Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Transfer entropy as a tool for inferring causality from observational studies in epidemiology

View ORCID ProfileN. Ahmad Aziz
doi: https://doi.org/10.1101/149625
N. Ahmad Aziz
Departments of Neurology and Clinical Epidemiology, Leiden University Medical Centre, Leiden, the Netherlands & Department of Neurodegenerative Disease, UCL Huntington’s Disease Centre, University College London Institute of Neurology, London, United Kingdom.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for N. Ahmad Aziz
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Abstract

Recently Wiener’s causality theorem, which states that one variable could be regarded as the cause of another if the ability to predict the future of the second variable is enhanced by implementing information about the preceding values of the first variable, was linked to information theory through the development of a novel metric called ‘transfer entropy’. Intuitively, transfer entropy can be conceptualized as a model-free measure of directed information flow from one variable to another. In contrast, directionality of information flow is not reflected in traditional measures of association which are completely symmetric by design. Although information theoretic approaches have been applied before in epidemiology, their value for inferring causality from observational studies is still unknown. Therefore, in the present study we use a set of simulation experiments, reflecting the most classical and widely used epidemiological observational study design, to validate the application of transfer entropy in epidemiological research. Moreover, we illustrate the practical applicability of this information theoretic approach to ‘real-world’ epidemiological data by demonstrating that transfer entropy is able to extract the correct direction of information flow from longitudinal data concerning two well-known associations, i.e. that between smoking and lung cancer and that between obesity and diabetes risk. In conclusion, our results provide proof-of-concept that the recently developed transfer entropy method could be a welcome addition to the epidemiological armamentarium, especially to dissect those situations in which there is a well-described association between two variables but no clear-cut inclination as to the directionality of the association.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted June 14, 2017.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Transfer entropy as a tool for inferring causality from observational studies in epidemiology
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Transfer entropy as a tool for inferring causality from observational studies in epidemiology
N. Ahmad Aziz
bioRxiv 149625; doi: https://doi.org/10.1101/149625
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Transfer entropy as a tool for inferring causality from observational studies in epidemiology
N. Ahmad Aziz
bioRxiv 149625; doi: https://doi.org/10.1101/149625

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Epidemiology
Subject Areas
All Articles
  • Animal Behavior and Cognition (3589)
  • Biochemistry (7553)
  • Bioengineering (5498)
  • Bioinformatics (20742)
  • Biophysics (10305)
  • Cancer Biology (7962)
  • Cell Biology (11624)
  • Clinical Trials (138)
  • Developmental Biology (6596)
  • Ecology (10175)
  • Epidemiology (2065)
  • Evolutionary Biology (13586)
  • Genetics (9525)
  • Genomics (12824)
  • Immunology (7911)
  • Microbiology (19518)
  • Molecular Biology (7647)
  • Neuroscience (42014)
  • Paleontology (307)
  • Pathology (1254)
  • Pharmacology and Toxicology (2195)
  • Physiology (3260)
  • Plant Biology (7027)
  • Scientific Communication and Education (1294)
  • Synthetic Biology (1948)
  • Systems Biology (5420)
  • Zoology (1113)