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Abstract 

The composition of white blood cells is usually assessed by histomorphological 

parameters or flow cytometric measurements. Alternatively, leukocyte differential counts 

(LDCs) can be estimated by deconvolution algorithms for genome-wide DNA methylation 

(DNAm) profiles. We identified cell-type specific CG dinucleotides (CpGs) that facilitate 

relative quantification of leukocyte subsets. Site-specific analysis of DNAm levels by 

pyrosequencing provides similar precision of LDCs as conventional methods, whereas it 

is also applicable to frozen samples and requires only very small volumes of blood. 

Furthermore, we describe a new approach for absolute quantification of cell numbers 

based on a non-methylated reference DNA. Our “Epi-Blood-Count” facilitates robust and 

cost effective analysis of blood counts for clinical application. 

Introduction 

Leukocyte differential counts (LDCs) give valuable diagnostic insights for various 

systemic and malignant diseases. It is among the most frequently requested laboratory 

tests in hematological diagnostics (Buttarello & Plebani, 2008). LDCs can be determined 

by microscopic evaluation and manual counting. However, since the advent of 

automated cell counters, LDCs are particularly analyzed by flow cytometric technologies 

(Estridge & Reynolds, 2011; Koepke et al, 2007; Roussel et al, 2010). Such automated 

analyzers sense electrical impedance, optical light scattering properties, or fluorescence 

signal intensities (Briggs et al, 2014; Cherian et al, 2010; Roussel et al, 2012). 

Fluorescent staining of specific epitopes is the gold standard for definition of lymphocyte 

subsets. However, immunophenotypic analysis is costly, relatively labor-intensive and 

not trivial to standardize. Furthermore, all of the aforementioned methods are only 

applicable to fresh blood samples – it is not possible to freeze samples for shipment or 

later analysis, e.g. when blood samples cannot be immediately processed (Briggs et al, 

2014; Buoro et al, 2016; Zini, 2014). Recently, gene expression profiles (Abbas et al, 

2009; Gong et al, 2011; Newman et al, 2015; Shen-Orr & Gaujoux, 2013) as well as 

epigenetic profiles (Accomando et al, 2014; Houseman et al, 2012) have been used to 

deconvolute the cellular composition in whole blood. Such alternative approaches might 

overcome some of the limitations of the well-established state of the art procedures for 

LDCs. 
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DNA-methylation (DNAm) represents the best understood epigenetic modification, and it 

is directly linked to developmental processes (Smith & Meissner, 2013). Methyl groups 

can be added to the 5th carbon atom of cytosines, predominantly in a cytosine-guanine 

dinucleotide (CpG) context (Lister et al, 2009). Many studies demonstrated that genome-

wide DNAm profiles can be used to estimate LDCs (Adalsteinsson et al, 2012; 

Houseman et al, 2015; Jaffe & Irizarry, 2014; McGregor et al, 2016; Waite et al, 2016). In 

fact, DNAm patterns have many advantages compared to immunophenotypic analyses: 

i) DNAm is directly linked to cellular differentiation; ii) it facilitates absolute quantification 

at single base resolution (ranging from 0 to 100% DNAm); iii) every cell has only two 

copies of DNA and hence the results can be easily extrapolated to the cellular 

composition (in contrast to RNA, which can be highly overexpressed in small subsets); 

and iv) DNA is relatively stable: it can be isolated from lysed or frozen cells and shipped 

at room temperature for further analysis. Deconvolution algorithms to estimate the 

cellular composition in heterogeneous tissues are usually based on a-priori reference 

datasets of cell type-specific DNAm patterns (Teschendorff et al, 2017). In principle, it is 

also possible to train reference-free algorithms, but since the composition of blood is 

relatively well known, reference-based algorithms appear to be advantageous (Zheng et 

al, 2017). So far, the available algorithms for LDCs are based on many CpGs of the 450k 

Illumina BeadChip microarray – and these methods would need to be reestablished for 

the newer EPIC array, whole genome bisulfite sequencing (WGBS), or reduced 

representation bisulfite sequencing (RRBS) data (BLUEPRINT consortium, 2016). Either 

way, all of these profiling procedures are hardly applicable in daily clinical routine.  

