ramucirumab | 1820 1804(1%) 48587(0%) 40973(19%)
Sunitinib 1512 1509(0%) 33895(0%) 28661(15%)

Table 2. Citation Counts and Mapping Between Bibliographic Databases Five
anti-cancer therapeutics were selected as case studies. A foundational set of references
(citing_pmid) was assembled for each therapeutic from patents, clinical trials, regulatory
documents, and the scientific literature (Materials and Methods). Citing_pmids were mapped to
Scopus identifiers (citing sid), which were used, in turn, to retrieve cited publications (cited_sid).
Cited_sids were mapped back to PubMed identifiers (cited_pmid).The number of identifiers at
each stage of the mapping process is shown along with percentage loss (in parentheses) when
mapping across PubMed and Scopus or due to null values in the cited_sid field

Both citing and cited pmids were mapped to NIH grants and peer review panels
(study sections) using public information available through NIHExPORTER [12]. Thus,
we enriched our network data by identifying those study sections associated with the
awards that supported publications in our networks.

Networks The resultant data were modeled as networks and analyzed using metrics
based on network topology. We calculated the propagated in-degree rank (PIR) and
ratio of basic rankings (RBR) metrics of Williams [1]. PIR represents the sum of
aggregated citation scores (first and second degree only) for all articles in a network
that can be attributed to an author. In addition to computing PIR for all authors in
each network, we also combined the citation data for all five networks and computed a
networkPIR (nPIR) score, which was also normalized to the sum of individual PIR
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scores within each network as the PIRpartitionRatio (PPR) as a way to measure
inter-network influence. RBR is intended to represent the fraction of a researcher’s
output that is in a network and is defined as the ratio of the number of publications in
network to the number of publications in a background dataset for an author. In its
original specification, the background dataset for RBR was constructed by keyword
searches of PubMed. A potential weakness of this keyword based approach is that
keywords do not effectively capture the field or the total output of an author even if
multiple background samples are taken. Therefore, we created two new variants of the
RBR; network RBR (nRBR) and global-based RBR (gRBR). nRBR uses all publications
in our set of five therapeutics as background and dRBR takes advantage of the Scopus
author_id to capture the total article output of an author as background. Thus, nRBR
and dRBR normalize a researcher’s in-network contributions to backgrounds based on
total network and total researcher productivity respectively. The details of how these
metrics were calculated are provided in supplementary material

Analysis. All data used in this study were acquired exclusively from the sources
listed above. Computations were performed on infrastructure owned or leased by NET
ESolutions, Elsevier, or the Gladstone Institutes. Code and scripts used in this study
were written in Java, Python, and R and are archived on a publicly accessible Github
repository [13]. Network visualization was performed using Cytoscape [14].

Results and Discussion

Publications Scientific publications form the backbone of each of these five networks.
Our initial assumptions of appropriate citation and retrospective citation discovery
(Introduction) suggest that network nodes that are common to multiple networks are
likely to be influential. We calculated intersection counts for all possible combinations
of publications in the Alemtuzumab, Imatinib, Nelarabine, Ramucirumab, and Sunitinib
networks . We also applied intersection analysis at a finer level of
granularity by computing intersection counts for both first generation citations
(citing-pmid) and second generation citations (cited_sid). The results are displayed as
Venn diagrams in Fig. 1.

The intersection of all five networks consists of 14 publications out of a total of
106,720 unique Scopus identifiers (Supplemental Data, Table 1). Strikingly, not even a
single publication is common to all five networks at the first generation level (citing_sid)
although a single publication, the pathbreaking work of Kohler and Milstein on the
production of monoclonal antibodies [15], is cited in four out of five networks. All 14
publications are in the second generation of citations (cited_sid) and another 198
comprise the sum of intersections in all possible four-network combinations, roughly an
order of magnitude greater than the case of cited references. We manually grouped
these 14 publications using high level descriptive terms and observed that this group
was composed of statistical methods (5 publications), molecular and cell biological
methods (4 publications), analytical and structural biology techniques (3 publications)
and cancer biology (2 publications). Of these last two, one is a review of the p53
gene |16] and the second is a study of angiogenesis in children with acute lymphoblastic
leukemia [17]. Thus, the majority of this small set of 14 publications describes methods
that are heavily cited in these therapeutic development networks, which is consistent
with observations of the general scientific literature [18]. The relationship between core
publications and their therapeutic networks is visualized in Fig. 2. As the subject of
another study, we are actively working on a scalable automated strategy to characterize
the entire dataset as well as all combinations of intersections between networks using
high level descriptive terms.

