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Abstract: 
 
Magnetic resonance imaging (MRI) is crucial for in vivo detection and 
characterization of white matter lesions (WML) in multiple sclerosis. While these 
lesions have been studied for over two decades using MRI technology, 
automated segmentation remains challenging. Although the majority of statistical 
techniques for the automated segmentation of WML are based on a single 
imaging modality, recent advances have used multimodal techniques for 
identifying WML. Complementary imaging modalities emphasize different tissue 
properties, which can help identify and characterize interrelated features of 
lesions. However, prior work has ignored relationships between imaging 
modalities, which may be informative in this clinical context.  To harness the 
coherent changes in these measurements, we utilized inter-modal coupling 
regression (IMCo) to estimate the covariance structure across modalities. We 
then used a local logistic regression, MIMoSA, which leverages new covariance 
features from IMCo regression as well as the mean structure of each imaging 
modality in order to model the probability that any voxel is part of a lesion.  
Finally, we introduced a novel thresholding algorithm to fully automate the 
estimation of the probability maps to generate fully automated segmentations 
masks for 94 subjects. To evaluate the performance of the automated 
segmentations generated using MIMoSA we compared results with gold standard 
manual segmentations. We demonstrate the superiority of MIMoSA to other 
automated segmentation techniques by comparing it to the OASIS algorithm as 
well as LesionTOADS. MIMoSA resulted in statistically significant improvement in 
lesion segmentation. 
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1. Introduction: 
1.1 Multiple Sclerosis and MRI 
 
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system 
(CNS) that is characterized by pathologic changes in the brain and spinal cord. 
These pathologic changes include axonal injury and gliosis as well as 
demyelination, which is most prominent in focal white matter lesions (WML), 
although is also present in grey matter structures. It is well established that the 
accumulation of these WMLs is associated with disability and cognitive decline 
[1]. The in vivo assessment of lesion volume is primarily based on magnetic 
resonance imaging (MRI), as demyelination and other pathological changes 
cause tissue to have different water content compared to normal-appearing white 
matter [2]. The number and volume of lesions are essential metrics for monitoring 
disease progression in clinical settings, and are also used for evaluating the 
efficacy of disease-modifying therapies in clinical trials and in clinical practice [3]. 
 
The use of multiple MRI sequences can add significant value in identifying 
abnormalities in the brain. In MS, the most common MRI modalities acquired 
include; T2-weighted Fluid-Attenuated Inversion Recovery (FLAIR), T2-weighted 
(T2), Proton Density-weighted (PD), and T1-weighted (T1) images. WML appear 
as hyperintensities on the FLAIR, T2, and PD images while WML appear as 
isointense or hypointensities on the T1. The differing contrasts allow the viewer 
to detect different features of WML or normal-appearing white matter in order to 
delineate WML. For example, the FLAIR, unlike T2 and PD, easily distinguishes 
WML from cerebrospinal fluid (CSF) and thus is useful when evaluating lesions 
near CSF [4]. To gather as much information as possible about the demyelination 
occurring in the brain, it is now common to utilize the complementary information 
provided by different imaging sequences. 
 
1.2 Lesion Segmentation (Manual, semi-automated, and automated methods) 
 
Segmentation of WM lesions involves extracting locations in an image that 
contain white matter abnormalities, thus simplifying the image representation. 
Currently, manual segmentation is the gold standard approach in WML 
identification. Radiologists or other imaging scientists visually assess scans and 
manually delineate lesions on each slice in order to report total number and 
volume of WML. Not only is this costly and time-consuming, but it is prone to 
large inter- and intra- observer variability due to the challenge of incorporating 3D 
information from several MRI modalities [5] [6]. However, these WML metrics are 
vital in clinical trials where lesion number and volume are important outcomes for 
assessing disease-related changes and treatment effects [7]. In these clinical 
trials, a consistent method for quick and accurate delineation of WML is 
necessary. Though manual lesion segmentation is flawed, it has retained its 
primacy due to artifacts and errors that occur with automated and semi-
automated methods. 
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Semi-automated methods cut some cost and time associated with manual lesion 
segmentation, but still require an imaging scientist to manually tune and verify 
segmentations. In a semi-automated procedure, an imaging scientist provides 
some input about their impression of the image, runs an algorithm, and obtains 
an initial estimate of lesion segmentation either as probability maps or a binary 
segmentation. The imaging scientist often then goes through and manually 
corrects the segmentation result. As semi-automated methods add a systematic 
component to the segmentation procedure they are less prone to inter- and intra- 
observer variability [8]. Nonetheless, similar to manual lesion segmentation, 
semi-automated methods are more costly and less timely than fully automated 
methods. 
 