 

In this study, we followed the hypothesis that even site-specific analysis of DNAm at 

individual CpG sites can be utilized to determine LDCs. The results of our “Epi-Blood-

Count” reveal similar precision as conventional methods. Furthermore, we conceived a 

method to quantify absolute cell counts based on DNAm patterns. 
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Results 

Identification of individual CpG sites to discern hematopoietic subsets 

For selection of candidate CpGs we utilized DNAm data of purified granulocytes, CD4+ 

T cells, CD8+ T cells, B cells, NK cells, and monocytes (GSE35069) that has been 

published by Reinius and coworkers (Reinius et al, 2012). For each of these cell types 

we selected CpG sites that facilitate best discrimination based on the following two 

criteria (Fig. 1 A): i) highest difference in mean β-value of the subset and the mean β-

value of all other hematopoietic cell types; and ii) low variance of β-values across 

different samples of the corresponding subset. This analysis was initially performed for 

granulocytes (Fig. 1 B and C) and then repeated for the other cell types (Figs. S1 and 

S2). Furthermore, we combined DNAm profiles of T cells, B cells, and NK cells to identify 

CpGs that reflect the entire lymphocyte population; and of CD4+ and CD8+ T cells as a 

surrogate for the entire T cell population. Best performing CpG sites were validated on a 

second dataset of purified leukocyte subsets (E-MTAB-2145; Fig. 1 D) (Zilbauer et al, 

2013).  

 

For granulocytes we selected a CpG site in the gene WD repeat domain 20 (WDR20; 

cg05398700). Notably, CpGs with highest discriminatory power for CD4+ T cells and 

CD8+ T cells are linked to the genes CD4 (cg05044173) and CD8A (cg25939861), 

respectively. Furthermore, the selected CpG site for lymphocytes was in the FYN Proto-

Oncogene (FYN; cg17587997); for T cells in B-cell lymphoma/leukemia 11B (BCL11B; 

cg16452866) associated with B cell malignancies; for B cells in WD repeat domain, 

phosphoinositide interacting 2 (WIPI2; cg02665297) that is involved in maturation of 

phagosomes; for NK cells in solute carrier family 15 member 4 (SLC15A4; cg13617280) 

that has been implicated in systemic lupus erythematosus; and for monocytes in 

centromere protein A (CENPA; cg10480329; Fig. 1 E). Thus, our straight-forward 

procedure identified CpGs that are associated with genes of relevant function in the 

corresponding cell types.  

 

Subsequently, we analyzed if site-specific DNAm measurements at our candidate CpGs 

correlate with the fractions of hematopoietic subsets in blood. To this end, we 

established pyrosequencing assays for the selected CpG sites and analyzed 60 
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peripheral blood samples. The percentage of leukocytes – as determined with a Sysmex 

XN-9000 hematology analyzer – correlated very well with DNAm at the respective CpG 

sites for granulocytes (R = -0.91), lymphocytes (R = -0.91), and monocytes (R = -0.74). 

Furthermore, immunophenotypic lymphocyte subset enumerations correlated for T cells 

(R = -0.73), CD4+ T cells (R = -0.41), CD8+ T cells (R = -0.88), B cells (R = -0.66), and 

to a lesser extent for NK cells (R = -0.30; Fig. S3). The correlation coefficients are 

negative because all selected CpGs were hypomethylated in the corresponding subsets. 

Thus, DNAm at unique candidate CpGs reflects the frequency of corresponding cell 

types in blood. Furthermore, we excluded that our candidate CpGs were associated with 

aging or gender (Fig. S4). There was only a moderate age-associated decline in DNAm 

at the CpGs for CD4+ T cells and monocytes, and this may correspond to the commonly 

observed changes upon aging (Gruver et al, 2007; Melzer et al, 2015). 

Deconvolution of granulocytes, monocytes, and lymphocytes with three CpGs 

The fractions of granulocytes, monocytes, and lymphocytes are routinely determined 

with automated analyzers or manual microscopic counting. To evaluate if such results 

can be recapitulated by the three corresponding CpGs we measured DNAm levels in 44 

independent blood samples by pyrosequencing. Initially, the percentages of cells were 

simply calculated based on the linear regression formulas of the subsets in the training 

set (Fig. S3). In comparison to measurements of the Sysmex XN-9000 analyzer, the 

linear regression models based on three CpGs revealed extremely high correlation (R = 

0.99 across all cell types). The mean absolute deviation (MAD) was only 3.2% for 

granulocytes, 2.2% for lymphocytes, and 1.4% for monocytes (Fig. S5).  

