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Microbes form complex and dynamic ecosystems that play key roles in the health of the 

animals and plants with which they are associated. Such ecosystems are often 

represented by a directed, signed and weighted ecological network, where nodes 

represent microbial taxa and edges represent ecological interactions. Inferring the 

underlying ecological networks of microbial communities is a necessary step towards 

understanding their assembly rules and predicting their dynamical response to external 

stimuli. However, current methods for inferring such networks require assuming a 

particular population dynamics model, which is typically not known a priori. Moreover, 

those methods require fitting longitudinal abundance data, which is not readily 

available, and often does not contain the variation that is necessary for reliable 

inference. To overcome these limitations, here we develop a new method to map the 

ecological networks of microbial communities using steady-state data. Our method can 

qualitatively infer the inter-taxa interaction types or signs (positive, negative or neutral) 
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without assuming any particular population dynamics model. Additionally, when the 

population dynamics is assumed to follow the classic Generalized Lotka-Volterra model, 

our method can quantitatively infer the inter-taxa interaction strengths and intrinsic 

growth rates. We systematically validate our method using simulated data, and then 

apply it to four experimental datasets of microbial communities. Our method offers a 

novel framework to infer microbial interactions and reconstruct ecological networks, 

and represents a key step towards reliable modeling of complex, real-world microbial 

communities, such as the human gut microbiota.  

 

1. Introduction 

The microbial communities established in animals, plants, soils, oceans, and virtually every 

ecological niche on Earth perform vital functions for maintaining the health of the associated 

ecosystems1-5. Recently, our knowledge of the organismal composition and metabolic 

functions of diverse microbial communities has markedly increased, due to advances in DNA 

sequencing and metagenomics6.  However, our understanding of the underlying ecological 

networks of these diverse microbial communities lagged behind7. Mapping the structure of 

those ecological networks and developing ecosystem-wide dynamic models will be important 

for a variety of applications8, from predicting the outcome of community alterations and the 

effects of perturbations9, to the engineering of complex microbial communities7,10. We 

emphasize that the ecological network discussed here is a directed, signed and weighted 

graph, where nodes represent microbial taxa and edges represent direct ecological 

interactions (e.g., parasitism, commensalism, mutualism, amensalism or competition) 

between different taxa. This is fundamentally different from the correlation-based association 

or co-occurrence network7,11,12,13, which is undirected and does not encode any causal 

relations or direct ecological interactions, and hence cannot be used to faithfully predict the 

dynamic behaviour of microbial communities.   
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To date, existing methods for inferring the ecological networks of microbial 

communities are based on temporal abundance data, i.e., the abundance time series of each 

taxon in the microbial community14-19. The success of those methods has been impaired by at 

least one of the following two fundamental limitations. First, those inference methods 

typically require the a priori choice of a parameterized population dynamics model for the 

microbial community. These choices are hard to justify, given that microbial taxa in the 

microbial community interact via a multitude of different mechanisms7,20,21,22, producing 

complex dynamics even at the scale of two taxa23,24. Any deviation of the chosen model from 

the “true” model of the microbial community can lead to systematic inference errors, 

regardless of the inference method that is used19. Second, a successful temporal-data based 

inference requires sufficiently informative time-series data19,25. For many host-associated 

microbial communities, such as the human gut microbiota, the available temporal data are 

often poorly informative. This is due to the fact that such microbial communities often 

display stability and resilience26,27, which leads to measurements containing largely their 

steady-state behavior. For microbial communities such as the human gut microbiota, trying to 

improve the informativeness of temporal data is challenging and even ethically questionable, 

as it requires applying drastic and frequent perturbations to the microbial community, with 

unknown effects on the host.  

To circumvent the above fundamental limitations of inference methods based on 

temporal data, here we developed a new method based on steady-state data, which does not 

require any external perturbations. The basic idea is as follows. Briefly, if we assume that the 

net ecological impact of species on each other is context-independent, then comparing 

equilibria (i.e., steady-state samples) consisting of different subsets of species would allow us 

to infer the interaction types. For example, if one steady-state sample differs from another 

only by addition of one species X, and adding X brings down the absolute abundance of Y, 

then we can conclude X inhibits the growth of Y. This very simple idea can actually be 

extended to more complicated cases where steady-state samples differ from each other by 

more than one species. Indeed, we rigorously proved that, if we collect enough independent 
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steady states of the microbial community, it is possible to infer the microbial interaction types 

(positive, negative and neutral interactions) and the structure of the ecological network, 

without requiring any population dynamics model. We further derived a rigorous criterion to 

check if the steady-state data from a microbial community is consistent with the Generalized 

Lotka-Volterra (GLV) model15-19, a classic population dynamics model for microbial 

communities in human bodies, soils and lakes. We finally proved that, if the microbial 

community follows the GLV dynamics, then the steady-state data can be used to accurately 

infer the model parameters, i.e., inter-taxa interaction strengths and intrinsic growth rates. We 

validated our inference method using simulated data generated from various classic 

population dynamics models. Then we applied it to real data collected from four different 

microbial communities. 

 

2. Results  

Microbes do not exist in isolation but form complex ecological networks7. The ecological 

network of a microbial community is encoded in its population dynamics, which can be 

described by a set of ordinary differential equations (ODEs): 

!d#$ % /d% = #$ % !($ )(%) ,!!!!!- = 1,… ,0.!                                  (1) 

Here, ($()(%)) ’s are some unspecified functions whose functional forms determine the 

structure of the underlying ecological network; )(%) = #2(%), … , #3(%)
4 ∈ ℝ3  is an 0 -

dimensional vector with #$ %  denoting the absolute abundance of the --th taxon at time %. In 

this work, we don’t require ‘taxon’ to have a particular taxonomic ranking, as long as the 

resulting abundance profiles are distinct enough across all the collected samples. Indeed, we 

can group microbes by species, genus, family or just operational taxonomic units (OTUs).  

Note that in the right-hand side of Eq. (1) we explicitly factor out #$ to emphasize that 

(i) without external perturbations those initially absent or later extinct taxa will never be 

present in the microbial community again as time goes by, which is a natural feature of 
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population dynamics (in the absence of taxon invasion or migration); (ii) there is a trivial 

steady state where all taxa are absent; (iii) there are many non-trivial steady states with 

different taxa collections. We assume that the steady-state samples collected in a dataset 7 

correspond to those non-trivial steady states )∗ of Eq. (1), which satisfy #$∗($ #2∗, … , #3∗ = 0, 

- = 1,… ,0 . For many host-associated microbial communities, e.g., the human gut 

microbiota, those cross-sectional samples collected from different individuals contain quite 

different collections of taxa (up to the taxonomic level of phylum binned from OTUs)26. We 

will show later that the number of independent steady-state samples is crucial for inferring 

the ecological network.  

Mathematically, the intra- and inter-taxa ecological interactions (i.e., promotion, 

inhibition, or neutral) are encoded by the Jacobian matrix : )(%) ∈ ℝ3×3  with matrix 

elements :$<()(%)) ≡ >($()(%))/>#< . The condition :$<()(%)) > 0!(< 0 or = 0) means that 

taxon A promotes (inhibits or doesn’t affect) the growth of taxon -, respectively. The diagonal 

terms :$$()(%))  represent intra-taxa interactions. Note that :$<()(%))  might depend on the 

abundance of many other taxa beyond -  and A  (due to the so-called “higher-order” 

interactions24,28-32). 

The structure of the ecological network is represented by the zero-pattern of : )(%) . 

