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Abstract 
 
Single-cell RNA-seq (scRNA-seq) is widely used to investigate the composition of complex            
tissues1–9 since the technology allows researchers to define cell-types using unsupervised           
clustering of the transcriptome 8,10. However, due to differences in experimental methods and            
computational analyses, it is often challenging to directly compare the cells identified in two              
different experiments. Here, we present scmap, a method (source code available at            
https://github.com/hemberg-lab/scmap and the application can be run from        
http://www.hemberg-lab.cloud/scmap ) for projecting cells from a scRNA-seq experiment on to the           
cell-types identified in a different experiment.  
 

Main text 
 
As more and more scRNA-seq datasets become available, carrying out comparisons between            
them is key. Such comparisons will be of particular importance once there are well-annotated              
references available, e.g. the Human Cell Atlas (HCA)11. One of the key applications will be to                
project cells from a new sample (e.g. from a disease tissue) onto the reference to characterize                
differences in composition or to detect new cell-types. Conceptually, such projections are similar to              
the popular blast12 method, which makes it possible to quickly find the closest match in a database                 
for a newly identified nucleotide or amino acid sequence. 
 
Projecting a new cell, c, onto a reference dataset that has previously been grouped into clusters,                
amounts to identifying which cluster c is most similar to. We represent each cluster by its centroid,                 
i.e. a vector of the median value of the expression of each gene, and we measure the similarity                  
using a suitable distance metric. Instead of using all genes when calculating the similarity, we use                
unsupervised feature selection to include only the genes that are most relevant for the underlying               
biological differences which allows us to overcome batch effects13.  
 
We investigate three different strategies for feature selection: random selection, highly variable            
genes (HVGs)14 and genes with a higher number of dropouts than expected (M3Drop)13. To              
increase speed, we modified the M3Drop method and instead of fitting a Michaelis-Menten model              
to the log expression-dropout relation, we fit a linear model (Methods, Fig. 1a). For the number of                 
features, we used the top 10, 100, 200, 500, 1000, 2000, 5000, or all genes. Similarities were                 
calculated using the cosine, Pearson and Spearman distances. These distances metrics are all             
restricted to the interval [-1, 1], which means that they are insensitive to differences in scale                
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between datasets. To make the assignments more robust, we required that at least two of the                
three similarity measures were in agreement and that the similarity exceeded .7 for at least one of                 
the measures. If these criteria are not met, then the cell is labelled as “unassigned” to indicate that                  
it does not correspond to any cell-type present in the reference. 
 

 
Figure 1. (a ) Dropout-based feature selection (see Methods) for Pollen 15 (SMARTer protocol), Baron 4             
(inDrop 16 protocol) and Macosko 8 (Drop-seq 8 protocol) datasets. Red line represents a linear fit to the               
distribution of the points, red points represent top 500 positive residuals of the fit. (b) Cohen’s κ values of                   
self-projections, corresponding to dropout-based, HVG14 and random feature selections. The plot is based             
on 16 datasets1–9,15–21. For each dataset 70% of all cells are sampled 100 times and the rest 30% of cells are                     
projected to it. 
 
To validate the projections, we considered 16 different datasets1–9,15–21 from mouse and human,             
collected and processed in different ways. We first carried out a self-projection experiment where              
each dataset is mapped onto itself. We used 70% of the cells from the original sample for the                  
reference and the remaining 30% are projected, with clusters as defined by the original authors.               
To quantify the accuracy of the mapping, we use Cohen’s κ22 which is an index that is suitably                  
normalized to account for the sizes of the groups. A value of 1 indicates that the cluster                 
assignment was in complete agreement with the original labels, whereas 0 indicates that the              
assignment is no better than random guessing. We find that the dropout-based method for feature               
selection has the best performance, and somewhat surprisingly we also find that random selection              
is better than HVG (Fig. 1b). We also note that the dropout-based method is robust when the                 
number of features are selected in the range 100 to 1000. As a comparison, we also considered                 
two supervised methods for projecting new samples, a random forests classifier (RF) and a              
support vector machine (SVM). These classifiers were trained on the reference and then used on               
the held out parts as before. For both RF and SVM we find that the performance is slightly better                   
than scmap for all three feature selection methods.  
 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 15, 2017. ; https://doi.org/10.1101/150292doi: bioRxiv preprint 

https://paperpile.com/c/N5desz/oJnp
https://paperpile.com/c/N5desz/Dz1y
https://paperpile.com/c/N5desz/Po7c
https://paperpile.com/c/N5desz/Po7c
https://paperpile.com/c/N5desz/gVmn
https://paperpile.com/c/N5desz/u2vm+3JB5+0P7Y+Dz1y+pHgH+MUI5+blyF+eUMV+YWaz+P1q4+Po7c+VX5C+gVmn+YoRe+b6ex+Etim
https://paperpile.com/c/N5desz/u2vm+3JB5+0P7Y+Dz1y+pHgH+MUI5+blyF+eUMV+YWaz+P1q4+Po7c+VX5C+gVmn+b6ex+Etim+YoRe
https://paperpile.com/c/N5desz/YsaV
https://paperpile.com/c/N5desz/pHgH
https://doi.org/10.1101/150292
http://creativecommons.org/licenses/by-nc/4.0/


As a positive control, we considered seven pairs of datasets (Table S1) that we expect to                
correspond well based on their origin. The results showed that scmap outperforms RF and SVM,               
and that scmap consistently obtains κ>.75 when the number of features used was between 100               
and 1,000 (Fig. 2a). Even though RF performs significantly better than scmap and SVM in this                
range, the higher κ can be explained by the fact that the RFs have a much higher fraction of                   
unassigned cells (Fig. 2b). An important aspect of the positive control experiments is that for 6 of                 
the pairs, one of the datasets was collected using a full-length protocol and the other was collected                 
using a UMI based protocol. Despite the substantial differences between the protocols16,23,24,            
scmap has no problems comparing the datasets. 
 