Automated methods eliminate the need for manual input, thus cutting cost and 
reducing implementation time even further. Automated methods additionally 
introduce stability and consistency into lesion segmentation as they eliminate 
human bias and error. Though many automated approaches and methods exist, 
no currently available algorithm is able to outperform manual lesion segmentation 
in terms sensitivity and specificity across subjects and scanning centers [5][8-9]. 
As a result, no particular automated segmentation algorithm is accepted as the 
gold standard in practice. Thus, accurate automated detection and delineation of 
WMLs remains a challenging unmet need in the field. 
 
Most automated WML segmentation methods consist of two components: feature 
extraction and a classification algorithm. Classification algorithms range from 
sophisticated machine learning methods to simpler algorithms such as voxel-
wise logistic regression, linear discriminant analysis, and quadratic discriminant 
analysis [9]. Feature selection can also vary from simple raw intensities to 
complex functions of images. In the past, studies have compared classification 
methods, and shown that simple methods often yield performance equivalent to 
more sophisticated methods [10]. Such studies have pointed to the importance of 
biologically relevant feature selection [9]. This motivates the development of 
interpretable and discriminative features as key components for generalizable 
and accurate WML segmentation methods. 
 
1.3 MIMoSA and IMCo Regression 
 
We propose a fully automated segmentation algorithm that we refer to as a 
Method for Inter-Modal Segmentation Analysis (MIMoSA). As feature extraction 
is known to be pivotal for a segmentation algorithm’s accuracy and 
generalizability, we focus on the development of novel features. The majority of 
statistical techniques for the segmentation of WML are based on modeling 
intensity patterns for each imaging modality separately.  However, recent 
advances in neuroimaging analysis have emphasized multimodal techniques in 
order to include covariance modeling across modalities [11] [12] [13]. This 
relationship, which we refer to as coupling or inter-modal coupling (IMCo), is 
known to differ across tissue types [14] [15]. However, it is unknown whether 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 15, 2017. ; https://doi.org/10.1101/150284doi: bioRxiv preprint 

https://doi.org/10.1101/150284


IMCo is disrupted in pathological conditions such as MS. We propose to leverage 
IMCo information as features for lesion segmentation in order to quantify the 
coherent changes as tissue damage and repair occur across imaging modalities. 
We introduce MIMoSA, a segmentation algorithm which utilizes inter modal 
covariance structures through harnessing our prior work regarding the coupling 
of different imaging parameters at a given anatomic location [16]. MIMoSA is a 
local-level logistic regression that accounts for mean structure as well as local 
covariance structure across imaging modalities. Additionally, we fully automate 
the model with a novel thresholding algorithm that detects the ideal threshold for 
probability maps in order to maximize similarity with gold standard manual 
segmentations. As described below, this approach is successful in detecting 
WML with increased accuracy. 
 
 
2. Materials and Methods: 
 
In this section we introduce MIMoSA, a lesion detection method that harnesses 
IMCo analysis. Prior to fitting a local linear regression, we create a brain tissue 
mask excluding cerebrospinal fluid and extracerebral tissue. We intensity-
normalize all MRI volumes, and identify candidate voxels that are hyperintense 
on FLAIR and thus contain the vast majority of white matter lesions. Additionally, 
we smooth volumes to capture the local spatial information while reducing artifact 
due to noise. We also utilize IMCo information in the model, which measures 
pathological changes across modalities. MIMoSA also includes a fully automated 
thresholding algorithm to create optimal binary lesion masks. MIMoSA captures 
the local covariance structure across scanning modalities through IMCo 
regressions at each voxel likely to contain lesional tissue. We then include IMCo 
regression intercept and slope estimates in the lesion classification procedure to 
obtain logistic regression coefficients, which we use to produce maps of the 
probability of lesion. 