Under a very mild assumption that :$< )
B + D )E − )B dD = 0

2

G
 holds if and only if :$< ≡

0 (where )H and )I  are two steady-state samples sharing taxon -), we find that the steady-

state samples can be used to infer the zero-pattern of : )(%) , i.e., the structure of the 

ecological network (see Supplementary Note 1.3 and 3 for details). Note that the network 

structure is interesting by itself and can be very useful in control theoretical analysis of 

microbial communities33. But in many cases, we are more interested in inferring the 

interaction types or strengths so that we can better predict the community’s response to 

perturbations.  

The ecological interaction types are encoded in the sign-pattern of : )(%) , denoted as 

sign :()(%)) . To infer the interaction types, i.e., sign :()(%)) , we make an explicit 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 26, 2017. ; https://doi.org/10.1101/150649doi: bioRxiv preprint 

https://doi.org/10.1101/150649


6 

 

assumption that sign :()(%)) = const across all the observed steady-state samples. In other 

words, the nature of the ecological interactions between any two taxa does not vary across all 

the observed steady-state samples, though their interaction strengths might change. Note that 

the magnitude of :$<()(%)) by definition may vary over different states, we just assume its 

sign remains invariant across all the observed samples/states. This assumption might be 

violated if those steady-state samples were collected from the microbial community under 

drastically different environmental conditions (e.g., nutrient availability34). In that case, 

inferring the interaction types becomes an ill-defined problem, since we have a “moving 

target” and different subsets of steady-state samples may offer totally different answers. 

Notably, as we will show later, the assumption is valid for many classic population dynamics 

models 35-39. 

The assumption that sign :()(%)) = const can be falsified by analyzing steady-state 

samples. In Proposition 1 of Supplementary Note 1.4, we rigorously proved that if 

sign :()(%)) = const, then true multi-stability doesn’t exist. Equivalently, if a microbial 

community displays true multi-stability, then sign :()(%)) ≠ const. Here, a community of 

0 taxa displays true multi-stability if there exists a subset of R (≤ 0) taxa that has multiple 

different steady states, where all the R taxa have positive abundances and the other (0 −R) 

taxa are absent. In practice, we can detect the presence of true multi-stability by examining 

the collected steady-state samples. If yes, then we know immediately that our assumption that 

sign :()(%)) = const is invalid and we should only infer the zero-pattern of : , i.e., the 

structure of the ecological network. If no, then at least our assumption is consistent with the 

collected steady-state samples, and we can use our method to infer sign :()(%)) , i.e., the 

ecological interaction types. In short, by introducing a criterion to falsify our assumption, we 

significantly enhance the applicability of our method (see Supplementary Note 1.4 and 

Remark 6 for more detailed discussions). 

Inferring interaction types. The assumption that sign :()(%)) = const  enables us to 

mathematically prove that sign :()(%))  satisfies a strong constraint (Theorem 2 in 

Supplementary Note 1.4). By collecting enough independent steady-state samples, we can 
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solve for the sign-pattern of : )  and hence map the structure of the ecological network 

(Remarks 4 and 5 in Supplementary Note 1.4). 

The basic idea is as follows. Let ℐ$ be the set of all steady-state samples sharing taxon 

-. Then, for any two of those samples )H and )I, where the superscripts U, V! ∈ ℐ$ denote the 

collections of present taxa in those samples, we can prove that the sign-pattern of the --th row 

of Jacobian matrix, denoted as a ternary vector W$ ∈ {−, 0, +}3, is orthogonal to ()H − )I) 

(Eq. (S3) in Supplementary Note 1.1). In other words, we can always find a real-valued 

vector Z ∈ ℝ3, which has the same sign-pattern as W$ and satisfies Z4 ∙ )H − )I = 0. If we 

compute the sign-patterns of all vectors orthogonal to )H − )I  for all U, V! ∈ ℐ$ , then W$ 

must belong to the intersections of those sign-patterns, denoted as \$. In fact, as long as the 

number!Ω of steady-state samples in 7  is above certain threshold Ω∗ , then \$  will contain 

only three sign-patterns {−^, _, ^} (Remark 5 in Supplementary Note 1.4). To decide which 

of these three remaining sign-patterns is the true one, we just need to know the sign of only 

one non-zero interaction. If such prior knowledge is unavailable, one can at least make a 

reasonable assumption that `$$ = ‘−’, i.e., the intra-taxa interaction :$$ is negative (which is 

often required for community stability). When \$  has more than three sign-patterns, we 

proved that the steady-state data is not informative enough in the sense that all sign-patterns 

in \$ are consistent with the data available in 7 (Remark 5 in Supplementary Note 1.4). This 

situation is not a limitation of any inference algorithm but of the data itself. To uniquely 

determine the sign-pattern in such a situation, one has to either collect more samples (thus 

increasing the informativeness of 7) or use a priori knowledge of non-zero interactions. 

We illustrate the application of the above method to small microbial communities 

with unspecified population dynamics (Fig. 1). For the two-taxa community (Fig. 1a), there 

are three possible types of equilibria, i.e., {){2}, ){a}, ){2,a}}, depicted as colored pie charts in 

Fig. 1b. In order to infer W2 = (sign(:22), sign(:2a)), we compute a straight line (shown in 

green in Fig. 1b) that is orthogonal to the vector () 2,a − ){2}) and passes through the origin. 

The regions (including the origin and two quadrants) crossed by this green line provide the 

set of possible sign-patterns \2 = ! { −,+ , 0, 0 , +,− } that W2  may belong to. A priori 
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knowing that :22 < 0, our method correctly concludes that W2 = ! (−,+). Note that :2a > 0 is 

consistent with the observation that with the presence of taxon 2, the steady-state abundance 

of taxon 1 increases (Fig. 1b), i.e., taxon 2 promotes the growth of taxon 1. We can apply the 

same method to infer the sign-pattern of Wa = ! (−,−).  

For the three-taxa community (Fig. 1c), there are seven possible types of equilibria, 

i.e., {) 2 , ){a}, ) b , ) 2,a , ) 2,b , ) a,b , ){2,a,b}}. Four of them share taxon 1 (see colored pie 

charts in Fig. 1d). Six line segments connect the c
a = 6 sample pairs, and represent vectors 

of the form )H − )I , U, V ∈ ℐ2={{1},{1,2},{1,3},{1,2,3}}. Considering a particular line 

segment () 2,b − ) 2 ), i.e., the solid blue line in Fig. 1d, we compute a plane (shown in 

orange in Fig. 1d) that is orthogonal to it and passes through the origin. The regions 

(including the origin and eight orthants) crossed by this orange plane provide a set of possible 

sign-patterns that W2 may belong to (see Fig. 1d). We repeat the same procedure for all other 

vectors ()H − )I), U, V! ∈ ℐ2, and compute the intersection of all the possible sign-patterns, 

finally yielding the minimum set \2 = ! { −,0, + , 0,0,0 , +,0, − } to which W2 may belong 

to. If the sign of one non-zero interaction is known (:22 < 0 for this example), our method 

correctly infers the true sign-pattern !W2 = −,0, + . Repeating this process for samples 

sharing taxon 2 (or 3) will enable us to infer the sign-pattern Wa (or Wb), respectively.  

It is straightforward to generalize the above method to a microbial community of 0 

taxa (see Supplementary Note 2.1 for details). But this brute-force method requires us to 

calculate all the sign-pattern candidates first, and then calculate their intersection to 

determine the minimum set \$ that W$ will belong to. Since the solution space of sign-patterns 

is of size 33, the time complexity of this brute force method is exponential with 0, making it 

impractical for a microbial community with 0 > 10  taxa (Supplementary Note 2.2). To 

resolve this issue, we developed a heuristic algorithm that pre-calculates many intersection 

lines of 0 − 1  non-parallel hyperplanes that pass through the origin and are orthogonal to 

)H − )I , U, V ∈ ℐ$ . Based on these pre-calculated intersection lines, the algorithm 

determines \$ using the most probable intersection line. The solution space of this heuristic 

algorithm is determined by the user-defined number of pre-calculated interaction lines 
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(denoted as Ψ). Hence this algorithm naturally avoids searching the exponentially large 

solution space (see Supplementary Note 2.3 for details). Later on, we will show that this 

heuristic algorithm can indeed infer the interaction types with high accuracy.  

