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Abstract 

The goal of lineage tracing is to understand body formation over time by discovering 

which cells are the progeny of a specific, identified, ancestral progenitor. Subsidiary 

questions include unequivocal identification of what they have become, how many 

descendants develop, whether they live or die, and where they are located in the tissue or 

body at the end of the window examined. A classical approach in experimental embryology, 

lineage tracing continues to be used in developmental biology, stem cell and cancer research, 

wherever cellular potential and behavior need to be studied in multiple dimensions, of which 

one is time. Each technical approach has its advantages and drawbacks. This chapter, with 

some previously unpublished data, will concentrate non-exclusively on the use of interspecies 

chimeras to explore the origins of perivascular (or mural) cells, of which those adjacent to the 

vascular endothelium are termed pericytes for this purpose. These studies laid the 

groundwork for our understanding that pericytes derive from progenitor mesenchymal pools 

of multiple origins in the vertebrate embryo, some of which persist into adulthood. The 

results obtained through xenografting, like in the methodology described here, complement 

those obtained through genetic lineage tracing techniques within a given species. 
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Introduction 

Brief history of the mysterious pericyte 

The word “pericyte” carries its own uncertain definition - by its position, rather than 

by its function. Careful observations by Rouget and drawn using a camera lucida in 1873, 

showed highly ramified cells, which he considered likely to be contractile smooth muscle 

cells (SMC), apposed tightly to the hyaloid microvasculature of the frog and the rabbit [1]. 

Capillaries, apparently the simplest blood vessels, are not functionally identical around the 

body. What is in common is the unit of the endothelial cell, in direct contact with the 

circulating blood and in tight contact with its lateral neighbor. However, even endothelial 

cells can be differentiated molecularly and phenotypically based on their position in new 

sprouts, or in lymphatic beds. Most capillaries are associated with some form of pericyte, a 

multipotent contractile cell type on the immediate abluminal surface of the endothelial cells. 

These are responsible for the secretion of a tissue-specific basal lamina [2] and may be 

closely apposed or not [3]. Depending on vessel type, there may then be one or more 

concentric layers of SMC, all encased by outer connective cells including fibroblasts, which 

maintain the position of the blood vessel within the tissue or cavity. 

The term pericyte has expanded over time to encompass the description of any 

resident periendothelial cell, though it tends to be applied most to microvessels. There are 

both molecular and phenotypic features that are either distinct to, or in common between, the 

following cell types: brain capillary pericytes, arterial, venous or lymphatic periendothelial 

SMC, kidney podocytes, coronary vascular pericytes, liver stellate cells, myofibroblasts, bone 

marrow stroma, dental pulp stem cells and even a subpopulation of macrophages [4, 5]. 

Many of the specific cell types listed above appear to retain mesenchymal 

multipotency into adulthood in multiple species, further confounding terminology. It is 

therefore essential to define the cell type under study with both molecular markers and in 
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vivo position in tissue relative to vascular endothelium and, optimally, its basal lamina [6]; 

short of these conditions, it is important to keep in mind that all markers used to date are 

typical of, but never restricted to, a given pericytic population [7, 8]. For example, the large 

transmembrane glycoprotein encoded by the CSPG4 (chondroitin sulfate proteoglycan 4) 

gene, also known as NG2 (for nerve/glia antigen 2), is expressed by many multipotent cell 

types, such as mesenchymal, keratinocyte and radial glia stem cells, in addition to pericytes. 

An adaptable tool: xenografting 

A major fate-mapping technique to track cellular lineages [9], used in experimental 

embryology since its development in the last third of the 20th century, has been the 

construction of quail-chick chimeras. This approach exploits species differences in nuclear 

structure to permanently mark cells grafted from a donor to a host embryo [10], and has been 

adapted to highlight immunological differences with species-specific antibodies [11]. The 

flexible concept has taken many forms over the years. For example, mouse-chick and duck-

chick chimeras have also been constructed, to study aspects of tooth or beak shape 

development and take advantage of introduced genetic modifications or species-specific 

attributes [12, 13]. Transfected quail donors have also made it possible to combine persistent 

fate-mapping with localized in vivo responses to changes in gene expression [14]. 

The endothelial cell lineage differentiates itself from other future mesodermal 

progeny at a very early time point, when the future head is barely distinguished by an anterior 

transverse buckling in the germ layers and gastrulation is still underway. The tyrosine kinase-

linked receptor to the major bioactive form of vascular endothelium growth factor (VEGFA), 

Vegfr2, is already expressed then in a subset of cephalic mesoderm that subsequently 

differentiate into endothelial cells [15]. VEGF is essential to early vascular development and 

endothelial survival, and is secreted by cell, including pericytes, contacting sprouting 

neovessels under both normal and pathological conditions [16–18]. Xenografts of 
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mesodermal mesenchyme lateral to the future brain at times before neural crest migration 

participate in both striated muscles and the endothelium of all cephalic blood vessels [19, 20]. 

Vegfr2-expressing precursors coalesce and cavitate to create a primary capillary network. 

Thereafter, new blood vessels sprout from pre-existing vessels. The growth process is known 

as angiogenesis and occurs throughout life and the body. In vertebrates, such labile sprouts 

are stabilized by pericytic contact and molecular cross-talk that appears to be evolutionarily 

conserved [16, 18, 21]. 

The development of antibodies against species-specific epitopes present on vascular 

endothelium, such as MB1/QH1 for the quail, which is not present in chicken endothelium 

[22, 23], prefigured the development of multiple conditional yet indelible fate-mapping 

techniques to trace the origins of endothelial cells from various intra- and extra-embryonic 

mesodermal sources. Confirmation of the mesodermal origins and further molecular 

properties of the vascular endothelium have been examined by fate-mapping in xenografting 

experiments [24, 25]. In the 2000s, Cre-lox [26] and Tol2 [27, 28] technologies allowed 

localized, timed recombination and subsequent expression of lineage tracers such as beta-

galactosidase or fluorescent proteins, as well as functional manipulation of other genes’ 

expression in specific populations. The Tie2 (Tek)-driven Cre recombinase has been 

particularly useful in following the vascular endothelial lineage in the mouse [29, 30] and 

validating the evolutionary conservation of the embryonic origins of the endothelium, but 

many other early and specific markers, such as Vegfr2 promoter-driven fluorescent markers, 

are also used for lineage tracing in multiple model species like zebrafish [31]. 