We evaluate the performance of MIMoSA on MRI volumes of the brain using a 
dataset collected at the Johns Hopkins Hospital consisting of 98 subjects with 
relapsing-remitting MS. We train the model and evaluate model performance 
using manually delineated segmentations. We train and test the proposed 
MIMoSA model and compare its performance to two competitively performing, 
previously published methods, OASIS [17] and LesionTOADS [16], by 
conducting bootstrapped cross-. 

2.1 Study Population 

We consider MRI studies from 98 subjects with MS. The median age of the MS 
subjects was 44 years (Q1, Q3) (33, 54), 72 are female, and the median EDSS 
was 3.5 (2, 6). Due to poor image quality, we excluded 4 subjects, which results 
in a total of 94 subjects.  

2.2 Experimental methods 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 15, 2017. ; https://doi.org/10.1101/150284doi: bioRxiv preprint 

https://doi.org/10.1101/150284


Local institutional review boards approved the imaging protocol and data 
analysis. 3D T1-MPRAGE (T1w) images (repetition time (TR) = 10 ms; echo time 
(TE) = 6 ms; flip angle (FA) α = 8°; inversion time (TI) = 835 ms, resolution = .828 
mm × .828 mm × 1.1 mm), 2D T2-weighted FLAIR images (TR = 11,000 ms; TE 
= 68 ms; TI = 2800 ms; in-plane resolution = 0.83 mm × 0.83 mm; slice thickness 
= 2.2 mm), and T2-weighted (T2w) and PD (PDw) images (TR = 4200 ms; TE = 
12/80 ms; resolution = 0.83 mm × 0.83 mm × 2.2 mm) were acquired on a 3T 
MRI scanner (Philips Medical Systems, Best, The Netherlands). Gold standard 
segmentations were acquired by an imaging technologist with more than 10 
years of experience in delineating lesions and neuroanatomy. 

2.3 Image Preprocessing 
 
All images were preprocessed using the Medical Image Processing Analysis and 
Visualization (MIPAV) [18], TOADS-CRUISE [19], and Java Image Science 
Toolkit (JIST) software packages [20]. We first rigidly aligned the T1-weighted 
image of each subject into the Montreal Neurological Institute (MNI) template 
space at 1mm isotropic resolution. We used the normalized mutual information 
cost function for the co-registration and windowed sinc interpolation. We then 
registered the FLAIR, PD, and T2-weighted images of each subject to these 
aligned T1-weighted images. We also applied the N3 inhomogeneity correction 
algorithm [21] to all images and removed extracerebral voxels using SPECTRE 
[22].  

2.4. Statistical modeling and spatial smoothing 

We performed all statistical modeling in the R environment (version 3.1.0, R 
Foundation for Statistical Computing, Vienna, Austria) utilizing the packages 
oasis [23], ROCR [24], data.table [10], brainR [26], oro.nifti [27], and fslr [28]. We 
also used FSL for the three dimensional spatial smoothing of the volumes. 

2.5. Brain tissue mask 

The MIMoSA algorithm utilizes two masks for identifying tissue that may contain 
lesions: the brain tissue mask and the candidate mask [17]. We first identify 
voxels containing cerebral tissue but exclude cerebrospinal fluid (CSF). Because 
CSF appears hypointense on FLAIR, we exclude voxels with intensities below 
the 15th percentile after eliminating extracerebral voxels as detected by 
SPECTRE. We refer to this mask as the brain tissue mask. Since voxels within 
lesions appear as hyperintensities in the FLAIR volume, we restrict our classifier 
to exclude any voxels whose FLAIR intensities are not consistent with lesions: 
we select the 85th percentile and above voxels in the brain tissue mask as 
candidate voxels. This step reduces computation time and restricts the modeling 
space, which we have found empirically reduces false positives. 
 

2.6. Intensity normalization 
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As conventional magnetic resonance imaging volumes are acquired in arbitrary 
units, we use a statistical intensity normalization in order to model intensities 
across subjects. For this normalization we use a linear z-scoring method [29]  
[30] with the brain tissue mask, making the units of each modality easily 
interpreted as standard deviations of the variability across the brain.  