In reality, due to measurement noise and/or transient behavior of the microbial 

community, the abundance profiles of the collected samples may not exactly represent steady 

states of the microbial community. Hence for certain :$< ’s their inferred signs might be 

wrong. Using simulated data, we will show later that for considerable noise level the 

inference accuracy is still reasonably high.  

Inferring interaction strengths. To quantitatively infer the inter-taxa interaction strengths, it 

is necessary to choose a priori a parameterized dynamic model for the microbial community. 

The classical GLV model can be obtained from Eq. (1) by choosing 

($ # = ! g$<#< + h$
3
<i2 ,!!!-! = !1, … , 0,                                      (2) 

where h = h2, … , h3
4 ∈ ℝ3 is the intrinsic growth rate vector and j = g$< ∈ ℝ3×3 is the 

interaction matrix characterizing the intra- and inter-taxa interactions.  

From Eq. (2) we can easily calculate the Jacobian matrix :, which is nothing but the 

interaction matrix j  itself. This also reflects the fact that the value of g$<  quantifies the 

interaction strength of taxon A  on taxon - . The GLV model considerably simplifies the 

inference of the ecological network, because we can prove that ^$ ⋅ )H − )I = 0, for all 

U, V ∈ ℐ$, where ^$ ≡ g$2, … , g$3  represents the --th row of j matrix (Supplementary Note 

5.2). In other words, all steady-state samples containing the --th taxon will align exactly onto 

a hyperplane, whose orthogonal vector is parallel to the vector ^$ that we aim to infer (Fig. 

2a, Theorem 3 of Supplementary Note 5.1). Thus, for the GLV model, the inference from 

steady-state data reduces to finding an (0 − 1)-dimensional hyperplane that “best fits” the 

steady-state sample points {)H|U ∈ ℐ$} in the 0-dimensional state space. In order to exactly 

infer ^$, it is necessary to know the value of at least one non-zero element in ^$, say, g$$. 

Otherwise, we can just determine the relative interaction strengths by expressing g$< in terms 
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of g$$. Once we obtain ^$, the intrinsic growth rate h$ of the i-th taxon can be calculated by 

averaging (−^$ ∙ )H) over all U ∈ ℐm, i.e., all the steady-state samples containing taxon i. 

In case the samples are not collected exactly at steady states of the microbial 

community or there is noise in abundance measurements, those samples containing taxon - 

will not exactly align onto a hyperplane. A naive solution is to find a hyperplane that 

minimizes its distance to those noisy samples. But this solution is prone to induce false 

positive errors and will yield non-sparse solutions (corresponding to very dense ecological 

networks). This issue can be partly alleviated by introducing a Lasso regularization40, 

implicitly assuming that the interaction matrix j in the GLV model is sparse. However, the 

classical Lasso regularization may induce a high false discovery rate (FDR), meaning that 

many zero interactions are inferred as non-zeros ones. To overcome this drawback, we 

applied the Knockoff filter41 procedure, allowing us to control the FDR below a desired user-

defined level n > 0 (see Supplementary Note 5.3 for details). 

The observation that for the GLV model all noiseless steady-state samples containing 

the --th taxon align exactly onto a hyperplane can also be used to characterize how much the 

dynamics of the --th taxon in a real microbial community deviates from the GLV model. This 

deviation can be quantified by the coefficient of determination (denoted by oa ) of the 

multiple linear regression when fitting the hyperplane using the steady-state samples (Fig. 

2b). If oa  is close to 1 (the samples indeed align to a hyperplane), we conclude that the 

dynamics of the microbial community is consistent with the GLV model, and hence the 

inferred interaction strengths and intrinsic growth rates are reasonable. Otherwise, we should 

only aim to qualitatively infer the ecological interaction types that do not require specifying 

any population dynamics.  

Validation on simulated data.  

Interaction types. To validate the efficacy of our method in inferring ecological interaction 

types, we numerically calculated the steady states of a small microbial community with 0 =

8  taxa, using four different population dynamics models35-39: Generalized Lotka-Volterra 
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(GLV), Holling Type II (Holling II), DeAngelis-Beddington (DB) and Crowley-Martin (CM) 

models (see Supplementary Note 4 for details). Note that all these models satisfy the 

requirement that the sign-pattern of the Jacobian matrix is time-invariant. To infer the 

ecological interaction types among the 8 taxa, we employed both the brute-force algorithm 

(with solution space ~ 3q = 6,561) and the heuristic algorithm (with solution space given by 

the number of the pre-calculated intersections chosen as Ψ = 50 = 40).  

In the noiseless case, we find that when the number of steady-state samples satisfies 

Ω > 30 , the heuristic algorithm outperformed the brute-force algorithm for datasets 

generated from all the four different population dynamics models (Fig. 3a). This result is 

partly due to the fact that the former requires much fewer samples than the latter to reach 

high accuracy (the percentage of correctly inferred interaction types). However, when the 

sample size Ω is small (< 30), the heuristic algorithm completely fails while the brute-force 

algorithm still works to some extent.  

We then fix Ω = 50, and compare the performance of the brute-force and heuristic 

algorithms in the presence of noise (Fig. 3b). We add artificial noise to each non-zero entry 

#$
H  of a steady-state sample )H  by replacing #$H  with #$H + tu , where u~w[−#$H, #$H]  is a 

random number uniformly distributed in the interval [−#$H, #$H] and t ≥ 0 quantifies the noise 

level. We again find that the heuristic algorithm works better than the brute-force algorithm 

for datasets generated from all the four different population dynamics models.  

The above encouraging results on the heuristic algorithm prompt us to systematically 

study the key factor to obtain an accurate inference, i.e., the minimal sample size Ω∗ (Fig. 3c, 

d). Note that for a microbial community of 0 taxa, if we assume that for any subset of the 0 

taxa there is only one stable steady state such that all the corresponding taxa have non-zero 

abundance, then there are at most Ω{|} = (23 − 1) possible steady-state samples (Of course, 

not all of them will be ecologically feasible. For example, certain pair of taxa will never 

coexist.) In general, it is unnecessary to collect all possible steady-state samples to obtain a 

highly accurate inference result. Instead, we can rely on a subset of them. To demonstrate 
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this, we numerically calculated the minimal sample size Ω∗  we need to achieve a highly 

accurate inference of interaction types. We considered two different taxa presence patterns: 

(1) uniform: all taxa have equal probability of being present in the steady-state samples (inset 

of Fig. 3c); and (2) heterogeneous: a few taxa have higher presence probability than others, 

reminiscent of human gut microbiome samples26 (inset of Fig. 3d). We found that for the 

steady-state data generated from all the four population dynamics models, Ω∗ always scales 

linearly with 0 in both taxa presence patterns, and the uniform taxa presence pattern requires 

much fewer samples (Fig. 3c,d). 

Note that as 0  grows, the total possible steady-state samples Ω{|} increases 

exponentially, while the minimal sample size Ω∗  we need for high inference accuracy 

increase linearly. Hence, interestingly, we have Ω∗/Ω{|} → 0 as 0 increases. This suggests 

that as the number of taxa increases, the proportion of samples needed for accurate inference 

actually decreases. This is a rather counter-intuitive result because, instead of a “curse of 

dimensionality”, it suggests that a “blessing of dimensionality” exists when using the 

heuristic algorithm to infer interaction types for microbial communities with a large number 

of taxa.  