 

Alternatively, we integrated the DNAm levels of the three CpGs into a non-negative 

least-squares (NNLS) linear regression model. This model was trained on 60 blood 

samples of the training set and is subsequently termed “Epi-Blood-Count”. The NNLS 

linear regression approach does not depend on an a-priori database of cell type-specific 

DNAm reference profiles for the selected CpG sites. Either way, the estimated DNAm 

levels based on deconvolution of 60 blood samples of the training set were very similar 

to the β-values of DNAm profiles of purified subsets (Reinius et al, 2012) (Fig. S6). This 

approach gave similar accuracies as the linear models based on individual CpGs for 

granulocytes, lymphocytes, and monocytes (Fig. 2 A and B).  
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Our Epi-Blood-Count was trained on cell counts that were determined with the Sysmex 

XN-9000 analyzer – however, there are notoriously differences between cell counting 

systems (Buttarello & Plebani, 2008; Estridge & Reynolds, 2011). Therefore, we applied 

the Epi-Blood-Count on a second validation set (in total 70 blood samples) that were 

either measured with a Coulter Counter (ACT II Diff Counter, Beckman Coulter; n = 24), 

and/or by manual counting of blood smears by highly specialized laboratory staff (n = 

66). Coulter Counter results revealed very high correlation with the Epi-Blood-Count, 

albeit granulocytes and lymphocytes were – on average – underestimated by 4.4% and 

overestimated by 5.5%, respectively, indicating that there might be a systemic deviation 

between the two analyzers (Fig. 2 C). The correlation between manual blood counts and 

Epi-Blood-Count was slightly lower (Fig. 2 D), but direct comparison of Coulter Counter 

results and manual counting revealed lower correlations, too (Fig. 2 E). Furthermore, we 

have exemplarily analyzed if site-specific DNAm analysis for Epi-Blood-Count is also 

feasible with other techniques: MassARRAY analysis is based on mass spectrometric 

analysis of DNA fragments and might be advantageous for high throughput analysis in a 

384-well format. Measurements of DNAm levels by pyrosequencing and MassARRAY 

analysis correlated and Epi-Blood-Count based on MassARRAY technology is in 

principle feasible, but there was a systematic offset that needs to be taken into 

consideration (Fig. S7).  

 

Long-term storage of blood affects LDCs (Gulati et al, 2002). We therefore tested if the 

Epi-Blood-Count is also applicable after storage of blood samples for seven days at 4°C. 

Overall, the results correlated with manual counting at day 0, but the average numbers 

of granulocytes and lymphocytes were underestimated by 9.1% or overestimated by 

7.2%, respectively (Fig. 2 F). With automated analyzers a similar shift was already 

observed upon storage of blood samples for 72 hours (Joshi et al, 2015). Furthermore, 

we anticipated that it is possible to freeze fresh blood samples and store them for 

months without affecting the results of the Epi-Blood-Count. To test this, we used a third 

validation set (n = 41) that was either analyzed by Epi-Blood-Count in aliquots of fresh 

blood or after being frozen for three months. DNAm levels at the relevant CpGs were not 

affected by long-term cryopreservation (Fig. S8). Another advantage of the Epi-Blood-

Count is that it is applicable to very low amounts of DNA. We have exemplarily used this 
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approach to measure cell-free circulating DNA (cfDNA) in serum. The results indicated 

that cfDNA in serum is particularly derived from granulocytes, which indeed have a very 

short half-life (Summers et al, 2010) (Fig. S9). 

Additional classification of lymphocyte subsets 

Subsequently, we analyzed whether the Epi-Blood-Count can be further extended to 

classify subsets of lymphocytes. To this end, the DNAm levels at the candidate CpGs for 

B cells, NK cells, CD4+ T cells, CD8+ T cells, and T cells (combination of CD4+ and 

CD8+ T cells was used as surrogate for the entire T cell population) were analyzed by 

pyrosequencing in the 60 blood samples of the training set. Since the percentages of 

these subsets correlated well with DNAm levels (Fig. S3) it was again possible to 

determine the LDCs based on linear regression formulas (Fig. S10). Alternatively, the 

corresponding immunophenotypic measurements of the training set were imputed to 

generate NNLS regression models for either five CpGs (CD4+ and CD8+ T cells 

combined) or six CpGs (separate analysis of CD4+ and CD8+ T cells). With this 

deconvolution approach the estimated DNAm levels for each hematopoietic subset 

closely resembled the β-values of the purified subsets in DNAm profiles (Reinius et al, 

2012) (Fig. S11 A and B). The five CpG and six CpG Epi-Blood-Count models were then 

tested on the training set (Fig. S11 C and D) and on two independent validation sets 

(Fig. 3 and Fig. S11 E and F). Immunophenotypic analysis and Epi-Blood-Count 

revealed a clear correlation: across all cell types the correlation coefficients for the five 

CpG and six CpG models were R = 0.99 and R = 0.98 with average MADs of 2.8% and 

3.1%, respectively. Furthermore, the measurements were even relatively stable after 

storage of blood samples at 4°C for seven days without fixation (Fig. S12).  