 
2.7 Smoothed Volumes 

To account for average signal intensities around each voxel, we use a sequence 
of Gaussian smoothers with varying kernel sizes to develop additional features 
that have been shown to aid in classification [17] [9]. These features have also 
been noted to mitigate missegmentation artifacts that are due to residual image 
inhomogeneities after N3 correction [17]. We use smoothed volumes with kernel 
parameters of 10 and 20 mm, which perform well empirically. Figure 1 shows an 
example of a smoothed volume for illustration. 

2.8 Inter-Modal Coupling Regression 

In order to help distinguish the lesional tissue from normal-appearing white 
matter, we utilize features we estimate from IMCo regression. These measures 
are intended to capture the local covariance structure across modalities as it 
varies across the brain. For example, as inflammation and demyelination occur in 
white matter lesions, not only do T1-weighted intensities decrease and FLAIR 
intensities increase; rather, voxels with more pathology tend to experience these 
changes concurrently to a greater extent. To quantify this, we perform a weighted 
local regression in a neighborhood around each voxel (see Figure 2), where the 
weight is proportional to a Gaussian kernel that is a function of the distance to 
the center voxel with fixed full-width half-max parameter (3mm) [11]. We record 
two coupling measures for each pair of imaging modalities at all voxels in the 
candidate mask: the locally estimated slope parameter as well as the intercept 
parameter estimate. 
 
We implement IMCo regression on 12 pairs of inter-modal contrasts. That is, we 
exhaust all possible combinations (6) of the 4 scanning contrasts: T1 and PD, T1 
and FLAIR, T1 and T2, PD and FLAIR, PD and T2, and FLAIR and T2. As IMCo 
is a regression, we must assign one modality to be the outcome and the other to 
be the predictor variable. Since there is no natural choice for predictor or 
outcome variables, for each pair we include both regressions which result in 
complementary information. For example, one combination of volumes is T1 and 
FLAIR, so we perform IMCo regression using T1 as the predictor variable and 
FLAIR as the outcome variable. We then repeat the IMCo regression with FLAIR 
as the predictor variable and T1 is the outcome variable. This leaves us with 12 
unique pairs for estimating IMCo for which we obtain slope and intercept 
parameter estimates. 

2.9 MIMoSA: A Method for Inter-Modal Segmentation Analysis 
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In this section we introduce the MIMoSA model. MIMoSA uses logistic regression 
to model the probability that a voxel contains lesional tissue. We choose logistic 
regression for two main reasons: first, it is relatively straightforward to interpret 
and implement. Second, a previous automated segmentation model showed 
promising results with a logistic regression compared with more advanced 
machine learning classifiers [9] but left significant room for improvement on the 
inclusion of intermodal features. We model the probability of lesion at the voxel 
level using FLAIR, PD, T2, and T1 intensities as well as the intensities from 
smoothed volumes of each modality (see Section 2.7). Using these features only 
captures the mean structure within modalities. For improved sensitivity and 
specificity to lesional tissue, we capture this covariance structure across 
scanning modalities using coupling measures for each pair of modalities, as 
described in the previous section, and we include these features in the model. 
Like all supervised lesion segmentation methods, we train MIMoSA on manually 
segmented images (see Figure 3).  
 
The next step in the MIMoSA procedure is to fit a voxel-level logistic regression 
model over the candidate voxels. In the model below, 𝑃 𝐿! 𝑣 = 1  represents 
the probability that a voxel is part of a lesion where 𝐿!(𝑣) is a random variable 
denoting voxel-level lesion presence. If there is a lesion in voxel 𝑣 for subject 𝑖, 
then 𝐿!(𝑣)=1, otherwise 𝐿! 𝑣 = 0 . We model the probability that a voxel 𝑣 
contains lesion incidence with the following logistic regression model: 
 