Interaction strengths. To validate our method in quantitatively inferring inter-taxa 

interaction strengths, we numerically calculated steady states for a microbial community of 

0 = 50 taxa, using the GLV model with g$$ = −1 for all taxa.  

In the noiseless case, if during the inference we know exactly g$$ = −1 for all taxa, 

then we can perfectly infer the inter-taxa interaction strengths g$<’s and the intrinsic growth 

rates h$’s (see Fig. 4a). To study the minimal sample size Ω∗ required for perfect inference in 

the noiseless case, we again consider two different taxa presence patterns: (1) uniform; (2) 

heterogeneous. We find that for both taxa presence patterns Ω∗ scales linearly with 0, though 

the uniform taxa presence pattern requires much fewer samples (Fig. 4b). 

In the presence of noise, and if we don’t know the exact values of g$$ ’s, but just 

assume they follow a half-normal distribution −|Ä(−1, 0.1a)|, we can still infer g$<’s and 
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h$’s with reasonable accuracy (with the normalized root-mean-square error NRMSE < 0.08), 

for noise level t < 0.3  (Fig. 4c-f). However, we point out that the classical Lasso 

regularization could induce many false positive, and the false discovery rate (FDR) reaches 

0.448 at noise level t = 0.1, indicating that almost half of inferred non-zero interactions are 

actually zero (Fig. 4c). Indeed, even with a noise level t = 0.04, the classical Lasso already 

yields FDR~0.45, staying there for higher t (Fig. 4d). 

In many cases, we are more concerned about low FDR than high false negative rates, 

because the topology of an inferred ecological network with even many missing links can still 

be very useful in the study of its dynamical and control properties42. To control FDR below a 

certain desired level n = 0.2, we applied the Knockoff filter41 (Fig. 4e), finding that though it 

will introduce more false negatives (see the horizontal bar in Fig. 4e), it can control the FDR 

below 0.2 for a wide range of noise level (Fig. 4f).  

We also found that applying this GLV inference method to samples obtained from a 

microbial community with non-GLV dynamics leads to significant inference errors even in 

the absence of noise (Supplementary Fig. 9). 

Application to experimental data.  

A synthetic soil microbial community of eight bacterial species43. This dataset consists of 

steady states of a total of 101 different species combinations: all 8 solos, 28 duos, 56 trios, all 

8 septets, and 1 octet (see Supplementary Note 6.1 for details). For those steady-state samples 

that started from the same species collection but with different initial conditions, we average 

over their final steady states to get a representative steady state for this particular species 

combination.  

In the experiments, it was found that several species grew to a higher density in the 

presence of an additional species than in monoculture. The impact of each additional species 

(competitor) A  on each focal species -  can be quantified by the so-called relative yield, 

defined as: o$< = !
ÅÇ
{Ç,É}

ÑÅÇ
{Ç}

ÅÇ
{Ç,É}

!ÖÅÇ
{Ç}!, which represents a proxy of the ground truth of the interaction 
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strength that species A impacts species - . A negative relative yield indicates growth hindrance 

of species A on -, whereas positive values indicated facilitation (Fig. 5a). Though quantifying 

the relative yield is conceptually easy and implementable for certain small microbial 

communities (see Supplementary Note 7 for details), for many host-associated microbial 

communities with many taxa, such as the human gut microbiota, measuring these one- and 

two-species samples is simply impossible. This actually motivates the inference method we 

developed here.   

Before we apply our inference method, to be fair we remove all those steady states 

involving one- or two species, and analyse only the remaining 65 steady states. (Note that for 

0 = 8, the number of total possible steady states is Ω{|} = 255. Hence we only use roughly 

one quarter of the total possible steady states.) During the inference, we first check if the 

population dynamics of this microbial community can be well described by the GLV model. 

We find that all the fitted hyperplanes show small oa, indicating that the GLV model is not 

appropriate to describe the dynamics of this microbial community (Supplementary Fig. 

S10b). Hence, we have to aim for inferring the ecological interaction types, without assuming 

any specific population dynamics model.  

Since this microbial community has only eight species, we can use the brute-force 

algorithm to infer the sign-pattern of the 8×8 Jacobian matrix, i.e., the ecological interaction 

types between the 8 species (The results of using a heuristic algorithm are similar and 

described in the Supplementary Fig. 10c). Compared with the ground truth obtained from the 

relative yield (Fig. 5a), we find that 50 (78.13%) of the 64 signs were correctly inferred, 10 

(15.62%) signs were falsely inferred (denoted as ‘× ’), and 4 (6.25%) signs cannot be 

determined (denoted as ‘?’) with the information provided by the 65 steady states (Fig. 5b).  

We notice that the relative yield of many falsely inferred interactions is weak (with 

the exception of oÜ|,áàâ and oÜ|,áä). We conjecture that these errors are caused by noise or 

measurement errors in the experiments. To test this conjecture, we analyzed the robustness of 

each inferred `$< by calculating the percentage of unchanged `$< after adding perturbations to 
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the samples (Fig. 5c). Similar to adding noise to simulated steady-state data, here we add 

noise to each non-zero entry #$H of a sample )H such that #$H → #$
H + tu, where u~w[−#$H, #$H]. 

The more robust the inferred results are, the higher the percentage of unchanged signs as t is 

increased. We found that most of the inferred signs were robust: the percentage of unchanged 

signs remained nearly 80% up to noise level t = 0.3 (Fig. 5c). Specifically, Fig. 5d plots the 

percentage of unchanged signs of the inferred Jacobian matrix when t = 0.04. We found that 

even if the perturbation is very small, 5 of the 10 falsely inferred `$< in Fig. 5b changed their 

signs very frequently (blue entries with label ‘× ’ in Fig. 5d). In other words, those 

interactions were very sensitive to noise, suggesting that some falsely inferred signs in Fig. 

5b were largely caused by the noise.  

A synthetic bacterial community of maize roots44. There are 7 bacterial species (Ecl, Sma, 

Cpu, Opi, Ppu, Hfr and Cin) in this community. This dataset consists of in total 8 steady-state 

samples: 7 sextets and 1 septet. We verified that this community cannot be described by the 

GLV dynamics (Supplementary Fig. 11). 

Using only the 7 sextets (i.e., 7 steady-state samples involving 6 of the 7 species), we 

inferred the sign-pattern of the Jacobian matrix (Fig. 6a). Based on the sign of :$<, we can 

predict how the abundance of species-- in a microbial community will change, when we add 

species-A to the community. For example, if we add Ecl to a community consisting of the 

other 6 species (i.e., Sma, Cpu, Opi, Ppu, Hfr and Cin), we predict that the abundance of 

Sma, Opi, Ppu, Hfr and Cin will increase, while the abundance of Cpu will decrease (first 

column of Fig. 6b). Note that our prediction only considers the direct ecological interactions 

between species and ignores the indirect impact among species. Indeed, Ecl promotes Opi, 

but Ecl also promotes Hfr that inhibits Opi. Hence the net effect of Ecl on Opi is hard to tell 

without knowing the interaction strengths. Nevertheless, we found that our prediction is 

consistent with experimental observation (Fig. 6b, first column). 

We then systematically compared our predictions of species abundance changes with 

experimental observations. There are in total 7 sextets, corresponding to the 7 columns in Fig. 
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6b. We add the corresponding missing species back to the community, and check the 

abundance changes of the existing 6 species. There are in total 6×7 = 42  abundance 

changes. We found that our inferred sign-pattern of the Jacobian matrix (Fig. 6a) can 

correctly predict 30 of the 42 abundance changes (accuracy ~71.43%). Moreover, for those 

false predictions, the detailed values of the abundance changes are actually relatively small 

(comparing to those of correct predictions). Note that we only used 7 steady-samples to infer 

the interaction types. If we have more steady-state samples available, we assume the 

prediction accuracy of our method can be further improved.  