Epigenetic analysis of cell numbers 

Conventional flow cytometric methods facilitate measurement of absolute cell numbers 

per µl blood, whereas deconvolution of gene expression profiles and DNAm profiles 

provides only proportionate cell fractions. We reasoned that quantification of cell 

numbers based on DNAm levels would be feasible if samples were spiked with a 

suitable reference DNA of known concentration (Fig. 4 A). To this end, we identified 

three CpG sites that are consistently highly methylated (β-value > 0.975) across all 

DNAm profiles of hematopoietic subsets and in DNAm profiles of whole blood of healthy 

individuals, leukemia or lymphoma patients (Fig. S13). The selected CpG sites were 
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within LSM family member 14B (LSM14B; cg06096175), zinc finger CCCH-type 

containing 3 (ZC3H3, cg25834632) and a CpG site not associated with any gene 

(cg09414987). The corresponding sequences were cloned into plasmids and amplified in 

E. coli to obtain non-methylated reference DNAs. 

 

Initially, we analyzed serial dilutions of reference DNA (LSM14B) in two independent 

peripheral blood samples and the DNAm levels declined with higher proportions of 

reference DNA (Fig. 4 B). The predicted DNAm levels based on mathematical 

calculation with all known parameters correlated very well with the measured DNAm 

levels, indicating that the method is robust for cellular quantification (Fig. 4 C). The 

precision of this approach is particularly high if DNAm levels range between 20% and 

80% – if copy numbers of reference DNA and genomic DNA are similar. To increase this 

range we used the other two reference DNAs at higher and lower concentration, 

respectively (Fig. S14). 

 

Subsequently, we mixed 150 µl of frozen blood samples (n = 41; validation set III) with 

our LSM14B reference DNA and analyzed DNAm levels at the relevant CpG site by 

pyrosequencing. The calculated cell numbers correlated well with cell counts that were 

automatically measured in fresh blood (R = 0.84; Fig. 4 D). Furthermore, combined 

epigenetic analysis of relative LDCs with absolute cell numbers correlated with 

measurements of an automated hematology analyzer for individual hematopoietic 

subsets (n = 38; validation set IV; R = 0.97; Fig. 4 E). This method is in principle also 

applicable for MassARRAY technology (Fig. S15).  

Discussion  

Analysis of DNAm patterns in blood holds enormous diagnostic potential, which has so 

far hardly been utilized. We demonstrate that site-specific analysis at individual CpG 

sites facilitates relative quantification of leukocyte subpopulations. Furthermore, we 

describe a new method of using a non-methylated reference DNA to determine absolute 

cell numbers based on DNAm.  
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Analytic performance is traditionally evaluated by precision (or random error), accuracy 

(or systematic error), and clinical sensitivity. It was somewhat unexpected that analysis 

of DNAm at only few individual CpG sites reached similar precision and accuracy as the 

well-established conventional methods (Buttarello & Plebani, 2008; Estridge & Reynolds, 

2011). However, it remains to be demonstrated if this is also applicable to clinical 

samples. Diseases – particularly hematopoietic malignancies – have major impact on the 

epigenetic makeup and hence it will be important to determine how the epigenetic blood 

signatures are affected by specific diseases. In this regard, it may be advantageous to 

consider additional genomic regions for hematopoietic subsets to validate that cell type-

specific CpGs are coherently modified. However, analysis of a higher number of CpGs is 

always a trade-off with regard to costs and time.  

 

The previously published algorithms for LDCs are based on DNAm profiles that were 

generated with Illumina BeadChip microarrays (Accomando et al, 2014; Houseman et al, 

2012; Teschendorff et al, 2017). Such larger signatures have the big advantage to 

combine a multitude of CpGs, which generally increases the precision of epigenetic 

signatures (Koestler et al, 2013). On the other hand, the precision of DNAm levels at 

individual CpGs is higher in pyrosequencing data as compared to β-values on Illumina 

BeadChips (BLUEPRINT consortium, 2016; Lin et al, 2016). Furthermore, analysis of 

genome-wide DNAm profiles takes longer and it is relatively expensive. This is also the 

reason why the number of available DNAm profiles with matched flow cytometric 

analysis is still relatively low. Reinius et al. provided flow cytometric analysis for six 

DNAm profiles (Reinius et al, 2012) and Absher and colleagues provided 44 DNAm 

profiles with conventional LDCs (Absher et al, 2013). Notably, the precision of genome-

wide algorithms on these datasets was similar to the performance of the Epi-Blood-

Count in our cohorts (Tables S1 and S2) (Waite et al, 2016). Furthermore, Koestler and 

coworkers compared their predictions of cell types with complete blood counts that were 

analyzed on an Advia 70 hematology system and the correlation for monocytes (R = 

0.60) and lymphocytes (R = 0.61) was not better than our 3 CpG Epi-Blood-Count 

(Koestler et al, 2013). A recent study indicated that non-constrained methods, such as 

support vector regressions or robust partial regression, might further improve the 

accuracy of deconvolution methods for DNAm profiles (Teschendorff et al, 2017). Either 
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way, site-specific analysis of individual cell type-specific CpGs is better applicable to 

daily routine in clinical diagnostics. 