𝑙𝑜𝑔𝑖𝑡 𝑃 𝐿! 𝑣 = 1 =
 𝛽! + 𝑋!! 𝑣 𝛽 +𝔊𝑋!! 𝑣, 10 𝛽!" + 𝑋! 𝑣 ⨂𝛽!"∗ +𝔊𝑋!! 𝑣, 20 𝛽!" + 𝑋! 𝑣 ⨂𝛽!"∗ +
𝒞𝑋!,!! 𝑣 𝛽! + 𝒞𝑋!,!! 𝑣 𝛽!, 
 
where we denote the normalized images 
𝑋! 𝑣 = 𝑇!,! 𝑣 ,𝐹𝐿𝐴𝐼𝑅! 𝑣 ,𝑇!,! 𝑣 ,𝑃𝐷! 𝑣

!  and we use 𝔊  to denote the 
smoothing operator with parameter 𝛿 ∈ 10𝑚𝑚, 20𝑚𝑚 , which takes a weighted 
average within each neighborhood 𝑁 𝑣, 𝛿  around 𝑣. We express the smoothed 
images in vector form by 

𝔊𝑋! 𝑣, 𝛿 = 𝔊 𝑇!,! 𝑣 ;𝑁 𝑣, 𝛿 ,… . ,𝔊 𝑃𝐷! 𝑣 ;𝑁 𝑣, 𝛿
!

, and we denote all 
combination of intercept and slope IMCo parameters respectively by 𝒞𝑋!,!! 𝑣  and 
 𝒞𝑋!,!! 𝑣 . We use ⨂ to represent the Hadamard product. The interaction terms 
between the normalized volumes and the smoothed volumes, denoted by 𝛽!!∗ , 
contribute to the model by capturing differences between voxel intensities and 
their local mean intensities. These aid in mitigating artifacts due to residual field 
inhomogeneity in some cases, and generally improve lesion detection 
performance. 
 
After training, the result of our model is a collection of coefficients that can be 
used to determine the probability that each voxel is part of a lesion in a new set 
of images. MIMoSA obtains the estimated probability of each voxel being a part 
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of a lesion by including the 12 imaging features (the four imaging modalities and 
the 2 smoothed volumes for each modality) and capturing the covariance across 
the 12 pairs of IMCo parameters. One can then apply a threshold to the 
probability maps to create binary lesion segmentation masks, which are typically 
preferred in clinical applications. 
 
2.10 Probability map and binary segmentation 
 
To determine where lesions are present, we estimate a probability map using the 
estimated regression coefficients for each voxel in the brain mask. We use a 
Gaussian smoother with sigma parameter of 1.25mm on this probability map to 
reduce noise. To create a binary segmentation, we use a population-level 
threshold on the smoothed probability map. Figure 3 shows a slice of a 
probability map and a binary segmentation after thresholding for a subject in a 
test set. In the next section, we describe an optimal threshold algorithm which 
allows the method to be fully automated by calculating a threshold yielding 
maximal overlap with the gold standard in the training set to create binary lesion 
masks. 
 
2.11 Optimal Thresholding Algorithm 
 
After the MIMoSA model is trained, it can be applied to generate probability 
maps, which are thresholded to create binary lesion segmentations. In 
comparable methods, this threshold is determined manually post hoc. To fully 
automate the thresholding process and select a threshold that maximizes 
similarity to gold standard manual segmentations, we introduce the optimal 
thresholding algorithm. The MIMoSA model is fit using the training set of data 
with gold standard manual segmentations. After the model is fit, we generate 
probability maps on these training set subjects. The optimal thresholding 
algorithm allows for the specification of a grid of thresholds. For each threshold 
we create binary lesion masks, which we compare to the gold standard manual 
lesion segmentations by calculating DSC. We select the threshold that produces 
the highest average DSC as the optimal threshold for application in the test set. 
 
The optimal thresholding algorithm can be utilized in numerous ways. If 
investigators have a priori information about reasonable threshold values for their 
data they can simply create a finer threshold grid around the known value. If 
investigators are unsure about a reasonable threshold level a wider grid search 
can be utilized and then improved using finer grids. Results from the optimal 
threshold should include a variety of thresholds chosen from the interval as well 
as minimal thresholding at the boundary of the interval. 
 