Grant Support With its annual budget of approximately US$32 billion, NTH is a
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Fig 1. Intersecting Publications in Five Networks Intersections were calculated across
all five networks for the first generation of references (citing_pmids) and as well as for the second
generation of references (cited_sids) and displayed as Venn diagrams. Left Panel. No first
generation publications are observed common to all five networks. A single publication is cited
in four of five networks. Right Panel. 14 publications are common to all five networks.
Abbreviations: alem (Alemtuzumab), imat (Imatinib), nela (Nelarabine), ramu (Ramucirumab),
suni(Sunitinib)

major funder of biomedical research through its granting program. Understanding the
nature and extent of NIH grant support for the research represented in our five
networks, provides insight into the funding programs that enabled this research. We
took advantage of publicly available data [12] to identify grant support for the
publications in our five networks by mapping them to pmids. A total 19,104 unique
grant numbers was harvested of which 112 were found in all five networks. At the
intersection of five networks, the reason the number of grants is larger than the number
of publications is because publications and grants exist in a ‘many to many’ relationship
in that each publication can acknowledge support from multiple grants and each grant
can support multiple publications. These awards were grouped by major type and
visualized (Fig 3.). Of note, support from Research Program Projects and Center grants
is proportionately larger in the intersection group when compared to the total
population where the proportion of research projects is larger. A significant loss of
information occurs when mapping from cited_sid to cited_pmid (Table 2). Thus we
believe that these numbers may be an underestimate of actual grant support from NIH.
Also missing from this analysis are details of research support from other funding
agencies and industry, which are questions that we intend to pursue. Even so, these
data testify to a recurring theme of collaboration and breadth of community
engagement that is also seen at the publication level. We speculate that the broader
and collaborative nature of such awards may be more likely to result in a methods-rich
population of publications than the more focused research project award but elucidation
will require further and more rigorous study.

Peer Review Research support from NIH is typically made through a two stage
peer-review process. The Center for Scientific Review at NIH manages first-stage
scientific review of between 50,000-60,000 grant applications each year [19], a process
involving more than 15,000 expert reviewers. In addition, individual Institutes and
Centers at NIH manage smaller scale peer review operations. Considering a crude
estimate of a 20% success rate in funding, peer review can be viewed as a collaborative
scientific activity and that serves as a selection layer for the upper fifth of applications,
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C imat >

Fig 2. Core Publications in Networks The arcs of blue nodes identify first generation
publications (citing-sid) for each therapeutic. Nodes in the inner ring are sized by a gradient
proportion to total degree count with an upper limit of 30 and are colored by a gradient
proportional to the number of drug connections (2 to 5). 14 publications are common to all five
networks (Table 3) and are colored red. The remaining nodes in the inner ring connect to
between 2 and 4 drugs each and are labeled accordingly. Abbreviations: alem (Alemtuzumab),
imat (Imatinib), nela (Nelarabine), ramu (Ramucirumab), suni(Sunitinib).