 
Figure 2. (a ) Cohen’s κ values and (b) percentage of unassigned cells for positive controls. The plots are                  
based on 7 pairs of datasets listed in Table S1 (projections are performed in both directions). Dropout-based                 
feature selection is used everywhere (see Methods). 
 
As a negative control, we projected datasets with an altogether different origin from the reference               
(e.g. mouse retina onto mouse pancreas, Table S2). Reassuringly, we found that the dropout              
based strategy categorized >90% of the cells as unassigned when the number of features used               
was greater than 200 (Fig. 3). Notably, SVM has a much smaller fraction of unassigned cells than                 
RF and scmap. Taken together, comparing the evidence across the self-projection experiments,            
the positive and negative controls, we conclude that scmap with 500 features provides the best               
performance balancing κ and fraction of unassigned cells.  
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Figure 3. Percentage of unassigned cells in negative controls. The plot is based on 10 pairs of datasets                  
listed in Table S2 (projections are performed in both directions). Dropout-based feature selection is used               
everywhere (see Methods). 
 
An important feature of scmap is that it is very fast, using 1,000 features it takes only around                  
twenty seconds to map 40,000 cells, compared to almost thirty minutes using RF or SVM (Fig. 4).                 
Since the complexity scales with the number of clusters in the reference, rather than the number of                 
cells, scmap will be applicable to large scale datasets. Moreover, the run-time can be further               
improved since the centroids and features for each cluster can be pre-computed, and stored in               
memory, even for a very large atlas.  
 

 
Figure 4. CPU run times of scmap, SVM and RF. The x-axis represents a number of cells in the reference                    
dataset. For all methods 1,000 features and 10,000 cells in the projection dataset were used. All methods                 
were run on a MacBook Pro laptop (Mid 2014), OS X Yosemite 10.10.5 with 2.8 GHz Intel Core i7                   
processor, 16 GB 1600 MHz DDR3 of RAM. Points are actual data, solid lines are “loess” fit to the points                    
with span = 1 (see ggplot2 documentation). Dashed lines are manual linear extrapolation of the solid lines. 
 
We have implemented scmap as an R-package and it will be submitted to Bioconductor to               
facilitate incorporation into bioinformatic workflows and the fact that scmap is scater-based 25,            
makes it easy to combine with other computational scRNA-seq methods. Moreover, we have             
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made scmap available via the web, allowing users to either upload their own reference or to use                 
one of the datasets from this paper. For the website, we also provide pre-calculated feature               
selections and centroids for the 16 datasets used in this study to speed up the projections.  
 
One of the main challenges in analyzing scRNA-seq datasets is to provide biological             
interpretations and annotations of the identified clusters. By comparing to existing, previously            
annotated datasets, this part of the analysis will be sped up. Much like blast for nucleotides, scmap                 
will facilitate fast and accurate comparisons of newly found cells to an established reference.              
Moreover, a robust, fast and accurate method for comparing populations identified from different             
experiments will be a crucial component of the HCA and similar efforts to build scRNA-seq               
references as it will facilitate quality control and help ensure consistency across experimental             
samples.  
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Methods 
 
Datasets 
 
All datasets and cell type annotations were downloaded from their public accessions. All datasets              
were converted into scater25 objects. Details of the scater objects creation are available on our               
dataset website (https://hemberg-lab.github.io/scRNA.seq.datasets). In some datasets similar cell        
types were merged, namely: 
 

● In Deng 17 dataset zygote and early2cell were merged into zygote cell type, mid2cell and              
late2cell were merged into 2cell cell type, and earlyblast, midblast and lateblast were             
merged into blast cell type. 

● All bipolar cell types of the Shekhar9 dataset were merged into bipolar cell type. 
● In Yan 19 dataset oocyte and zygote cell types were merged into zygote cell type. 

 
Feature selection 
 
To select informative features we used a method conceptually similar to M3Drop 13 to relate the               
mean expression (E) and the dropout rate (D). Instead of modelling the relation between log(E)               
and D using Michaelis-Menten kinetics, we used a linear model to capture the relationship log(E)               
and log(D). After fitting a linear model using the lm() command in R, important features were                
selected as the top N residuals of the linear model (Fig. 1a). The feature selection is calculated for                  
the reference only, and those genes absent or zero in the projection set are not used. 
 
Reference centroid 
 
Each cell type in the reference dataset is represented by its centroid, i.e. the median value of gene                  
expression across all cells in that cell type. 
 
Projection dataset 
 
Projection of a dataset to a reference dataset is performed by calculating similarities between each               
cell and all centroids of the reference dataset, using only the selected features. Three similarity               
measures are used: Pearson, Spearman and Cosine. The cell is then assigned to the cell type                
which correspond to the highest similarity value. However, scmap requires that at least two              
similarity measures agree with each other, otherwise the cell is marked as “unassigned”.             
Additionally, if the maximum similarity value across all three similarities is below a similarity              
threshold (default is .7), then the cell is also marked as “unassigned”. Positive and negative control                
plots corresponding to Figs. 2 and 3 for different values of the similarity/probability (see SVM and                
RF) threshold (.5, .6, .8 and .9) are shown in Figs. S1-S3 
 
SVM and RF 
 
scmap projection algorithm was benchmarked against support vector machines26 and random           
forests27 classifiers from the R packages e1071 and randomForest. The classifiers were trained on              
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all cells of the reference dataset and a cell type of each cell in the projection dataset was predicted                   
by the classifiers. Additionally, a threshold (default value of .7) was applied on the probabilities of                
assignment: if the probability was less than the threshold the cell was marked as “unassigned”. 
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