2.12 Bootstrap cross-validation 
 
We conduct training and testing of both the OASIS and proposed MIMoSA 
methods using bootstrapped cross-validation. In order to fit the models and 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 15, 2017. ; https://doi.org/10.1101/150284doi: bioRxiv preprint 

https://doi.org/10.1101/150284


measure performance, we randomly allocate 42 subjects to the training set and 
42 subjects to the test set. We then train both the OASIS and MIMoSA models 
using only subjects in the training set. After we fit the models, we apply the 
estimated coefficients to the test set in order to generate probability maps. 

In addition to comparing MIMoSA with OASIS, we also compare against 
LesionTOADS, a segmentation algorithm based on fuzzy c-means that 
incorporates both topological constraints and a statistical atlas. Lesions are 
detected as outliers to the clustering functional.  As LesionTOADS is an 
unsupervised learning method, we do not bootstrap the training and cross-
validation. Instead, we simply apply the LesionTOADS algorithm with default 
parameters using the Java Image Science Toolkit [20] to obtain binary lesion 
segmentations for all 94 subjects directly. 

In order to make the MIMoSA method fully automated, we propose a method to 
find the optimal threshold for binary lesion segmentation. We use this algorithm 
in conjunction with the MIMoSA method but we also apply it to OASIS for 
comparability. After each model is fit on a training set, we generate probability 
maps for the subjects in the training set. We then threshold these probability 
maps using values ranging from 20% and 35% in 1% increments to create hard 
segmentation masks. Using the set of predicted lesion masks for each model and 
each threshold, we calculate the Sørensen-Dice coefficient (DSC) at the subject 
level. After the DSC is calculated for each subject in the training set, we take the 
average across subjects for each threshold. We record the threshold with the 
highest average DSC score. We iterate this 100 times on each training set, and 
generate a frequency table of all optimal thresholds chosen by the algorithm. We 
apply the optimal threshold found in the training set for each iteration to the test 
set to provide binary lesion segmentation maps. We iterate this training and 
validation process to yield 100 bootstrap cross-validated sets of predicted 
probability maps and estimated binary segmentation masks. 

It is not uncommon for MRI studies in MS to exclude collection of PD and/or T2.  
Due to this, we repeat the bootstrap cross validation procedure as if PD, T2, and 
both PD and T2 were not collected. This analysis does not only exclude the main 
effects but all possible interactions and IMCo measures. Additionally, we 
evaluate the method with the bootstrap cross validation when trained on only 20 
subjects and tested on 74 subjects. These additional analyses evaluate the 
robustness of MIMoSA under different data collection schemes. 

2.13 Calculation of summary statistics and confidence intervals 
 
Using the cross-validated probability maps, we summarize performance results 
by subject-level partial area under the receiver-operator characteristic curve 
(pAUC, up to 1% false positive rate) [24] and DSC comparing the OASIS and 
proposed MIMoSA models. We use pAUC as it only considers regions of the 
ROC space which correspond to clinically relevant values of specificity [31]; that 
is, we do not consider model performance under clinically irrelevant high false 
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positive rates. We then average performance measures across subjects and 
cross-validation folds. To compare performance statistically between MIMoSA 
and OASIS methods, we report confidence intervals for the difference between 
MIMoSA and OASIS (MIMoSA-OASIS) DSC and pAUC. To accomplish this, for 
each bootstrapped test dataset we first find and record the average difference in 
pAUC and DSC quantities for MIMoSA and OASIS. After averages are obtained, 
we find the values associated with upper and lower 0.025 quantiles to provide 
confidence intervals. We also record the frequency with which each threshold is 
chosen in the optimal threshold algorithm in order to compare the optimal 
thresholding for MIMoSA and OASIS methods. In order to compare the 
performance of MIMoSA with LesionTOADS we use the binary segmentations 
produced by the LesionTOADS algorithm to calculate the subject-level DSC and 
pAUC. To compare performance statistically between MIMoSA and 
LesionTOADS methods, we report confidence intervals for the difference 
between MIMoSA and LesionTOADS (MIMoSA-LesionTOADS) DSC and pAUC, 
averaged over each training set.  
 