 

Our proof-of-concept study should be further developed to address additional cell types 

in the future. So far, the Epi-Blood-Count does not consider eosinophils, basophils, 

immature granulocytic precursors, or more specialized lymphocyte subsets such as 

naïve, memory, or regulatory T cells. It has been demonstrated that the percentage of 

these additional cell types can be estimated based on gene expression or DNAm data 

(Newman et al, 2015; Waite et al, 2016). Furthermore, we expect that it is possible to 

integrate CpGs that are indicative for blasts, atypical lymphocytes, and hematopoietic 

progenitors for extended differential counts. For rare cell types, it will be more 

challenging to identify candidate CpGs that reflect the percentage in peripheral blood 

and corresponding DNAm profiles of purified subsets need to be available. It is 

conceivable that alternative methods for DNAm analysis, such as barcoded bisulfite 

amplicon sequencing (BBA-seq) (Franzen et al, 2016; Masser et al, 2013) or digital PCR 

(Weisenberger et al, 2008), may ultimately pave the way for more sensitive 

deconvolution of rare subsets. Furthermore, analysis of neighboring CpG sites of the 

same amplicon may increase robustness as described for detection of circulating tumor 

DNA (Lehmann-Werman et al, 2016). 

 

Relative quantification of cell types is of relevance for clinical diagnostics, but it is very 

important to determine absolute cell numbers as well (Buttarello & Plebani, 2008; 

Koepke et al, 2007). In this study, we describe an entirely new approach for cellular 

quantification based on DNAm levels, which is based on addition of a non-methylated 

reference sequence of known concentration. In analogy, quantification of cell numbers 

has been established in flow cytometry by addition of beads as quantitation standards 

(Montes et al, 2006). Comparison with other established methods for cell counting 

indicated that the precision of our DNAm based approach is similar (Cadena-Herrera et 

al, 2015). Addition of non-methylated reference DNA would even be applicable before 

analysis of genome-wide DNAm profiles by Illumina BeadChips, WGBS, and RRBS – 

and thereby the quantification approach might actually be combined with larger 

deconvolution algorithms based on multiple CpGs. 
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Site-specific analysis of DNAm levels at individual CpGs can reflect the relative 

abundance of hematopoietic subsets. Immunophenotypic analysis is based on individual 

cell type-specific epitopes, too. Notably, several candidate CpGs of the Epi-Blood-Count 

are related to the same genes addressed in immunophenotypic analysis. Our Epi-Blood-

Count has various advantages over the well-established conventional methods: i) blood 

can be frozen after sampling for long-term storage, shipment, and subsequent analysis; 

ii) it is applicable to relatively small volumes of blood (less than 100 µl, whereas at least 

700 µl are required for immunophenotypic analysis); and iii) DNAm levels at individual 

CpGs provide an absolute measure that may facilitate better standardization between 

labs than immunophenotypic analysis by flow cytometry. In combination with a non-

methylated standard sequence it is possible determine absolute cell numbers based on 

DNAm. It is, however, unlikely that epigenetic analysis of LDCs will completely replace 

the conventional cell counters, because it cannot address erythrocytes and 

thrombocytes, which hardly comprise DNA. 

Materials and Methods 

Selection of candidate CpGs 

For selection of cell type-specific CpG sites we used DNAm profiles of purified leukocyte 

subsets that were generated on the Illumina Infinium HumanMethylation450 BeadChip 

platform (Gene Expression Omnibus ID: GSE35069) (Reinius et al, 2012). We utilized β-

values, ranging from 0 to 1, which provide a measure for each CpG site represented on 

the array that roughly corresponds to the percentage of DNAm. CpG sites on X and Y 

chromosomes were excluded. Candidate CpGs were selected based on i) highest 

difference between the mean β-value of one purified leukocyte subset and the mean β-

value of all other subsets; and ii) low variation of β-values within purified subsets. Best 

performing CpG sites were further evaluated on an independent dataset of purified 

leukocyte subsets provided on the Array Express database (E-MTAB-2145) (Zilbauer et 

al, 2013). 