As VEGF, BMP and related signaling pathways have been shown to be critical for the 

establishment of vascular identity and function in other parts of the body [29, 32], mediation 

by perivascular cells of signals between the surrounding tissue and the endothelium seems to 

be the rule and not the exception, no matter the embryological origin of the pericyte [33]. 
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Because the potential for conferring these tissue-specific properties are at least in part a 

function of their origin, the results of pericytic lineage tracing remain relevant for 

understanding the causes of, and proposing adapted therapies for, vascular tumors and 

malformations and inappropriate angiogenesis. 

Multiple origins of pericytes - Neural crest 

Neural crest cells (NCC) detach from the left and right boundaries between the 

ectoderm and the neural plate, as the latter rolls up into a tube which will give rise to the 

central nervous system. Fate maps using avian embryo chimeras have shown that these NCC 

migrate into and through the perineural mesodermal mesenchyme until they both mingle with 

it and colonize the appropriate distal targets, where they differentiate into the peripheral 

nervous system, certain types of endocrine cells, and all extra-retinal pigment cells (reviewed 

in Le Douarin et al. 2008). Cephalic NCC also engender many tissues that in the body are 

derived from the mesoderm, with the notable exception of vascular endothelium, derivatives 

grouped under the heading of the “mesectoderm”. These include the connective components 

of all head and neck glands, facial muscles and tendons. The dermis and adipose tissue 

overlying the jawed facial skeleton and brain case, the bones of that part of the skull; the 

meninges, including the vascular pia mater, underlying it are also of neural crest origin, as 

shown by lineage-tracing techniques in the avian embryo and later validated in other 

vertebrates [34–42]. 

Normally, NCC as well as Vegfr2-expressing mesenchyme surround the forebrain 

from the dorsal and ventral sides, respectively. Where they meet, they combine to form a 

leptomeningeal vascular plexus by the second day of incubation in the chick, although 

capillary penetration of the forebrain only occurs during the fifth day. In embryos 

experimentally deprived of rostral NCC, forebrain apoptosis occurs on the second and third 

days of incubation, such that the prospective forebrain tissue is not even present on the fifth 
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day [43]. The experimental phenotype is due to a survival effect of mesenchyme of NCC 

origin on the early forebrain neuroepithelium within the pia mater, not compensated by 

unstabilized vascular endothelial precursors alone [44]. Much but not all of the NCC-derived 

perivascular mesenchyme in this location, both on the surface or intraparenchymally, 

ultimately expresses alpha-smooth muscle actin (aSMA). The migrating NCC normally 

counter environmental signals of the bone morphogenetic protein (BMP) and Wnt families 

and stimulate VEGF signaling [reviewed in [26]] by producing multiple members of the 

DAN (for differential screening-selected gene aberrative in neuroblastoma) family of 

antagonists: Gremlin (Grem), Dickkopf (Dkk1) and Cerberus (Cer1) [45, 46]. Combinations 

of both quail-chick chimeras and molecular biology have demonstrated that the 

anteroposterior level of NCC origin determines its potential to enable forebrain survival and 

growth [47], and that only NCC with mesectodermal potential normally differentiates into 

pericytes and SMC. 

The first indications of the unique role of NCC in cephalic blood vessels came from 

fate-mapping experiments using radioactive isotopes, retroviral infection or xenografting to 

show their constitution of the branchial arch mesenchyme and subsequent incorporation into 

the muscular walls of the corresponding large arteries [35, 48, 49]. NCC derived from the 

posterior rhombencephalon were shown to contribute all components of the proximal large 

arteries to the heart, with the exception of the endothelium. Subsequently, the functional role 

of NCC of this origin was noted in the septation of the pulmonary trunk from the aorta [50, 

51]. NCC are equally important to the smooth muscle wall of the posterior aortic arch arteries 

in mammals [26] and integrate into the walls of the cardinal veins [49, 52]. NCC were shown 

with quail-chick chimeras to provide two distinct types of cells in the tunica media of large 

elastic arteries derived from the aortic arches, some non-SMC adventia, and an early 
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periendothelial layer of NCC not organized in lamellar layers, and only sometimes expressing 

aSMA [53]. 

Abutting pericyte lineage-tracing 

The cellular resolution afforded by interspecies chimeras enabled discovery of the 

origin and extent of a subpopulation of pericytes in the multipotent cephalic NCC. Isotopic 

xenografts of small fragments of neural folds from brain levels corresponding to the future 

diencephalon and mesencephalon of quail donors resulted in abundant graft-derived NCC 

within the forebrain meninges of the chicken hosts, with a sharp border at the forebrain-

midbrain boundary [52]. Quail cells, adjacent to endothelial capillary walls within the 

parenchyma and the leptomeninges, were co-immunostained with aSMA after a few days’ 

maturation and determined to be pericytes (Figure 1). The vascular media of veins and 

sinuses were only a grafted cell or two thick, confirming independent work also using quail-

chick chimeras [49]. SMC and outer mural connective tissue cells of graft origin were 

organized in cell-dense layers in the distal portions of the major cephalic arteries; most of 

these in cross-section were concentric and interspersed with eosinophilic elastin. Histological 

differences in elastin organization between the parts of the aorta surrounded by SM of NCC 

versus mesodermal origin have also been noted by others [54], a heterogeneity much later 

borne out by functional studies of ductus arteriosus closure at birth in mice, as described 

below [55]. 

Grafts of neural folds of the anterior rhombencephalon gave rise to all but the 

endothelial cells of the proximal segments of the arteries irrigating face and forebrain, as well 

as the distal internal carotid arteries. Median rhombencephalic neural folds contributed cells 

to the carotid arteries and cardinal veins, while posterior rhombencephalic NCC tended to 

incorporate into proximal segments of the carotid arteries, the aortic and pulmonary trunks 

and the conotruncus and semilunar valves of the heart itself, confirming reports by others [52, 
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56]. Thus, the original anteroposterior origin of a cell within the neural folds corresponds to 

its final distoproximal distribution in a defined subset of cephalic blood vessels. This subset, 

designated the “branchial vascular sector”, is a distinct circuit of blood vessels originating in 

the ventral aorta and aortic arches, ramifying into circumscribed capillary plexuses, and 

terminating in their venous return to the heart. These vessels irrigate the forebrain, neck, face 

and jaws, and in what appears to be a species-dependent pattern, anastomose with the 

evolutionarily more ancient vascular network in the head [52]. 