In the Supplementary Notes 6.3, 6.4, we also demonstrated the application of our 

method to two additional datasets. 

 

3. Discussion 

In this work, we developed a new inference method to map the ecological networks of 

microbial communities using steady-state data. Our method can qualitatively infer ecological 

interaction types (signs) without specifying any population dynamics model. Furthermore, we 

show that steady-state data can be used to test if the dynamics of a microbial community can 

be well described by the classic GLV model. When GLV is found to be adequate, our method 

can quantitatively infer inter-taxa interaction strengths and the intrinsic growth rates.  

The proposed method bears some resemblance to previous network reconstruction 

methods based on steady-state data45. But we emphasize that, unlike the previous methods, 

our method does not require any perturbations applied to the system nor sufficiently close 

steady states. For certain microbial communities such as the human gut microbiota, applying 

perturbations may raise severe ethical and logistical concerns. 

Note that our method requires the measurement of steady-state samples and absolute 

taxon abundances. For systems that are in frequent flux, where steady-state samples are hard 

to collect, our method is not applicable. Moreover, it fails on analyzing the relative 
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abundance data (see Supplementary Note 2.4 for details). Note that the compositionality of 

relative abundance profiles also represents a major challenge for inference methods based on 

temporal data15,19. Fortunately, for certain small laboratory-based microbial communities, we 

can measure the absolute taxon abundances in a variety of ways, e.g., selective plating46, 

quantitative polymerase chain reaction (qPCR)15,16,47,48, flow cytometry49, and fluorescence in 

situ hybridization (FISH)50. For example, in the study of a synthetic soil microbial 

community of eight bacterial species43, the total cell density was assessed by measuring the 

optical density and species fractions (relative abundance) were determined by plating on 

nutrient agar plates. In recent experiments evaluating the dynamics of Clostridium difficile 

infection in mice models15,16, two sources of information were combined to measure absolute 

abundances: (1) data measuring relative abundances of microbes, typically consisting of 

counts (e.g., high-throughput 16S rRNA sequencing data); and (2) data measuring overall 

microbial biomass in the sample (e.g., universal 16S rRNA qPCR). 

 In contrast to the difficulties encountered in attempts to enhance the informativeness 

of temporal data that are often used to infer ecological networks of microbial communities, 

the informativeness of independent steady-state data can be enhanced by simply collecting 

more steady-state samples with distinct taxa collection (For host-associated microbial 

communities, this can be achieved by collecting steady-state samples from different hosts). 

Our numerical analysis suggests that the minimal number of samples with distinct taxa 

collections required for robust inference scales linearly with the taxon richness of the 

microbial community. Our analysis of experimental data from a small synthetic microbial 

community of eight species shows that collecting roughly one quarter of the total possible 

samples is enough to obtain a reasonably accurate inference. Furthermore, our numerical 

results suggest that this proportion can be significantly lower for larger microbial 

communities.  

This blessing of dimensionality suggests that our method holds great promise for 

inferring the ecological networks of large and complex microbial communities, such as the 

human gut microbiota. There are two more encouraging facts that support this idea. First of 
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all, it has been shown that the composition of the human gut microbiome remains stable for 

months and possibly even years until a major perturbation occurs through either antibiotic 

administration or drastic dietary changes51-54. The striking stability and resilience of human 

gut microbiota suggest that the collected samples very likely represent the steady states of the 

gut microbial ecosystem. Second, for healthy adults the gut microbiota displays remarkable 

universal ecological dynamics55 across different individuals. This universality of ecological 

dynamics suggests that microbial abundance profiles of steady-state samples collected from 

different healthy individuals can be roughly considered as steady states of a conserved 

“universal gut dynamical” ecosystem and hence can be used to infer its underlying ecological 

network. Despite the encouraging facts, we emphasize that there are still many challenges in 

applying our method to infer the ecological network of the human gut microbiota. For 

example, the assumption of invariant ecological interaction types (i.e., promotion, inhibition, 

or neutral) between any two taxa needs to be carefully verified. Moreover, our method 

requires the measurement of absolute abundances of taxa.   

We expect that additional insights into microbial ecosystems will emerge from a 

comprehensive understanding of their ecological networks. Indeed, inferring ecological 

networks using the method developed here will enable enhanced investigation of the 

stability56 and assembly rules57 of microbial communities as well as facilitate the design of 

personalized microbe-based cocktails to treat diseases related to microbial dysbiosis9,10.  
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Figure 1 | Inferring ecological interaction types for a small microbial community. The interaction types are 
coded as the sign-pattern of the Jacobian matrix. a. For a microbial community of 2 taxa, its ecological network 
and the sign-pattern of the corresponding Jacobian matrix are shown here. b. There are three possible steady-
state samples (shown as colored pie charts), and two of them ){2,a}, !) 2  share taxon 1. We can calculate the 
green line that passes through the origin and is perpendicular to the vector () 2,a − ) 2 ) (shown as a blue line 
segment). This green line crosses the origin, and two other orthants (shown in light cyan and green), offering a 
set of possible sign-patterns: 0, 0 , (−, −) and (+, −), for which W2 = (sign :22 , sign(:2a)) may belong to. 
Provided that :22 < 0, we conclude that W2 = (−,+). c. For a microbial community of 3 taxa, its ecological 
network and the sign-pattern of the corresponding Jacobian matrix are shown here. d. There are seven possible 
steady-state samples, and we plot four of them that share taxon 1. Consider a line segment (){2,b} − ){2}) (solid 
blue). We calculate the orange plane that passes through the origin and is perpendicular to this solid blue line. 
This orange plane crosses 9 regions: the origin and the other 8 regions (denoted in different color cubes, color 
lines), offering 9 possible sign-patterns for W2. We can consider another line segment that connects two steady-
state samples sharing taxon 1, say, ){2,b} and ){2,a,b}, and repeat the above procedure. We do this for all the 
sample pairs (dashed blue lines), record the regions crossed by the corresponding orthogonal planes. Finally, the 
intersection of the regions crossed by all those orthogonal hyperplanes yields a minimum set of sign-patterns 
\2 = ! { −,0, + , 0,0,0 , +,0, − }  that W2  may belong to. If we know that :22 < 0 , then we can uniquely 
determine W2 = (−,0, +). 
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Figure 2 | Consistency check of the GLV model and the observed steady-state samples. For a microbial 
community following exactly the GLV dynamics, all its steady-state samples sharing one common taxon will 
align onto a hyperplane in the state space. a. Here we consider a microbial community of three taxa. There are 
four steady-state samples {){2}, ){2,a}, ){2,b}, ){2,a,b} } that share common taxon 1. Those four steady-state 
samples represent four points in the state space, and they align onto a plane (light red).  The normal vector of 
this plane is parallel to the first row ^2 of the interaction matrix j in the GLV model. Given any one of non-zero 
entries in ^2, we can determine the exact values of all other entries. Otherwise, we can always express the inter-
taxa interaction strengths g$< (A ≠ -) as a function of the intra-taxa interaction strength g$$. b. Here we again 
consider a microbial community of three taxa. Taxon-1 and taxon-2 follow the GLV dynamics, but taxon-3 
doesn’t. Then those steady-state samples that share common taxon-3 will not align onto a plane anymore. Here 
we show the best fitted plane (in green) by minimizing the distance between this plane and the four steady states, 
with the coefficient of determination oa = 0.77. 
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Figure 3 | Validation of our method in inferring interaction types using simulated data. a-b: Consider a 
small microbial community of 0 = 8 taxa. We generate steady-state samples using four different population 
dynamics models: Generalized Lotka-Volterra (GLV), Holling Type II (Holling II), DeAngelis-Beddington (DB) 
and Crowley-Martin (CM). We compare the performance of the brute-force algorithm (with solution space ~ 
3q = 6,561) and the heuristic algorithm (with solution space ~ Ψ = 50 = 40). a. In the noiseless case, we plot 
the inference accuracy (defined as the percentage of correctly inferred signs in the Jacobian matrix) as a function 
of sample size Ω. b. In the presence of noise, we plot the inference accuracy as a function of the noise level t. 
Here the sample size is fixed: Ω = 50 = 40 . The error bar represents standard deviation for 10 different 
realizations. c-d. We calculate the minimal sample size Ω∗ required for the heuristic algorithm to achieve high 
accuracy (100% for GLV, 95% for Holling II, DB and CM) at different system sizes. We consider two different 
taxa presence patterns: uniform and heterogeneous (see insets). Here the simulated data is generated in the 
noiseless case and we chose Ψ = 100. a-d: The underlying ecological network is generated from a directed 
random graph model with connectivity 0.4 (i.e., with probability 0.4 there will be a directed edge between any 
two taxa).  
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Figure 4 | Validation of our method in inferring interaction strengths using simulated data. Here we 
simulate steady-state samples using the GLV model with 0 taxa and intra-taxa interaction strength g$$ = −1 for 
each taxon. The underlying ecological network is generated from a directed random graph model with 
connectivity 0.4. The noise is added to steady-state samples as follows: #-