thus strongly influencing granting outcomes. To describe this layer at a high-level, we
matched the awards in the the five networks to the peer review panels (study sections)
that evaluated them for scientific merit and calculated the intersection and union of
these peer review panels. Fighty eight unique panel identifiers formed the intersection.
Of these, 11 are distinguishable as Special Emphasis Panels that could be either
one-time or recurring panels with temporary members, the remaining 77 are chartered
panels with relatively stable membership. Some of these panels are no longer active and
public records are not easily available to determine their scientific focus. For the 74
panels that could be classified (Supplemental), beyond an obvious focus on cancer, it is
evident that the panels represent a rich mix of disciplines such as chemistry, biophysics,
genetics, cell biology, and molecular biology; as well as AIDS, pathology, radiology,
endocrinology, neurology, mental health, and child health. Four hundred and seven
unique panel identifiers formed the union of all five networks. Of these 28 were Special
Emphasis Panels, the remaining 379 panels were chartered as in the case of the
intersection. These data provide evidence of broad input from invited experts in a
collaborative activity that selects promising scientific projects. Assuming an average of
25 reviewers per panel (the number is likely to range from 5-40) and excluding that
some of these panels are likely to have met multiple times during the lifespan of the
awards in question and that some of these applications for funding may have been
reviewed multiple times, a minimum of 10,000 experts comprised this additional layer of
scientific influence. We believe that the actual number is likely to be at least double. A
more accurate estimate would be possible if historical records of participation in peer
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Fig 3. NIH Research Support Grant and contract support for publications from NIH in the
five networks was identified using ExXPORTER data (Materials and Methods). 19,104 unique
project numbers were identified as sources of support for publications in all five networks. Of
these, 112 projects were common to all five networks. Projects were grouped by mechanism (i)
P- Research Program Projects and Centers (ii) R- Research Projects (iii) M-General Clinical
Research Centers Programs (iv) N-Research and Development-Related Contracts (v)
U-Cooperative Agreements (vi) T-Training Programs (vii) Z- Intramural Research. For each
mechanism, the number of projects in the intersection of all five networks was plotted against
the number in the union of all five networks (both expressed as percentages of their respective
totals). A higher proportion of Research Program Projects and Centers awards is found in the
intersection group.

review were made publicly available by NIH. We do not have records of awards or peer
review from sources other than NIH and this also is a focus of future investigation.

Network Metrics To quantify network data and to identify influential researchers
in and across networks, we calculated PIR and RBR scores for all researchers as well as
nPIR, PPR, nRBR, and gRBR scores (Materials and Methods, Supplemental
Information, Table 2). The nPIR metric describes the sum of aggregated citation scores
for all articles that a researcher has in all five networks. The PIRpartitionRatio (PPR)
results from normalizing nPIR to the sum of individual PIR scores to gain insight into
holo-network influence. A limitation of the nPIR and nRBR measurements is that they
are valid only for the network(s) being studied. Scaling from five to the more than 1400
drugs approved by the FDA (and their many variants) would address this limitation [20]
although other data related issues may well emerge.

While theoretically appealing (Materials and Methods), the gRBR is the most
sensitive to data quality since it relies on an accurate estimate of total productivity of a
researcher, which is sensitive to data quality in bibliometric databases. We found
several instances in the top 10% of PIR scores where the gRBR was implausible likely
on account of polysemy, synonymy, or incompleteness. This metric is therefore likely to
be useful when the author disambiguation problem and article capture is resolved to the
point where data quality is significantly improved and is not recommended except when
strong confidence exists in the total productivity counts. These metrics may be best
used in conjunction with positional measures such as quantiles to define populations of
researchers within related networks, e.g, the top 25 researchers based on nPIR scores of
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all researchers in our dataset . These ‘bright stars in neighboring
constellations’, represent elite performers in network(s) of clinical and basic science
expertise again reinforcing the concept of collaborative translational achievements built
upon a body of basic science. Beyond simple aggregation, weighting, and normalization
that we have used, a variety of citation metrics such as SNIP [21], with different
normalization strategies at the field, journal, and article level are available for impact
analysis and these could be applied to such networks depending on the features of these
networks and the aim of the study [22]. The use of these citation measures will assume
greater importance when scale up from small numbers of networks to a greater
proportion of the global network.

In summary, we have demonstrated a digital methodology based on data mining and
network analysis, not restricted to drug discovery and cures alone, that offers
burden-reduction in explorations of science history. Beyond assembling a set of facts
about a major scientific advance, it contributes to the understanding of collaboration
across domains and can be used to enrich portfolio analysis, planning and optimization,
as well as communications of the societal value of research. The approach can be easily
adapted to study the collaborative history within and across research portfolios of
groups of researchers and targeted programs such as the Clinical and Translational
Science Award (CTSA) Program. While finer critical evaluation of the content of
datasets generated through this approach is best left to experts, the methodology is
broadly accessible and can also be viewed as another tool for citizen science. Overall, no
single metric will provide useful answers, instead expert interpretation of multiple
metrics best matched to curated datasets will be valuable.
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