Pdfgrb appears to play an evolutionarily conserved role in pericyte biology in 

microvessels, since its promoter driving a fluorescent marker has enabled lineage tracing and 

live imaging of vascular mural cells within an elegant zebrafish model [57]. In order to 

observe the dynamics of pericyte-EC interactions, EC can be simultaneously traced with a 

distinct fluorescent reporter [58], or in vivo after lipophilic, fluorescent dye injection into 

chicken host veins [59]. It is possible to make chimeras by transplanting cells from labeled 

donors to unlabeled wild-type hosts, for example with transgenic GFP-expressing chick 

embryos, or with transgenic zebrafish particularly between blastula and gastrula or shield 

stages, where detailed fate maps are available. Chimeras can thus be a vital tool for dissecting 

questions related to cell autonomous or non-autonomous effects of endogenous or exogenous 

signaling molecules on specific cell lineages, in combination with genetic gain-or-loss of 

function. To date, however, this labor-intensive strategy has been eschewed in favor of 

genetic combinations of lineage-specific labels with respect to studying teleost pericytes. This 

has been fruitful in confirming that the evolutionarily more recent brain and face indeed have 

neural crest-derived pericytes, while the rest of the body has mesoderm-derived pericytes, as 

shown by the reporters driven by the transcription factor genes Sox10 and Tbx6, respectively 

[57]. 
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Multiple origins of pericytes - Mesoderm 

A second vascular division can be distinguished in the head by virtue of its vessels not 

belonging to the branchial sector. Like in the rest of the body, its component arteries and 

veins share the property of being entirely constructed from the embryonic mesoderm. The 

cephalic mesoderm, although mostly mesenchymal, is analogous to the axial and paraxial 

mesoderm of the body. In mature vertebrates, vessels branching rostrally from the aorta 

irrigate the dorsal head, including the midbrain, cerebellum and hindbrain. This vascular 

domain contacts the branchial sector at the circle of Willis, a large anastomosis between the 

bifurcation of the basilar artery and the cerebral arteries, branches of the internal carotids. 

This polygon surrounds the optic nerves and ventral diencephalon, reflecting the transition (at 

least in birds) within the meninges from an entirely mesoderm-derived region, the midbrain, 

to a composite mesoderm/NCC-derived region, the forebrain [52]. 

Epicardium 

At the level of the heart, there is another vascular interface of neural crest-derived 

pericytes and SMC with their mesoderm-derived counterparts. The epicardium is a thin layer 

of specialized mesothelium that spreads from cells clustered on the coelomic surface of the 

right sinus venosus over the dorsal wall of the heart tube and toward the outflow tract during 

cardiac morphogenesis. A replication-defective adenovirus carrying the LacZ gene driven by 

a strong promoter, was used to follow the fate of a subset of either chicken proepicardium 

directly infected in ovo [60] or cultured quail epicardial cells, or whole quail proepicardial 

primordia grafted into chick hosts [56, 61]. In all cases, cells underwent an epithelial-

mesenchymal transition in order to leave the epicardial layer and integrate into the tunica 

media of both coronary arteries and veins. In addition, this epicardially derived mesenchyme 

also generated interstitial fibroblasts amongst the myocardium, indicating that this alternate 

source of pericytes and smooth muscle retains the capacity to give rise to non-vascular 
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connective tissue, like its neural crest counterpart in the head. Some of the endothelial cells of 

the coronary vasculature were also graft-derived in independent studies [56, 60], indicating 

that either it is difficult to entirely remove endothelial components from grafted tissues (a 

potential pitfall for chimera approaches), or that within the mesoderm, contrary to the neural 

crest, endothelial cells and vascular pericytes share a common lineage. Certainly, pericytes 

and coronary artery SMC do, and fate-mapping in mice demonstrated that the first is a 

potential resident progenitor pool for the second, when it is possible to remobilize them 

pharmacologically [62]. Recently, at least some coronary arterial pericytes and smooth 

muscle have also been fate-mapped to the hindbrain neural crest in both mouse and chick 

[63], implying that the heart is also a zone of transition from NCC-derived to mesoderm-

derived pericytes. 

Mesothelium 

The part of the lateral plate mesoderm that is closest to the endoderm and its signals is 

the splanchnic mesoderm. Within this original two-dimensional epithelium, flanking the axis, 

are fields corresponding to distinct populations of prospective mesenchyme. In gastrulae, the 

anteriormost zone of embryonic “lateral” mesoderm beyond the future head will integrate 

into the liver, followed by the inverted U-shaped first heart field overlying the anterior 

intestinal portal [64], which will give rise to the left ventricle. This zone is succeeded in 

posterior order by the splanchnic mesoderm of the future second heart field (SHF), which 

follows the same shape slightly more median. At the posterior ends of the U, beyond the cells 

that will integrate into arterial pole myocardium [65], only the right primordium is 

maintained from initially bilateral prospective proepicardial fields, at least in amniotes. 

Chicken chimeras hosting grafts of vital dye-labelled lateral plate mesoderm subpopulations 

demonstrated that medial somatic mesoderm (in contact with the ectoderm, dorsal to the right 

sinus venosus) also contributes to the proepicardium [66]. All of these zones are capable of 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 16, 2018. ; https://doi.org/10.1101/149922doi: bioRxiv preprint 

https://doi.org/10.1101/149922
http://creativecommons.org/licenses/by/4.0/


- 11 - 

generating vascular SMC and fibroblasts, while only the posterior SHF [67] and epicardium 

make unambiguous pericytic contributions. 

Further posterior, the splanchnic mesoderm gives rise to the Wt1-expressing 

mesothelial layer covering all coelomic visceral organs – particularly the liver and digestive 

tract, but also the kidneys and gonads. This mesothelium contributes mesenchymal cells 

expressing aSMA and desmin, clearly SMC within arteries and veins but on smaller 

microvessels also, to the invasive vasculature of the entire developing gut [68]. 

Sclerotome 

In counterpart, grafts of the presomitic mesoderm from quail to chick hosts have 

demonstrated that not only endothelial cells but also all the pericytes and vascular SMC of 

the limbs and trunk are derived from this paraxial population [69]. The lack of contribution to 

vascular SMC of the viscera was also noted in this work, indirectly confirming its origin from 

the splanchnic mesoderm. Furthermore, it is the part of the paraxial mesoderm in contact with 

the endoderm, which after first epithelialization into the somites, later becomes 

mesenchymal, that is the source of these outer body wall pericytes and vascular SMC. The 

pericytes were embedded in a laminin-rich basal lamina, and within the aortic wall, came 

from the Foxc2-expressing sclerotome. Interestingly, while Pdgfrb-positive grafted cells were 

numerous within the aortic SMC, the periendothelial cells expressing aSMA most strongly 

did not express as much (or any) Pdgfrb as the more peripheral layers of the tunica media 

[69]. Further work showed that these sclerotomal smooth muscle cells had been preceded by 

a temporary contribution from the splanchnic mesoderm [70]. 