U !→ #-
U + t!u, where the random 

number u follows a uniform distribution w[−#$H, #$H], and t is the noise level. a-b, Consider the ideal case: (1) 
noiseless t = 0; and (2) we know exactly g$$ = −1. a. We can perfectly infer g$<’s and h$’s. b. The minimal 
sample size Ω∗ required to correctly infer the interaction strengths scales linearly with the system size 0. Here 
we consider two different taxa presence pattern: uniform and heterogeneous. c-f, In the presence of noise, and 
during the we just assume that the intra-taxa interaction strengths g$$ follows a half-normal distribution. c, Using 
the Lasso regularization induces high false discovery rate (FDR) ~ 0.448 at t = 0.1. d. Using classical Lasso 
with cross validation, both NRMSE and FDR increase with increasing t. e. For the same dataset used in (c), we 
use the knockoff filter to control the FDR below a certain level n = 0.2. f. With increasing noise level t, FDR 
can still be successfully controlled below n = 0.2 by applying the knockoff filter. In subfigures a,c-f, we have 
0 = 50. The error bar represents standard deviation for 10 different realizations. 
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Figure 5 | Inferring interaction types of a synthetic soil microbial community. The steady-state samples 
were experimentally collected from a synthetic soil microbial community of eight bacterial species. Those 
steady-state samples involve 101 different species combinations: all 8 solos, 28 duos, 56 trios, all 8 septets, and 
1 octet.  a. From the 8 solos (monoculture experiments) and 28 duos (pair-wise co-culture experiments), one can 
calculate the relative yield o$<, quantifying the promotion (positive) or inhibition (negative) impact of species A 
on species - . The absolute values shown in the matrix o = (o$<)  indicate the strengths of promotion and 
inhibition effects. The sign-pattern of this matrix serves as the ground truth of that of the Jacobian matrix 
associated with the unknown population dynamics of this microbial community. b. Without considering the 8 
solos and 28 duos, we analyze the rest steady-state samples. We use the brute-force method to infer the 
ecological interaction types, i.e., the sign-pattern of the Jacobian matrix. Blue (or red) means inhibition (or 
promotion) effect of species A on species -, respectively. 10 signs (labelled by ‘×’) were falsely inferred, 4 signs 
(grey) are undetermined by the analyzed steady-state samples. c-d. The robustness of the inference results in the 
presence of artificially added noise: #-

U !→ #-
U + tu, where the random number u follows a uniform distribution 

w[−#$
H, #$

H], and t is the noise level. c. At each noise level, we run 50 different realizations. We can see many of 
inferred :$<  remain their signs in the presence of noise up to noise level t=0.3. d. At t = 0.04, we plot the 
percentage of unchanged signs for inferred Jacobian matrix in 50 different realizations. The ‘× ’ labels 
correspond to the 10 falsely inferred signs shown in (b). We find that 5 of the 10 falsely inferred results change 
their signs frequently even when the perturbation is very small, implying that the falsely inferred signs in (b) 
could be due to measurement noise in the experiments.  
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Figure 6 | Inferring interaction types in a synthetic community of maize roots with 7 bacterial species. The 
dataset consists of 7 sextets and 1 septet. a. Without considering the 1 septet, we analyze the 7 sextets (steady-
state samples involving 6 of the 7 species). We use the brute-force method to infer the ecological interaction 
types, i.e., the sign-pattern of the Jacobian matrix. Blue (or red) means inhibition (or promotion) effect of 
species j on species i, respectively. One sign (grey) are undetermined from the 7 sextets. b. The changes of 
species abundance before and after respectively adding one species into a sextet. Each column corresponds to a 
sextet (a 6-baterial community), the name of the newly introduced species is marked in the top of each column.  
Blue (or red) corresponds to the decrement (or increment) of one species after introducing a new species into 
sextets, respectively. ‘×’ indicates the false prediction. There are in total 12 false predictions. 
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1. THEORETICAL BASIS FOR INFERRING ECOLOGICAL INTERACTIONS

Here we formulate and prove two theorems (Theorems 1 and 2) that characterize the conditions
for inferring the presence/absence or type (positive, negative or neutral) of ecological interactions in
a microbial community using steady-state data. These theorems provide the basis for the inference
methods described in Supplementary Note 2.

1.1. Notation. We use bold letters like x to denote vectors, and capitals like J to denote matrices.
The i-th element of the vector x is denoted by x

i

. Similarly, J

i

denotes the i-th row of matrix J ,
and J

ij

denotes the (i, j)-th element of matrix J . For a matrix J 2 RN⇥N , we denote by S =

(s

ij

) = sign(J) 2 {�1, 0, 1}N⇥N its sign-pattern, where s

ij

= sign(J
ij

). Similarly, we denote by
Z = (z

ij

) 2 {0, 1}N⇥N its zero-pattern, where z

ij

= |s
ij

|.

1.2. Preliminaries. Consider a microbial community of N different taxa. Let x
i

(t) denote the ab-
solute abundance of taxon i at time t. Suppose the temporal evolution of the taxa abundances are
described by a generic population dynamics model taking the form of a set of ordinary differential
equations (ODEs):

(S1)
dx

i

(t)

dt

:= ẋ

i

(t) = x

i

(t)f

i

(x(t)) , i = 1, · · · , N,

where x = (x1, · · · , xN

)

| 2 RN is the state vector and f

i

: RN ! R, i = 1, · · · , N , are some
non-zero meromorphic functions —that is, the quotient of two analytical functions of x.

Remark 1. Typical examples of meromorphic functions are in the form of the quotient of two poly-
nomials. By specifying these meromorphic functions, system (S1) can take the form of many classical
population dynamics models [1, 2, 3, 4, 5, 6]. The assumption that all f

i

(x)’s are some non-zero mero-
morphic functions has a useful consequence, since meromorphic functions have the generic properties
inherited from analytic functions [7]. This implies, for example, that since the f

i

’s are not identically
zero, they can be zero only on a zero-measure set of their domain RN .