 

For selection of CpGs for cellular quantification we identified genomic regions that were 

consistently methylated across all hematopoietic subsets. To this end, we used the 

following DNAm profiles that were all analyzed on the HumanMethylation450 BeadChip: 
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i) purified leukocyte subsets: GSE35069 (Reinius et al, 2012), and E-MTAB-2145 

(Zilbauer et al, 2013); ii) whole blood from healthy donors: GSE32148 (Harris et al, 

2012), GSE41169 (Horvath & Levine, 2015); and iii) DNAm profiles of blood disorders 

such as acute myeloid leukemia: TCGA (The Cancer Genome Atlas Research Network, 

2013), GSE58477 (Qu et al, 2014), GSE62298 (Ferreira et al, 2016); myelodysplastic 

syndrome: GSE51758 (Zhao et al, 2014); B cell lymphoma: GSE37362 (Asmar et al, 

2013); acute lymphoblastic leukemia: GSE69954 (Borssen et al, 2016)). Mean β-values 

were calculated for each dataset and all CpGs. Subsequently, we selected three 

candidate CpG sites (cg06096175 (LSM14B); cg25834632 (ZC3H3); cg09414987 (no 

associated gene)) that were consistently highly methylated in each dataset (β-value > 

0.975). 

Blood samples 

Peripheral blood samples for the training set (n = 60) and for validation set I (n = 44) 

were obtained from the HELPcB program (Health Effects in High-Level Exposure to 

PCB) (Schettgen et al, 2012). The study was approved by the local ethics committee of 

the RWTH Aachen University (EK 176/11). Peripheral blood samples for validation set II 

(n = 70), validation set III (n = 41), and validation set IV (n = 38), as well as serum 

samples (n = 18) were obtained from the Department of Hematology, Oncology, 

Hemostaseology, and Stem Cell Transplantation and from the Department of 

Transfusion Medicine according to the guidelines specifically approved by the local 

ethics committee of the RWTH Aachen University (EK 099/14). 

Conventional analysis of blood counts 

Blood samples from the HELPcB program were analyzed with the Sysmex XN-9000 

hematology analyzer (Sysmex Deutschland GmbH, Norderstedt, Germany). 

Immunophenotyping was performed as described before (Haase et al, 2016). In brief, 

EDTA anti-coagulated whole blood was incubated for 20 minutes at room temperature 

with fluorescently labeled antibody pairs (CD3/CD4, CD3/CD8, CD3/CD19, 

CD3/CD16+CD56) and isotype matched controls (IgG1 FITC/IgG2a PE, all from Becton 

Dickinson, Heidelberg, Germany). Erythrocytes were lysed with BD FACS lysing solution 

according to the manufacturer’s instructions and leukocytes were analyzed by flow 

cytometry on a FACSCalibur using the BD Simulset software for data acquisition and 

analysis (Becton Dickinson). LDCs of validation set II and IV were determined either 
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i) with an automated hematology analyzer (Coulter AcT diff2, Beckman Coulter, Brea, 

California, USA); ii) by microscopic analysis of blood smears; and/or iii) by 

immunophenotyping and flow cytometric analysis on a Navios flow cytometer (Beckman 

Coulter) to get proportions of T cells, CD4+ T cells, CD8+ T cells, B cells, and NK cells, 

as indicated in the text. Blood samples of validation set III were analyzed with an Abbott 

Cell-Dyn Emerald hematology system (Abbott Laboratories, North Chicago, Il, USA). 

Isolation of DNA and bisulfite conversion 

Genomic DNA was isolated from blood with the QIAamp DNA Mini Kit (Qiagen, Hilden, 

Germany). Genomic DNA of serum was isolated from serum tubes (S-Monovette; 

Sarstedt, Nümbrecht, Germany) after one-hour incubation at room temperature and 

centrifugation for ten minutes at 2,000 x g. DNA was subsequently isolated from 1 ml 

serum with the PME free-circulating DNA extraction kit (GS/VL system; Analytik Jena, 

Jena, Germany) with addition of carrier RNA according to the manufacturer’s 

instructions. Either 1 µg of DNA from peripheral blood or the complete DNA sample from 

serum was bisulfite-converted with the EZ DNA Methylation Kit (Zymo Research, Irvine, 

CA, USA).  

Generation of non-methylated reference DNA for quantification 

The target regions were PCR amplified (Eppendorf Mastercycler 5341; Eppendorf AG, 

Hamburg, Germany), cloned into the pBR322 vector (Thermo Fischer Waltham, 

Massachusetts, USA), expanded in DH5α E.coli, and isolated with the Plasmid DNA 

purification kit (Macherey-Nagel, Düren, Germany). To determine the optimal DNAm 

range of the blood-reference mixture, peripheral blood (150 µl) was mixed with serial 

dilutions of the reference sequence (0.0002 – 0.1100 ng). Mixtures of blood and 

reference DNA were subjected to DNA isolation and bisulfite conversion, as described 

above.  