One might therefore predict that quail-chick chimeras of the ventral intermediate 

mesoderm, between paraxial and lateral plate populations, may also demonstrate pericytic 

and smooth muscle potential, perhaps for the specialized kidney pericytes known as 

podocytes that can undergo pathological fibrosis in response to injury [71]. Extraembryonic 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 16, 2018. ; https://doi.org/10.1101/149922doi: bioRxiv preprint 

https://doi.org/10.1101/149922
http://creativecommons.org/licenses/by/4.0/


- 12 - 

mesoderm, beyond but still continuous with the lateral plate, also may have pericytogenic 

potential for the vascularized extraembryonic membranes [72].  

Hereafter, I will describe steps to track neural crest-derived pericytes in and around 

the forebrain. The protocol is highly adaptable and has been often described for whole neural 

tube grafts, but can be applied to any embryonic or extraembryonic tissue that can be 

physically manipulated. 

Materials 

2.1 Eggs 

Freshly-laid fertilized chicken and quail eggs that have been stored for under a week 

at 12-15°C (approximately 55-60°F) are critical for the chimeric embryo technique. Viability 

and normal development rapidly decreases in the population thereafter, although individual 

eggs may still develop well up to 10-14 days of cool storage. 

2.2 Incubators and handling 

1. A standard wine cooler-type refrigerator can be adapted to maintain the 

appropriate temperature for cool storage, as can a ventilated laboratory 

incubator that incorporates both refrigeration and heating elements to maintain 

a constant temperature. 

2. The warm egg incubator should have forced air circulation as opposed to 

passive temperature control, to ensure that all parts of the interior have the 

same temperature and humidity. It should also be equipped with a hygrometer. 

Once development has started by warming the eggs, they must be maintained 

at 38 +/- 1°C (98-102°F) and 50-60% humidity. It is preferable to err on the 

cooler rather than the warmer side to reduce risk of increased mortality and 

malformations. 
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3. During cool storage, eggs may be kept upright. Replaceable cardboard or 

styrofoam egg crate trays in which eggs are delivered are adequate to incubate 

eggs on the side 24h before opening. Plastic, plexiglass or varnished wooden 

trays approximately 1 cm (1/2 inch) thick, 5 cm (3 inches) wide, and as long 

as the incubator, with oval holes about 3 cm long (a little more than an inch) to 

secure eggs on their sides in the depressions, are useful. These allow the 

researcher to supervise development of dozens or hundreds of eggs after 

sliding trays out every couple of days, to remove any that have contracted an 

infection or have died. Single segments of such trays make useful holders for 

securing individual eggs during the microsurgical procedures and are 

recyclable. 

4. To make cephalic neural fold grafts at stages HH8 [73], optimally at 3-6 

visible somites, place chicken eggs for approximately 27-30 hours and quail 

eggs for 24 hours in the 38°C incubator. 

2.3 Microdissection tools 

Microsurgery tools should be regularly sterilized in a dry oven for 2 h at 150°C with 

appropriately resistant silicon protection, or 20 minutes at 120°C in an autoclave. Allow to 

cool before use. 

Useful tools include  

 One pair of sharp-tipped, 4-inch, curved microdissection scissors 

 One pair of blunt-ended dissecting forceps, 0.8 mm tip width (coarse) 

 One pair of Dumont no. 4 dissecting forceps, 11 cm long, 0.13 X 0.08 mm tips 

(medium) 

 Two pairs of Dumont no. 5 dissecting forceps, 11 cm long, 0.1 x 0.01 mm tips 

(“biologie”) 
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 One perforated stainless steel spoon for gentle embryo transfer 

 One pair of small Vannas or Pascheff-Wolff ophthalmological spring scissors 

 Two screw-chuck dissection needle holders with stainless steel Minutien pins 

(diam. 0.2 mm, 1.2 cm length), pre-sharpened in oil on a fine-grit Arkansas 

stone and cleaned, or electrolytically sharpened tungsten knives [74] 

 Optional substitute: a Dean microdissecting knife; curved; 1 x 7 mm blade 

 Prepare borosilicate glass micropipettes on a conventional electrode puller or 

from borosilicate Pasteur pipettes over a flame, in order to generate 

micropipettes with tapered tips of about 2-3 cm long. Break the tips, using 

appropriate eye and hand protection from possible fragments, by bending with 

forceps to obtain a round orifice with a diameter of approximately 100-200 

microns. These may be prepared in advance if sheltered from dust and 

humidity. 

2.4 Other equipment 

 Aspirator tube assembly consisting of an inflexible plastic mouthpiece such as 

a truncated sterile pipette cone with filter; at least 40 cm of latex tubing (5 mm 

internal diameter, 7 mm outer diameter); and if using micropipettes, a flexible 

silicone rubber nosepiece 

 Stereomicroscope (e.g., Leica MZ 7.5) 

 Swan-neck fiber optic illumination 

 Sterile glass 50-60 mm dissection dish lined with several millimeters of 

silicone base such as Sylgard® (see Note 1) 

 Sterile tissue culture dishes (glass or plastic), 35 mm, or watchglasses 

 Syringes: 1 mL, 2 mL 

 Needles: ½ inch, 26 gauge; 1 inch, 18 gauge. 
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 Plastic or flame-polished standard Pasteur pipette and bulb 

 5 cm (2 inch) wide thin, transparent packing tape (see Note 2). 

 Glass Coplin jars 

 

2.5 Solutions 

 Phosphate-buffered saline (PBS), without additional Ca
2+

/Mg
2+

 

 Penicillin-streptomycin 100X for tissue culture - 0.5 mL aliquots kept at -

20°C. 

 Prepare the following just before beginning microsurgeries: 50 mL PBS in a 

sterile tube with 1X final concentration penicillin-streptomycin (AS-PBS).  

 Dilute one part carbon-based, opaque India drawing ink (also called Chinese 

ink) to 4 parts AS-PBS (see Note 3). 

 Modified Carnoy’s solution:  

o 11% formaldehyde (3 parts commercially available 37% solution) 

o 10% glacial acetic acid (1 part) 

o 60% ethanol (6 parts) 

 70%, 90% and anhydrous 100% ethanol 

 Toluene or xylene (see Note 4) 

 Permanent, solvent-based resinous mounting medium 

 Antibodies: QCPN (see Note 5) or QH1 supernatants (see Note 6); widely 

commercially available ascites from the 1A4 clone of mouse monoclonal 

antibody to aSMA (see Note 7); anti-mouse-IgG1 conjugated to horseradish 

peroxidase (anti-IgG1-HRP); anti-mouse-IgG2a conjugated to alkaline 

phosphatase (anti-IgG2a-AP). 