A steady-state dataset X is a collection of N -dimensional vectors x 2 RN corresponding to the
measured equilibria of Eq. (S1). Each element of X is called a steady-state sample, or just a sample.
We will denote a sample as x

I 2 RN , where its taxon index set I 2 I determines which taxa are
present. Here I = 2

{1,··· ,N} is the set of all possible subsets of {1, · · · , N}. For example, x

{1,2} 2 R3

is a sample of a community with three taxa, and in this sample only taxon 1 and taxon 2 are present.
Consider now the subset X

i

✓ X of all samples containing taxon i, so that f
i

(x) = 0 for all
x 2 X

i

. Then, for any two samples x

I

,x

K 2 X
i

, applying the the mean value theorem for multi-
variable functions, we obtain

(S2) f

i

(x

I

) � f

i

(x

K

) =

✓Z 1

0

@f

i

(x

I

+ �(x

I � x

K

))

@x

d�

◆
· (xI � x

K

) = 0,

where ‘·’ denotes the inner product between vectors in RN . Let J

i

(x) = @f

i

(x)/@x 2 RN be the i-th
row of the Jacobian matrix J(x) = (J

ij

(x)) = (@f

i

(x)/@x

j

) and let us introduce the notation
Z

L

x

I ,xK

J

i

:=

Z 1

0

J

i

�
x

I

+ �(x

K � x

I

)

�
d�,

where L

x

I
,x

K denotes the line segment joining the points x

I and x

K in RN . With this notation, Eq.
(S2) can be rewritten more compactly as

(S3)

 Z

L

x

I ,xK

J

i

!
· (xI � x

K

) = 0, 8x

I

,x

K 2 X
i

.

The above equation implies that the difference of any two samples {x

I

,x

K} sharing taxon i constrains
the integral of J

i

over the line segment joining them x

I � x

K .
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In this work, we consider that the ecological interactions in a microbial community are encoded
in the Jacobian matrix J 2 RN⇥N of its population dynamics. More precisely, we assume that the
j-th taxon directly impacts the i-th one iff the function J

ij

(x) 6⌘ 0. Notice that this condition is well
defined because J

ij

(x) is a meromorphic function. Further, an ecological interaction is inhibitory iff
J

ij

(x) < 0 and excitatory iff J
ij

(x) > 0.
Inferring the absence or presence of interactions is equivalent to inferring the zero-pattern of the

Jacobian matrix, recovering the topology of the ecological network underlying the microbial com-
munity. Furthermore, inferring the type of interactions (inhibitory, excitatory or null) is equivalent to
inferring the sign-pattern of the Jacobian matrix. Analyzing the implications of Eq. (S3) will be the
basis for inferring these two properties of the Jacobian matrix from the steady-state samples X , as we
next show.

1.3. Inferring the zero-pattern. Let
R
L

x

I ,xK
J

ij

denote the j-th entry of the vector
⇣R

L

x

I ,xK
J

i

⌘
2

RN . To infer the zero-pattern of the Jacobian matrix, we make the following assumption:

Assumption 1. The condition
R
L

x

I ,xK
J

ij

⌘ 0 holds if and only if J
ij

⌘ 0 for all i, j = 1, · · · , N .

Remark 2.
a. Assumption 1 is a necessary condition to recover the zero-pattern of J

i

, i = 1, · · · , N ,
from steady-state samples X , regardless of the algorithm used for the inference. Indeed, ifR
L

x

I ,xK
J

ij

⌘ 0 but J
ij

6⌘ 0, then it is impossible to distinguish from the samples X if either
J

ij

⌘ 0 or J
ij

6⌘ 0, as both conditions would satisfy Eq. (S3).
b. Assumption 1 is generically satisfied for most functions f

i

(x) used in population dynamics
models. More precisely, notice how the condition 0 ⌘

R
L

x

I ,xK
J

ij

=

R 1

0 J

ij

(x

I

+ �(x

K �
x

I

))d� requires that the positive and negative areas below J

ij

(x

I

+ �(x

K � x

I

)) cancel
exactly when plotted as a function of �. Such condition is not generic. This means that if
the above equation holds for some particular f

i

and its corresponding J

ij

, then there exists an
infinitesimal deformation ˜

f

i

of f
i

such that the areas of the corresponding ˜

J

ij

as a function of
� do not cancel out anymore.

For each sample pair {x

I

,x

K}, let’s denote by Z
I,K

✓ {0, 1}N the set of zero-patterns of all
vectors orthogonal to x

I � x

K . Then we obtain the following result:

Theorem 1. Let Z

i

2 {0, 1}N be the zero-pattern of J

i

. Then, under Assumption 1, we have that

Z

i

2 ˆZ
i

:=

\

x

I
,x

K2Xi

Z
I,K

.

Proof. From Assumption 1, we conclude that Z

i

and the zero-pattern of
R
I,K

J

i

are identical for all
x

I

, x

J 2 X
i

. Then Eq. (S3) implies that the Z

i

2 Z
I,K

for all x

I

,x

J 2 X
i

. This directly implies that
Z

i

2 ˆZ
i

. ⇤
Remark 3.

a. Note that ˆZ
i

will always contain at least two elements: a trivial one 0 2 RN and a non-
trivial one ˆ

z

i

2 {0, 1}N . Therefore, to distinguish which of these two zero-patterns is the
true zero-pattern of J

i

, it is necessary to a-priori know the existence of at least one nonzero
interaction.

b. Theorem 1 together with Remark 3.a provide the basis of a computational method to infer the
zero-pattern of the Jacobian matrix, since the sets Z

I,K

can be computed from the steady-state
data X .

Example 1. Consider a toy model with two taxa:
ẋ1 = x1(0.5 � x1 + 0.1x2), ẋ2 = x2(x2 � 0.6)(0.2 � x2),
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where the Jacobian matrix is
J =

✓
�1 0.1

0 0.8 � x2

◆
.

Note that the sign of J22 depends on the value of x2. Supplementary Fig. 1b shows that J22 indeed
changes its sign from positive to negative during the growth process (Supplementary Fig. 1a).

In the absence of measurement noise, we can successfully infer the zero-pattern of J (Supplemen-
tary Fig. 1c,d). Supplementary Fig. 1c shows that, according to the position of x

{1,2} � x

{1}, the
green line that is orthogonal to the red line cannot yield a zero entry for J1, implying that J11 6= 0

and J12 6= 0. This is consistent with the ground truth. Supplementary Fig. 1d shows that for J2, the
green line that is orthogonal to the blue line exactly locates on the axis of x2, implying that J21 = 0

and J22 6= 0, which is also consistent with the ground truth.
In the presence of measurement noise, the angle between the x1-axis (or the x2-axis) and the green

line can be used to determine if J
ij

= 0 or not (Supplementary Fig. 1e,f). For example, when the noise
level (⌘) is 0.1, in Supplementary Fig. 1e the angle between the x1-axis and the green line is large
enough and we can safely conclude that J12 6= 0. By contrast, the green line deviates only slightly
from the x2-axis and these deviations are randomly distributed and have zero mean (Supplementary
Fig. 1f). Therefore, we can choose a threshold value ✓ such that if the absolute value of the average
deviation angle over different measurements is smaller than ✓, we conclude that J21 = 0. Notice that
this method will infer very weak interactions as zero, but it still offers a pragmatic approach to infer
strong interactions.

1.4. Inferring the sign-pattern. In order to infer the sign-pattern, we assume:

Assumption 2. The nature of ecological interactions (i.e., parasitism, commensalism, mutualism,
amensalism or competition) between any two taxa does not vary over the collected steady-state sam-
ples.

Note that Assumption 2 is actually necessary to infer the ecological interaction types. If those
interaction types vary from samples to samples, then the inference becomes an ill-defined problem
because we have a “moving target” and different subsets of steady-state samples will offer different
answers on the interaction types.