Pyrosequencing 

Specific regions covering the CpG sites cg05398700 (WDR20), cg17587997 (FYN), 

cg16452866 (BCL11B), cg05044173 (CD4), cg25939861 (CD8A), cg02665297 (WIPI2), 

cg13617280 (SLC15A4), cg10480329 (CENPA), cg06096175 (LSM14B), cg25834632 

(ZC3H3), and cg09414987 (no associated gene) were amplified by PCR (Eppendorf 

Mastercycler 5341; Eppendorf AG). Primers were designed with the Pyrosequencing 
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Assay Design Software 1.0 (Biotag AB, Uppsala, Sweden) and they are provided in 

Table S3. Pyrosequencing was then performed on a PyroMark Q96 ID System using 

region specific sequencing primers and results were analyzed with the PyroMark Q CpG 

software (Qiagen).  

MassARRAY analysis 

Alternatively, we used MassARRAY for site-specific analysis of DNAm levels. Amplicons 

were designed with the Sequenom’s EpiDESIGNER software (Table S4). Converted 

DNA was amplified by PCR using the HotStart Plus PCR Master Mix (Qiagen). 

Unincorporated dNTPs were neutralized using shrimp alkaline phosphatase (Agena 

Bioscience, San Diego, CA, USA). Subsequently, 10 µl of PCR product was in vitro 

transcribed and cleaved in a base-specific (U-specific) manner using RNase A (T-

Cleavage MassCleave Kit; Agena Bioscience, Hamburg, Germany). The cleaved 

products were then analyzed by the MALDI-TOF mass spectrometer (MassARRAY 

Analyzer 4 System; Agena Bioscience). Measurements were performed at Varionostic 

GmbH (www.varionostic.de; Ulm, Germany). 

Combination of DNAm levels for Epi-Blood-Count 

Linear regression of DNAm levels at individual CpG sites was initially determined in 60 

samples of the HELPcB training set. The regression formulas (indicated in Fig. S3) were 

then used to estimate cell counts in a validation set. Alternatively, we used a 

deconvolution approach that combines DNAm data of various cell types (three, five, or 

six CpGs). The Epi-Blood-Count can be represented by a matrix W of size f x k (f: 

number of CpGs (features); k: number of cell types). The methylation data of the blood 

samples are represented by a matrix V of size f x n (n: number of blood samples) and 

are modeled as a linear combination of the purified cell types W, with their mixture 

proportions H (k x n matrix – each of the n columns corresponds to the mixture 

proportion of the respective blood sample (same column in V)): V ≈ WH 

For estimation of H, a non-negative least-squares (NNLS) approach is used to avoid 

negative mixture proportions. For implementation purposes, we use the multiplicative 

update rule of Lee et al. (Lee & Seung, 2001) to determine H: 

���
���

� ���
� �������

���������
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Here, j is the iteration index, WT indicates the transpose of matrix W, and α and µ are the 

row and column indices, respectively. For a unique estimation of H, it is required to have 

at least as many CpG sites as cell types, i.e. f ≥ k (assuming that the rows of W are 

linearly independent). Once leukocyte proportions were calculated, we added the 

proportions together and adjusted them to a total sum of 100%. 

 

If no measurements from purified cell types are available, it is possible to use the 

reverse approach, estimating matrix W from H and V, given a set of peripheral blood 

samples with available cell counts (H) and methylation data (V). In order to do so, we 

use the respective iterative formula (Lee & Seung, 2001) for estimating W:  

���

���
� ���

� �������

���������
 

Quantification of cell numbers based on DNAm levels  

Upon mixture of genomic DNA with a non-methylated reference DNA the DNAm level 

can be mathematically described as ratio of methylated to total DNA: 

��	
 �  
� 
 �� � � 
 �	

�� � �	
 

Here, CR and CG resemble the copy number of the reference DNA and the genomic 

DNA, respectively; a and b are absolute DNAm levels that were determined by 

pyrosequencing or MassARRAY in controls consisting of either pure reference DNA or 

blood DNA, respectively (e.g. 7% and 93% DNAm in our analysis). To determine the 

copy number of the reference plasmids (CR) we used the following formula: 

�� � 1.5 


� 
 �


��
 

where mR is the added reference amount (e.g. 0.011 ng of LSM14B), NA is the 

Avogadro’s constant, MW is the molar weight of the reference DNA (calculated for the 

plasmid with LSM14B sequence: 2.85*106 gmol-1), and the correction factor 1.5 was 

empirically determined for our preparation of reference DNA and relates to the fact, that 

purified plasmids may also comprise fragments of the bacterial genome or other 

plasmids.  