 50 mM or 0.15% w/v glycine in 50 mM ammonium chloride in distilled water 
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 PBT: PBS with 0.1% Tween-20 detergent from a 10% stock kept at 4°C  

 Heat-inactivated goat or fetal bovine serum 

 10% or 30% H2O2 (stock, store in dark at 4°C) 

 TBST: for 1L total volume with distilled water, use 25 mL 1M Tris-HCl, pH 

7.5; 20 mL 5M NaCl; 0.2g KCl; and 10 mL 10% Tween-20. 

 NTMT: for 500 mL total volume with distilled water made extemporaneously, 

use 25 mL 1M Tris-HCl, pH 9.5; 10 mL 5M NaCl; 25 mL 1M MgCl2; 5 mL 

10% Tween-20; 0.1g levamisole. 

 0.5 mg/mL 3,3-diaminobenzidine tetrahydrochloride (DAB), prepared in PBT 

just before use from frozen aliquots of 10 mg/mL stock solution in PBS (see 

Note 8) 

 75 mg/ml nitroblue tetrazolium (NBT) in 70% dimethylformamide  

 50 mg/ml 5 bromo-4-chloro-3-indolyl phosphate (BCIP) in 

dimethylformamide. 

3. Methods 

3.1 Host egg preparation 

Incubate host embryo horizontally overnight and mark the highest point on the side of 

the egg with a short pencil mark (see Note 9). Scrub down the top surface of each egg briefly 

with a paper towel moistened in 70% ethanol; do not use soap and water or wet the shell 

directly, as it is porous and viability can be affected. In order to allow the embryonic disk to 

disengage from the upper eggshell, gently drill a small hole in the large end of the egg with 

the curved scissor tips. Insert 18-gauge large-bore needle attached to a 2 mL syringe, oriented 

toward the bottom of the egg, and remove approximately 2 mL of liquid albumin. The 

albumin close to the yolk is thicker and if it blocks the needle, expel again and orient the 
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point elsewhere in the egg; if any yolk enters the needle or syringe, it has been pierced and 

the egg should be discarded. Tape the hole with a small piece of transparent tape. Gasses 

coming through the eggshell will equilibrate the lower internal pressure with the atmosphere 

and enable the yolk to detach from the shell surface. 

With gentle pressure, next insert the lower point of the scissors and cut a small 

circular window into the air pocket of approximately 2-2.5 cm diameter around the pencil 

mark. Smaller gestures generate more fragments but better control of the curve of the 

window. Pry the circle up at the end of the cut to remove without allowing surface shell to 

fall into the egg. Carefully pick out any small pieces that have fallen within using blunt 

forceps, and rinse with approximately 0.5 mL antibiotics-supplemented PBS, using the large 

blunt-ended Pasteur pipette, withdrawing most of the liquid and replacing with a few drops of 

clean AS-PBS. 

Fit a ½ inch, 26 gauge needle to a 1 mL syringe. Press the needle within the loosened 

cap to introduce an angle of about 30-45°, with the orifice facing the inside of the angle. Fill 

the syringe with dilute India ink (see Note 3). Use needle to pierce yolk at edge of 

blastoderm, orienting upwards towards ventral side of host embryo. Gently inject 

approximately 0.2 mL without introducing air bubbles, and shake horizontally to spread over 

yolk beneath the blastoderm, providing contrast. 

Using Dumont no. 4 dissecting forceps, pinch the vitelline membrane lateral to the 

head fold, without catching the underlying embryo. Raise slightly and move to the side to 

pull a hole in the membrane over the head, releasing at a more caudal level. Gently add a 

couple of drops of AS-PBS into the hole to help separate the vitelline membrane from the 

underlying embryo. 
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3.2 Host microdissection 

Neural folds between the levels of the presumptive diencephalon and medulla, facing 

the fifth somite pair, produce neural crest cells that later give rise to pericytes and vascular 

smooth muscle in predictable tissues of the head, neck and heart [35, 49, 52, 63, 75–77]. The 

forebrain, midbrain and first rhombomere lend themselves best to neural fold grafts at 3-5 

somite pairs, before closure, rather than the entire tube. Depending on the desired experiment, 

unilateral or bilateral grafts may be made at these levels.  

With a microscalpel or blade, make horizontal cuts into the neural folds at the rostral 

and caudal limits of the area to be removed and grafted. At this stage the folds spanning the 

transition from outer ectoderm to inner neuroectoderme are raised above the mesoderm; 

superficial “tickling” motions, with quick upward strokes of the point of the blade, are 

effective to cut through the single cell layer without penetrating too deeply. Lateral cuts on 

first the ectodermal, then the neuroectodermal faces of the epithelial folds will permit a 

rectangle of tissue to be nudged rostrally and off the underlying mesoderm. If the cuts attain 

the mesoderm, the drag on this mesenchyme may perturb the underlying endoderm, which 

can induce either collateral malformations or death.  

A gentle drop of AS-PBS over the embryo, not directly on the area to be grafted, and 

either a Petri dish lid or a watchglass, will protect the host until grafted tissue can be placed 

into it. For more than fifteen minutes’ wait, replace the embryo in the incubator. 

3.3 Graft egg preparation 

Crack a GFP-chick or quail donor egg into a 10 cm or a 6 cm Petri dish, respectively. 

Use a corner of a piece of paper towel folded into a 2.5 cm (1 inch) square to wipe the thick 

albumin radially away from the light blastodermal disk. After adding a couple of drops of 

AS-PBS to the surface, use the microdissection scissors to cut into the yolk around the 

blastoderm and the central embryo. Catch a corner of the circle with the medium forceps and 
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bring the perforated spoon superficially beneath, attempting to slide the embryo onto the 

spoon while bringing as little yolk as possible. Transfer into a 60 cm Petri dish filled with 

AS-PBS and jiggle to remove the milky yolk on the ventral side and the vitelline membrane. 

Use the perforated spoon to transfer into the dissection dish with clean AS-PBS. Immobilize 

by using the medium forceps to pin out the corners with Minutien pins. 

3.4 Graft microdissection 

For rostral neural folds at 4-5 somite pairs, prepare the grafts by cutting out the 

equivalent areas as described above in 3.2 to transfer to the host. For later or more caudal 

grafts of whole neural tube, or somites, it may be necessary to isolate the tissue and remove 

any potentially adherent mesenchyme with pancreatin [59, 78] (see Note 10). Distinguish the 

rostral from caudal end by notching a corner or introducing a slightly trapezoidal shape. 

Using the mouth micropipette for fine control of the piece, first rinse by aspirating 

and expelling a little yolky AS-PBS. This will prevent the graft from sticking in the pipette. 