 
3. Results: 
 
3.1 Optimal Threshold Results: 
 

Table 1 shows the frequency of optimal thresholds chosen by the 
optimizing DSC algorithm for MIMoSA and OASIS models using threshold values 
of 20% to 35% by 1%. We find the optimal threshold with OASIS ranges from 
24% to 28%. Within this range, we obtain a mode of 25%. MIMoSA utilizes a 
slightly wider spread of optimal thresholds ranging from 26% to 32%. Results for 
the replication of the bootstrap cross-validation when PD, T2, PD and T2 are 
excluded are similar and thus not provided here. For the cross validation with 
only 20 subjects in the training set, thresholds are also similar and thus are not 
provided here. 
 

In the OASIS algorithm, a recalibration of the population-level 
segmentation threshold was necessary and required manual adjustment. With 
the optimal threshold algorithm proposed here, this manual adjustment step is no 
longer required and allows fully automated segmentation of images from a new 
imaging center if training data are available.  

 
3.2 Summary Statistics Results: 
 
Table 2 shows average DSC and pAUC across bootstrapped test samples and 
confidence intervals for the difference between MIMoSA and OASIS. MIMoSA 
outperforms OASIS and LesionTOADS in both average DSC and pAUC. The 
confidence interval for differences with OASIS do not contain 0, indicating that 
the observed improvement in both DSC and pAUC provided by MIMoSA are 
statistically significant. The confidence intervals for differences with 
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LesionTOADS indicate a statistically significant difference in DSC but 
comparable pAUC. 
 
Table 3 shows average DSC and pAUC across bootstrapped test samples when 
PD and T2 images are excluded from analysis. Additionally, results are 
presented for bootstrapped samples where we train on 20 subjects and test on 
74. When the model is trained using only 20 subjects we see negligible changes 
to average DSC, pAUC and associated confidence intervals. If a study is missing 
PD we see slight changes to DSC and pAUC while if T2 is excluded we see more 
moderate changes in these values. If both PD and T2 are excluded results are 
similar to when only T2 is missing. As we have shown previously that MIMoSA is 
statistically significantly better than OASIS and LesionTOADS table 3 does not 
show confidence intervals on the difference as each adaptation yields similar 
results. We additionally evaluate whether the variation in model yields results 
statistically significantly different from the partial models.  Each interval contains 
0 and thus there is not a loss in DSC or pAUC when these models are 
implemented. 
 
 
3.3 Qualitative Results: 
 
MIMoSA shows a significant improvement in performance over OASIS and 
LesionTOADS. In order to evaluate locations and patterns of differences between 
MIMoSA and OASIS, we compare probability maps. To compare with 
LesionTOADS, we compare binary segmentations from each respective 
algorithm. Figure 3 displays probability maps and binary segmentations from all 
models in axial slices while Figure 4 displays binary segmentation masks from all 
models in 3D allowing for global visualization of results. These results show that 
MIMoSA is able to identify lesions that OASIS and LesionTOADS were unable to 
detect. By inspection of the 3D visualizations in Figure 4, we note that MIMoSA 
performs better at juxtacortical lesion detection. Additionally, Figure 3 shows 
MIMoSA better separates lesions that are spatially close and which OASIS and 
LesionTOADS could not distinguish as distinct lesions. Furthermore, Figures 3 
and 4 show OASIS and LesionTOADS tend to exhibit more false positive regions 
than MIMoSA, which is also reflected quantitatively in the ROC analysis. 
 
4. Discussion: 
 
MIMoSA is a fully automated segmentation method that harnesses the changes 
in inter-modality covariance structure that occur in white matter pathology, and 
can be used to assist in WML detection or replace manual segmentation. The 
method is fully automated after training and does not require human input. 
MIMoSA avoids the introduction of human error cutting down on inter- and intra- 
variability associated with manual and semi-automated WML segmentation. The 
model can be easily adapted and trained for cases when fewer imaging 
sequences are available. We show that MIMoSA yields superior segmentation 
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results when compared to OASIS and LesionTOADS, which have been shown to 
be competitive in performance to the state of the art machine learning methods 
[28] [32] .    
 