With these parameters it is inversely possible to calculate copy numbers of the genomic 

DNA (CG) – and hence the cell numbers in a given blood sample:  
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�����/μ� �
�� 
 ���	
 � ��

2 
 � 
 �� � ��	
�
 

The term “2” stems from the fact that each cell comprises two copies of genomic DNA; v 

is the volume of analyzed blood in µl. 

Statistical Analysis 

Mean average deviation (MAD), mean standard error (MSE), Pearson correlation 

coefficient (R), linear regression, and Student’s t test were calculated in Excel. P values 

< 0.05 were considered as statistically significant. 
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Figures 

Figure 1. Selection of cell type-specific CpG sites for the Epi-Blood-Count.  

(A) Schematic presentation of the work-flow that led to selection of candidate CpG sites 
for individual hematopoietic subsets. (B) Scatterplot to exemplarily depict selection 
criteria for the CpG site for granulocytes (cg05398700): i) high difference between mean 
β-values in granulocytes (gran.) and the mean β-values of all other cell types (rest) in 
DNAm profiles of purified cell types (GSE35069) (Reinius et al, 2012); and ii) a low 
variance (var.) of β-values within the granulocytes and within the other hematopoietic 
subsets. (C) Differences in β-values across blood cell types are exemplarily 
demonstrated for cg05398700 in reference dataset of Reinius et al. (GSE35069) 
(Reinius et al, 2012), and (D) in the validation set of Zilbauer et al. (E-MTAB-2145) 
(Zilbauer et al, 2013). (E) In analogy, the other cell type-specific CpGs of the Epi-Blood-
Count were selected. DNAm levels are depicted for each cell type-specific CpG in 
comparison to all other hematopoietic subsets (GSE35069).  
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Figure 2. Epi-Blood-Count of granulocytes, lymphocytes, and monocytes.  

Peripheral blood samples of a training set (A) (n = 60) and of an independent validation 
set (B) (n = 44) were analyzed with a Sysmex XN-9000 hematology analyzer and DNAm 
was analyzed by pyrosequencing at the three CpGs for granulocytes, lymphocytes, and 
monocytes. Furthermore, performance of the Epi-Blood-Count was compared with (C) a 
Coulter Counter (ACT II Diff Counter from Beckmann Coulter; n = 24) and/or (D) 
microscopic analysis of blood smears and manual counting by a trained operator 
(n = 66). (E) The correlation of Coulter Counter results and manual counting was 
compared (n = 20). (F) To determine how the results of the Epi-Blood-Count are affected 
by long-term storage (without freezing), we used an additional set of blood samples 
(n = 10) that was initially analyzed by manual counting (at day 0) and by DNAm analysis 
at the three relevant CpGs after storage for seven days at 4°C. Pearson correlation 
coefficient (R) and mean absolute deviation (MAD) between the measurements were 
calculated for each cell type.   
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Figure 3. Leukocyte differential counts with five and six CpG sites.  

Leukocyte differential counts were determined in the validation set I by combination of 
Sysmex XN-9000 hematology analyzer and immunophenotypic analysis with 
FACSCalibur (n = 44). The conventional LDCs were compared with Epi-Blood-Count 
results that were either determined based on DNAm analysis by pyrosequencing of 
(A) five CpGs (including a CpG site for all T cells), or (B) six CpGs to further discriminate 
between CD4+ and CD8+ T cells. The models for the Epi-Blood-Count (NNLS) were 
previously generated on an independent training set. R = Pearson correlation coefficient; 
MAD = mean absolute deviation.   
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Figure 4. Quantification of cells based on DNA methylation.  

(A) Schematic presentation of cellular quantification based on DNAm levels with a non-
methylated reference DNA. (B) Two blood samples (donor 1 and 2) were mixed with a 
serial dilution of the reference plasmid comprising the non-methylated sequence of 
LSM14B (0.0002 ng to 0.1100 ng). DNAm levels (analyzed by pyrosequencing) 
continuously declined with higher concentrations of reference DNA. (C) If the results 
were plotted as logarithmic ratio of reference DNA [ng] per cell (determined with the 
Abbott Cell-Dyn), there was an almost linear association in the DNAm range between 
20% and 80%. Notably, the observed DNAm levels closely resembled the expected 
calculated DNAm levels (black curve). (D) Calculated cell numbers based on the 
reference plasmid LSM14B clearly correlated with cell numbers determined with the 
Abbott Cell-Dyn analyzer (n = 41; validation set III). (E) Furthermore, epigenetic 
quantification could be combined with epigenetic LDCs: Cell numbers for granulocytes, 
lymphocytes, and monocytes correlated with cell numbers determined with a Coulter 
Counter (n = 38; validation set IV; MAD = mean absolute deviation). 
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