Aspirate the graft and some microliters of AS-PBS by orienting the micropipette toward the 

thin end of the rectangle in the dissection dish. Avoid scraping the tissue against the sharp 

edges of the pipette (see Note 11).  

Transfer the graft slightly lateral to its final placement so that the liquid drains off, 

and use the microscalpel to gently nudge it into the same orientation as it came from 

originally, before sliding into position. Aspirate excess AS-PBS from near (but not over) the 

graft into the micropipette. This will bring graft and host tissues into close contact under the 

meniscus and aid in healing. 

Seal the window with tape, ensuring that no folds remain along the edge that would 

allow direct air entry to the egg (or albumin seepage out). Replace horizontally in warm, 

humid incubator for desired interval. For cerebral pericytes, initial investment of the forebrain 
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meninges is visible from two days later and ingression of grafted aSMA-positive cells into 

the parenchyme, three days later and beyond. 

3.5 Harvesting, fixation and processing for embedding 

1. Make a slit in the yolk above and below the live embryo to be removed (see 

Note 12). Use a Pasteur pipette to drip some PBS below, to help detach it from 

yolk.  

2. Grasp a corner of the area opaca with medium forceps and continue to hold 

while snipping the lateral cuts to detach embryo entirely.  

3. Still holding the corner of the area opaca, bring slotted spoon underneath to 

transfer embryo to a dish with clean PBS.  

4. Remove all traces of ink, yolk, and extraembryonic membranes.  

5. If helpful, pin out embryo or desired organs before fixing on a dedicated 

dissection dish, not to be also used for graft preparation. Fix for 1h to 

overnight in modified Carnoy’s solution, the timing as an empirical function 

of size (see Note 13).  

6. Rinse abundantly in 70% ethanol (EtOH) (see Note 14). 

7. Dehydrate in 90% then at least two changes of anhydrous 100% EtOH. Keep 

recipients closed, as the 100% EtOH can be hygroscopic, to the detriment of 

section quality later in the process. 

8. Clear thoroughly in toluene, xylene or a limonene-based clearing agent (see 

Note 4). 

9. Substitute with three changes of melted Paraplast® X-tra in a heat-resistant 

recipient in an oven at 55°C for a period of hours (HH10) to overnight (after 

HH17), to be determined empirically.  
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3.6 Immunolabeling 

It is important to choose combinations for co-labeling that allow for isotype 

discrimination and optimal contrast in labelled components. For example, the monoclonal 

antibodies QCPN (all quail calls) and QH1 (quail endothelial cells) are mouse isotype IgG1, 

while aSMA is mouse isotype IgG2a (see Note 15). In this example, we perform 

immunohistochemistry against quail cells with QCPN and against aSMA to highlight 

differentiating perivascular cells among them, in sections from rostral head after the grafts 

performed above at HH8 and harvested at HH25 [73]. All steps are performed at room 

temperature unless otherwise indicated. 

1. Deparaffinate 5µm-thick microtome sections in Coplin jars with three changes 

of five minutes each of xylene (see Note 4).  

2. Rehydrate with two changes of two minutes each of 100% anhydrous EtOH, 

followed by two changes of two minutes each of 90% EtOH, and one 

immersion for two minutes each in 70%, 50%, 30% EtOH before bringing 

slides to distilled water. 

3. Incubate 10’ in freshly prepared glycine/ammonium chloride solution (see 

Note 16). 

4. Rinse twice in PBT then place in PBT with 3% final volume H2O2 for 10 

minutes. 

5. Rinse three times in PBT, then further block non-specific protein-protein 

binding with 2% goat or bovine serum in PBT for 30’ under coverslips (see 

Note 17). 

6. Gently remove coverslips, blot excess liquid, and replace with primary 

antibody mix. Here, we foresee 100 µL per slide and make up a dilution of ½ 

QCPN supernatant (see Note 18), 1/400 aSMA, 1/50 goat or bovine serum and 
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the rest of the volume with PBT. Apply coverslips to slides and place in humid 

chamber. Incubate 2h or overnight at 4°C in a humidified chamber (see Note 

19). 

7. Remove coverslips, blot excess liquid, then wash slides in Coplin jars filled 

with PBT 5 times for at least 5 minutes. 

8. Make up a dilution of 1/400 anti-IgG1-HRP, 1/50 goat or bovine serum and 

the rest of the volume with PBT. Apply 100 µL per slide under coverslips, and 

place horizontally in humid chamber for 1h. 

9. Remove coverslips, blot excess liquid, then wash slides in Coplin jars filled 

with PBT 3 times for at least 5 minutes. 

10. Dilute DAB in PBT and add 0.003% H2O2, before immerging slides and 

keeping in dark for approximately ten minutes. Wear gloves. Rinse in PBT 

before examining signal intensity, which should show dark brown grafted 

nuclei on a white background. Stop reaction by rinsing all slides twice more in 

PBT and once in TBST.  

11. Make up a dilution of 1/400 anti-IgG2a-AP, 1/50 goat or bovine serum and the 

rest of the volume with TBST. Apply 100 µL per slide under coverslips, and 

place horizontally in humid chamber for 1h. 

12. Remove coverslips, blot excess liquid, then wash slides in Coplin jars filled 

with TBST 5 times for at least 5 minutes. 

13. Wash slide in freshly made NTMT twice for at least 5 minutes. Alkaline pH is 

very important at this step. 

14. Using 0.5 µL NBT and 3.5 µL BCIP stock solutions per mL NTMT, immerge 

slides and keep in dark. Rinse in NTMT to examine signal every 10 minutes 
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until arteries begin to develop a bluish-purple circumference. Stop reaction by 

rinsing excess NBT-BCIP solution and then immerging in PBT. 

15. Rinse in PBT and then apply glass coverslips over AquaTex ® mountant. 

 

Notes 

1. Opaque black-tinted silicone is preferable to transparent, for better contrast. 

2. The transparency is only useful for peeping through the egg window within 

the confines of the incubator to see if the embryo is well vascularized and, at 

later stages, showing spontaneous movements. At room temperature, the 

window rapidly fogs over with condensate, so opaque tape can work also. 

3. Pre-test the ink preparations alone on eggs, as different brands may be 

prepared in differently toxic diluents. Rare brands of packing tape also emit 

noxious odors that can be a source of reduced viability. 

4. The advantages of various clearing agents, be they solvants, terpenes or other 

substances, are a subject of great debate [79]. We have successfully used 

toluene, xylene and limonene-based Histoclear® to clear tissues as well as to 

permanently mount sections for light microscopy. 