Lesion segmentation methods, whether sophisticated machine learning 
classifiers or simpler methods such as intensity-based regression models, 
depend on the development and refinement of discriminative reliable imaging 
features. IMCo regression aims to detect biological changes reflecting processes 
occurring inside WML captured in the different scanning modalities. IMCo 
modeling facilitates new opportunities for feature extraction for the purpose of 
WML segmentation, but also promising new measures of pathological severity 
and repair processes [33]. These results are shown to be robust when fewer 
subjects are available to train, and if certain imaging modalities such as PD and 
T2 are not available. As such, IMCo regression features could be useful in not 
only for volumetric analyses but also hold promise for monitoring disease and 
quantifying effects of disease-modifying therapies. 
 
For generalizations to data from different imaging centers or protocols, the 
recalibration of a threshold can be achieved automatically and optimally using the 
proposed cross-validation scheme. This novel algorithm estimates the best 
threshold for probability maps for producing segmentations that maximize 
similarity with gold standard manual segmentations. MIMoSA can thus easily be 
applied in a fully automated manner to new datasets when gold standard 
segmentations on training subjects are available. 
 
Future work includes further validation of MIMoSA under variations in imaging 
protocols in order to show the replicability of IMCo measures and segmentation 
performance. Additional opportunities for performance improvement may also 
include the refinement of IMCo regressions for lesion segmentation by including 
complex modeling of nonlinear IMCo relationships, as well as the use of multiple 
neighborhood sizes in multi-scale IMCo analyses. An investigation can also be 
done on whether all pairwise combinations of modalities is necessary using 
model selection procedures. Furthermore, MIMoSA could be a useful tool in 
lesion segmentation in longitudinal studies but should be evaluated under 
different training schemes to ensure validity. Beyond binary segmentation maps, 
the method shows promise in providing information about WML with different 
intermodal information that might aid in the adjudication of causes of lesions, for 
example comparing vascular to demyelinating contributions. Moreover, IMCo 
regression coefficients can be useful features in longitudinal studies for modeling 
prediction of lesion behavior and progression.  
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Tables 
 
Table 1: Frequency of optimal thresholds for MIMoSA and OASIS across 
bootstrap iterations. 

Threshold 24% 25% 26% 27% 28% 29% 30% 31% 32% 
MIMoSA 0 0 1 14 37 30 10 7 1 
OASIS 13 25 30 16 6 0 0 0 0 

 
 
 
 
 
Table 2: Average DSC and pAUC for MIMoSA, OASIS, and LesionTOADS as 
well as confidence intervals for their differences estimated using bootstrapped 
cross-validation. 

 DSC pAUC 
MIMoSA 0.57 0.68 
OASIS 0.54 0.63 

LesionTOADS 0.50 0.65 
MIMoSA - LesionTOADS (95% CI) (0.03,0.10) (-0.01, 0.05) 

MIMoSA - OASIS (95% CI) (0.02,0.04) (0.03,0.06) 

 
 
 
 
 
Table 3: DSC and pAUC values for the MIMoSA models in replication of 
bootstrap cross-validation under exclusion of PD, T2, PD and T2, and training on 
20 subjects.  
 

 DSC pAUC 
No PD 0.56 0.66 
No T2 0.55 0.65 

No PD and T2 0.54 0.64 

Training Set  
20 Subjects 

0.56 0.67 
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Figures 
 
 
 
 
 
 
 
Figure 1: Features for MIMoSA including normalized images as well as an 
example of the FLAIR smoothed volumes and a coupling map for T1 on FLAIR 
IMCo regression. 
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Figure 2: An example of IMCo regression for a single center voxel is shown in A. 
This is not to scale and solely for informational purposes. B shows a random 
sample of IMCo regression slopes and intercepts for full brain IMCo regression to 
emphasize the distinct pattern within lesion. 
 
 
 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 15, 2017. ; https://doi.org/10.1101/150284doi: bioRxiv preprint 

https://doi.org/10.1101/150284


 
 
 
 
 
Figure 3: Probability maps for MIMoSA and OASIS as well as the difference 
(MIMoSA-OASIS) are shown in row 1. Using the thresholding algorithm lesion 
segmentations for respective models are also shown in row 2 along with 
LesionTOADS hard segmentations. LesionTOADS and gold standard manual 
segmentations are also shown. 
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Figure 4: We compare 3D results in order to show globally segmentation 
performance of MIMoSA, OASIS, and LesionTOADS with gold standard manual 
segmentations.
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