5. QCPN was deposited to the Developmental Studies Hybridoma Bank (DSHB) 

at the University of Iowa, U.S.A., by J. A. and B. M. Carlson 

(http://dshb.biology.uiowa.edu/quail-cell-marker). 

6. QH1 was deposited to the Developmental Studies Hybridoma Bank at the 

University of Iowa, U.S.A., by F. Dieterlen-Lièvre 

(http://dshb.biology.uiowa.edu/endothelial_2). 

7. Alpha-smooth muscle actin monoclonal antibody [80] is now widely 

distributed by commercial suppliers. 
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8. DAB, NBT, BCIP and dimethylformamide are all biohazardous substances 

requiring the use of gloves and eye protection. 

9. All eggshell labeling should be made in pencil as opposed to ink, to avoid 

potentially toxic solvent exposure. 

10. Videos of two applications of the avian chimera technique, described in an 

earlier protocol relative to whole neural tube grafts [78], are freely available at 

https://www.jove.com/video/52514/ and https://www.jove.com/video/51534 

[59, 81]. 

11. For larger pipette diameters, holding the tip a second in the flame after 

breakage can fire-polish (round) the potentially damaging edges. 

12. Dead or dying embryos rapidly undergo necrosis and are never worth 

processing. Viability is easily visible after HH15 in the vibrant red of the 

blood in the vitelline veins around the embryo and the visible heartbeat. 

13. 4% neutral buffered paraformaldehyde in PBS is a good generic fixative 

appropriate for either cryostat or paraffin sections; a minority of antibodies 

will not work after the solvents and heating denaturation inherent in paraffin 

embedding or antigen retrieval. The modified Carnoy’s solution used here 

preserves tissues more firmly than paraformaldehyde and is compatible with 

available QCPN, QH1 and aSMA antibodies. Tissues should be uniformly 

firm and white after fixation with modified Carnoy’s solution but will remain 

more flexible in paraformaldehyde. Overfixation by the former can lead to 

brittle, easily damaged embryos. Manipulate both fixatives under a fume hood 

with a charcoal filter to avoid damaging airway passages and the cornea. Rinse 

embryos after modified Carnoy’s fixative with 70% EtOH and 

paraformaldehyde with PBS. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 16, 2018. ; https://doi.org/10.1101/149922doi: bioRxiv preprint 

https://doi.org/10.1101/149922
http://creativecommons.org/licenses/by/4.0/


- 25 - 

14. Hospital pathology departments often have automated systems for tissue 

infiltration from ethanols to wax. These are fine, if the size of the tissue to be 

embedded is taken into account in the program and cassette chosen. 

15. Directly conjugated antibodies can allow the use of other markers as well; we 

have successfully used FITC-conjugated aSMA and anti-fluorescein 

secondary antibodies coupled to enzymes or Alexa Fluor®-488 to convert to 

other chromogens or to reinforce resistance to bleaching in fluorescence 

microscopy. Immunohistochemistry is best used for two or more markers 

where the chromogens are chosen to have maximal contrast and are in distinct 

cellular compartments, yielding slides that are stable for years and require only 

a good light microscope for examination. Otherwise, immunofluorescence 

with optical sectioning or confocal microscopy is technically preferable in 

many ways. Durability is improved by the use of Alexa Fluor ® 

fluorochromes with distinct emission spectra and a hardening mounting 

medium designed to preserve fluorescence, but costly imaging stations are 

required to acquire and record the results. 

16. This step blocks free aldehyde groups from non-specific binding of antibodies 

and can reduce background signal as well as autofluorescence. 

17. We cut hydrophobic “coverslips” for blocking and antibody incubations from 

rectangles of Parafilm M. Leaving the paper backing, foresee two coverslips 

per square outline. Cutting strips of (eg.) four squares for eight coverslips, and 

taking care not to crumple the film, peel back the paper longitudinally but only 

halfway across the strip, and fold back. It is then possible to cut across the 

strip at each horizontal line and again below the words “Laboratory Film”, 

leaving a paper “handle” on each coverslip to aid in removal of the backing. 
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Remove paper entirely before positioning with coarse forceps over 100-200 

µL of liquid on a 25x60mm slide surface. 

18. Hybridoma supernatants have variable amounts of antibody present, 

depending on the production lot. We have also successfully used 1/50 

dilutions of QCPN as provided by the DSHB. 

19. This is a plastic box for storing 50 slides upright, with a waterlogged paper 

towel in the bottom and the slides balanced horizontally across the width of 

the column. It is placed in a plastic bag for overnight incubations. 

20. Inactivate remaining DAB solution by oxidizing with dilute bleach before 

disposal, then rinse glassware well before reuse. 

 

Discussion 

Fate-mapping can further understanding of the pathophysiology of 

vascular malformations  

Moya-moya disease (MMD) associates bilateral stenosis of the internal carotid or 

anterior/middle cerebral arteries, often at the level of the circle of Willis, and a profusion of 

telangiectatic blood vessels in a stereotyped distribution, allowing some bypassing of the 

stenotic area. The fact that MMD is restricted to this particular segment of the cephalic 

arteries, and that it has been associated with neurocristopathies, led to the hypothesis that a 

somatic mutation may manifest in the NCC pericytic component derived from descendents of 

a cell fate-mapped to the mid-rhombencephalic neural folds [82]. However, although the 

phenotype is localized, susceptibility can be dominantly inherited, although at low 

penetrance. Eastern Asian MMD is associated with a founder variation in the RNF213 gene, 

encoding a ring-finger AAA-type ATPase with E3 ubiquitin ligase activity [83]. A wide 
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variety of mutations in this gene are not only associated with MMD in other ethnic 

populations but with intracranial aneurysm in some [84]. Unlike the ectopic but localized 

angiogenesis of MMD, intracranial aneuryms show thinned SMC and elastic lamina within 

the arterial walls at the sites of dilation, without auxiliary vessel growth. Although its role in 

preventing aberrant angiogenesis, particularly in the head, appears certain from knockdown 

studies in zebrafish [83], it is unclear how the ubiquitous expression of RNF213 translates 

into such a site-specific phenotype, or in which cell lineage (endothelial , NCC-pericytic, 

mesodermal-pericytic, or all of the above). Fate-mapping of each lineage, particularly using 

conditionally mutated animal models, could address these questions. 

Novel cellular contributions to secretory function 

Pericytes of the microvasculature feeding the head and neck endocrine (pituitary, 

pineal, thyroid, parathyroid and ultimobranchial, for lower vertebrates) and exocrine 

(salivary, sweat, sebaceous, lachrymal) glands are also derived from NCC. While they are 

identifiably perivascular by position and alpha-SMA expression in the posterior pituitary 

gland, additional mesenchymal, non-endocrine NCC derivatives are present around and 

throughout the anterior hypophysis [35, 43, 52]. All of these cells, in the rat, appear to be 

nestin-immunoreactive [85], while a subpopulation of the anterior pituitary also expresses 

fibrillary collagen mRNAs and desmin, non-exclusive markers of pericytes [86]. 

Experimental removal of the neural folds leads to a malformed pituitary gland in chick [43]. 

It is unclear if the NCC act on the developing pituitary gland through their role as pericytes in 

stabilizing the meningeal and glandular capillaries, or if there is a more direct trophic effect 

on, or even cellular contribution to, neuroendocrine targets [87]. Like the retinal primordia, 

salivary and lachrymal glands, and the entire telencephalon, both Rathke’s pouch and the 

infundibulum of the diencephalic floor form initially, but are not maintained and undergo 

apoptosis in the absence of sufficient NCC [43, 47]. 
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Thymic development is likewise aborted when NCC are experimentally removed 

[88]. In conjunction with malformations of the cardiac outflow tract, the effects of NCC 

ablation correlate with their normal differentiation into thymic vascular pericytes [35, 89], 

later mediators of CD4+ T-cell emigration into the bloodstream [90]. The association of 

effects on thymus and cardiac outflow tract development implicates NCC indirectly in the 

pathophysiology of DiGeorge syndrome [91]. 

Pericytic mimicry and physiological stem cell niches 

We and others have observed the normal presence of pigmented melanocytes in a 

pericytic position surrounding capillaries in the brain meninges and the pituitary of both rats 

and mice [92, 93], and in the tunica media of NCC-supported blood vessels immediately 

afferent and efferent to the heart [55]. In the latter situation, melanocyte precursors carrying a 

stabilized, overactive form of a downstream effector of Wnt signaling were fate-mapped in 

transgenic mice. Bipotent cells that could differentiate into either melanocytes or SMC, even 

though a minority among the SMC population of the embryonic arterial shunt called the 

ductus arteriosus (DA), leaned toward more melanocyte differentiation with Wnt signaling. 

By so doing, they thereby deprived this vital blood vessel of sufficient SMC constriction to 

be able to carry out its necessary closure after birth. In humans, patent DA is a life-

threatening consequence of prematurity at birth, as oxygenated, high pressure blood is 

diverted from the aorta back into the left pulmonary artery and thereby into the lungs. A 

properly closed DA ultimately undergoes physiological fibrosis to evolve into the 

ligamentum arteriosum; untreated, patent DA can lead to congestive heart failure. 

Clonal cultures of pigmented, differentiated avian melanocytes have been shown to 

retain the possibility of either self-renewing or redifferentiating into cells expressing 

morphological and molecular characteristics of either peripheral glia or pericytes in vitro, 

even when the original cells were derived from trunk levels [94]. All melanocytes are derived 
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from NCC, in common with some pericytes. Their localization within blood vessels of 

murine forebrain meninges [93] and the heart [95] in sites shown by chick-quail chimeras to 

harbor NCC may reflect either a normal but as-yet unidentified secretory function of pigment 

cells, or simply a sensitized response to signals deployed for pericytic recruitment and 

vascular stabilization. In favor of the former, leptomeningeal melanocytosis is a hallmark of 

lethal neurological symptoms in syndromic forms of the rare giant congenital melanocytic 

nevus [96, 97] and primary pediatric melanoma often occurs in the meninges [98–100]. 

Consistent with the latter, adult melanoma commonly metastasizes to the same location, all 

with similarly dire outcomes [101]. 

Our group has recently observed that in murine models of melanocytosis even devoid 

of cancer, ectopic melanocytes are also found among the pericytes of capillary beds of the 

spleen, lymph nodes, gums, adrenal cortex and both male and female genital organs [102]. 

Remarkably, evidence that vascular pericytes and SMC of mammalian testes can give rise to 

testosterone-secreting Leydig cells was acquired through a combination of 

immunohistochemical and proliferation markers, including but not restricted to a 

neurofilament, GFAP, nestin, NG2, and PDGFRß. However, fate-mapping is still needed to 

determine the embryonic origins of these pericytes [103]. 

While there has been no suggestion from examination of quail-chick chimeras that 

specific testicular cells have a NCC origin, there are differences occasionally observed 

among distinct vertebrate species or classes. Notable examples are the numerous NCC 

identified within murine bone marrow stroma [104] and the dental pulp [105], both niches for 

multipotent stem cell maintenance into adulthood. Such observations raise the hypotheses 

that pericytic misdifferentiation may play an unexpected role in male infertility, or placental 

vascular defects [106, 107]. 
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A number of groups have recently turned their efforts to cultivating human pericytes 

from different sources, either using direct isolation from different tissue sources [108] or in 

differentiation from stem cell populations of distinct origins. The studies often recombine 

these cell sources with endothelial cells in order to understand processes of angiogenesis, in 

effect creating inter-individual chimeric tissues in vitro [109], or inter-species chimeras in 

vivo with human-rodent xenografts [110]. Thus, the techniques of experimental embryology 

appear to be as relevant as ever to understanding pericyte function and their regulation of 

processes relevant to human health. 
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Figure 1: 

A. Drawing of a cross-section through the primitive streak of a vertebrate gastrula, 

highlighting contiguous populations of the three definitive germ layers (ectoderm, mesoderm 

and endoderm). These will each give rise to subpopulations with distinct potentials for 

cellular progeny by the neurula stage. B. Drawing of a cross-section through an idealized 

vertebrate neurula. The neuroepithelium has invaginated to detach from the ectoderm, in 

blue, and the neural crest cell population has been specified at their interface and begin to 

undergo an epithelio-mesenchymal transition (EMT) to migrate initially between the somite 

and the neural tube. This first ingression of cells is followed by streams migrating through 

mesodermal cell compartments, particularly the ventral somite as it also undergoes EMT to 

become the sclerotome. Both neural crest and sclerotome are sources of pericytes. Finally, the 

splanchnic mesoderm, the ventral compartment of the lateral mesoderm, is the source of both 

epicardial and other mesothelial cells which will provide the pericytes of heart and internal 

organs derived from the endoderm. C. Example of a homotopic graft of quail neural crest into 

a chicken host. Immunohistochemistry against a quail antigen (dark blue nuclei, arrows) 

highlights the presence of quail-derived pericytes among the alpha smooth muscle actin-

expressing cells (brown) of a forebrain capillary. Arrowheads indicate unlabeled endothelial 

cells in close apposition. Photograph courtesy of the author. 
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