Remark 4. Assumption 2 has the following consequences:
a. For x in the positive orthant of RN , each element J

ij

(x) of the vector J

i

(x) is either uniformly
negative, uniformly zero or uniformly positive. Indeed, if and only if this condition is satisfied,
the sign-pattern of the Jacobian, given by S = (s

ij

) = (sign(J
ij

(x))) 2 {�, 0,+}N⇥N , is
constant.

b. The sign-pattern of the vectors
R
L

x

I ,xK
J

i

is the same for all x

I

,x

K 2 X
i

, and it coincides
with the sign-pattern of J

i

.

With Assumption 2, next we show that the vector (xI � x

K) constrains enough the possible sign-
pattern of the vector J

i

so that we can infer it. Let us associate each orthant of RN with its corre-
sponding sign-pattern, that is, a vector in {�, 0,+}N . There are exactly 3

N vectors in {�, 0,+}N .

Example 2. {�, 0,+}2 has 9 sign-patterns:
{(�,�), (�, 0), (�,+), (0,�), (0, 0), (0,+), (+,�), (+, 0), (+,+)}.

And {�1, 0, 1}3 has 27 sign-patterns.

In order to show how the vector (xI � x

K) constrains the sign-pattern of J

i

, we start by discussing
the following elementary example:
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Example 3. Consider N = 2 and three steady-state samples x

{1}, x

{2} and x

{1,2}. From Eq. (S3),
we obtain:  Z

L

x

{1,2},x{1}

J1d�

!
· (x{1,2} � x

{1}
) = 0,

 Z

L

x

{1,2},x{2}

J2d�

!
· (x{1,2} � x

{2}
) = 0.

These equations imply that
R
L{1,2},{1}

J1d� is orthogonal to the line L{1,2},{1}, and that
R
L{1,2},{2}

J2d�

is orthogonal to the line L{1,2},{2}. Further, as discussed in Remark 4.b, recall that Assumption 2
implies sign(

R
J

i

) = sign(J
i

). Hence, sign(J
i

) is one of the sign-patterns corresponding to the line
orthogonal to L{i,2},{i}, see Supplementary Fig. 2.

As a concrete example showing how the above equations can be used to infer the sign-pattern of
the Jacobian matrix, consider the following ecological dynamics with the so-called Holling Type II
functional response [2]:

(S4) ẋ1 = x1

✓
r1 + a11x1 + a12

x2

0.1h+ x2

◆
, ẋ2 = x2

✓
r2 + a21

x1

h+ x1
+ a22x2

◆
.

Here A = (a

ij

) 2 R2⇥2, r = (10, 5)

| 2 R2 and h = 1 are parameters. Importantly, notice that
sign(J) = sign(A).

Next we focus on inferring sign(J1), as the same procedure can be applied to infer sign(J2). For
illustration, we choose a21 = �1, a22 = �1 and then consider two cases for the remaining two
parameters (a11, a12):

Case 1. For a11 = �1 and a12 = 1, the feasible steady states1 of Eq. (S4) are

X = {(10, 0), (10.9761, 4.0835), (0, 5)},

see Supplementary Fig. 2a. In order to infer sign(J1), we focus on the line L{1},{1,2} con-
necting the samples x

{1}
= (10, 0) and x

{1,2}
= (10.9761, 4.0835) where taxon 1 is present.

The line orthogonal to L{1},{1,2} (shown in green) determines the possible sign-patterns for
J1. The sign-patterns corresponding to this orthogonal line are ˆS1 = {(�,+), (0, 0), (+,�)}
and notice that sign(J1) 2 ˆS1.

Case 2. For a11 = �1 and a12 = �1, the feasible steady states of Eq. (S4) are

X = {(10, 0), (9.02381, 4.09976), (0, 5)},

see Supplementary Fig. 2b. We focus on the line orthogonal to L{1},{1,2} (shown in green)
and obtain its corresponding sign-patterns ˆS1 = {(�,�), (0, 0), (+,+)}. Again, notice that
sign(J1) 2 ˆS1.

In the general case of N taxa we have the following result:

Theorem 2. Let S
I,K

✓ {�, 0,+}N be the set of all sign-patterns associated with the vectors orthog-
onal to (xI � x

K) and define ˆS
i

=

T
x

I
,x

K2Xi
S
I,K

. Then sign(J
i

) 2 ˆS
i

.

Proof. From Assumption 2, we know that sign(J
i

) = sign(
R
I,K

J

i

) for all x

I

,x

K 2 X
i

. Then Eq.
(S3) implies that sign(J

i

) 2 S
I,K

for all pairs x

I

,x

K 2 X
i

. Thus, sign(J
i

) must belong to the
intersection of all S

I,K

, implying that sign(J
i

) belongs to the sign-patterns shared by all S
I,K

. ⇤

Remark 5.

1We say a steady state is feasible if it belongs to the orthant RN
�0, that is, if no taxon has negative abundance.
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a. In Theorem 2, in order to check if there is a vector with sign-pattern s 2 {�, 0,+}N or-
thogonal to a given vector (xI � x

K), we can check if the following linear program has a
solution:

(S5) Find v 2 RN subject to v

|
(x

I � x

K

) = 0 and sign(v) = s.

Note that the condition sign(v) = s can be encoded as a set of equalities/inequalities of the
form {v

i

= 0, v
i

< 0, v

i

> 0} corresponding to the the cases {s
i

= 0, s

i

= �1, s

i

= 1}.
In Supplementary Note 2.3.1, we will show that it is possible to solve this problem more
efficiently using the notion of sign-satisfaction.

b. From a geometrical viewpoint, the vectors v 2 RN satisfying v

|
(x

I �x

K

) = 0 correspond to
the hyperplane with normal vector (xI � x

K

). Thus, the set of sign-patterns of those vectors
v (i.e., the sign-patterns in the set S

I,K

) corresponds to the orthants of RN crossed by this
hyperplane. Consequently, ˆS

i

=

T
x

I
,x

K2Xi
S
I,K

corresponds to those orthants of RN crossed
by all hyperplanes orthogonal to (x

I � x

K

) for all x

I

,x

K 2 X
i

.
c. Note that 0 = (0, · · · , 0) 2 ˆS

i

always. Additionally, there is always at least three admissible
sign-patterns in ˆS

i

, that is ˆS
i

= {�ŝ

i

,0, ŝ
i

} for some ŝ

i

2 {�, 0,+}N .
d. A consequence of Remark 5.b above is that the steady-state data alone cannot be informative

enough to determine a unique sign-pattern for J

i

. The number m of sign-patterns (candidate
solutions) in ˆS

i

depends on the number and informativeness of the samples {x

I

, I 2 I
i

} in
the steady-state dataset X . Indeed, if m sign-patterns are in ˆS

i

, only by providing the sign of
exactly bm/3c non-zero entries of J

i

as prior information, we can univocally infer sign(J
i

).
For instance, in the case of N = 2 taxa in Example 2 where m = 3, we need to provide the
sign of only one non-zero entry of J

i

, and that will let us infer the sign of the other entry.

To conclude this subsection, we discuss some implications of Assumption 2 on the steady-state
samples X that can be observed in the microbial community. Let E := {x 2 RN |x

i

f

i

(x) = 0; i =

1, · · · , N} ✓ RN denote the set of equilibria of Eq. (S1).

Definition 1. System (S1) is said to have true multi-stability if E contains at least two isolated sets
(i.e., two sets that don’t intersect) of interior equilibria.

A particular case of true multi-stability is when the system or any subsystem (composed of a par-
ticular subset of taxa) exhibits multiple interior equilibria, where all the involved taxa have positive
abundances.

Proposition 1. If Assumption 2 is satisfied then there is no true multi-stability.

Proof. We argue by contradiction. Suppose that Assumption 2 is satisfied but the system has true
multi-stability. Let x

I and x

K be two interior equilibria belonging to two different isolated sets
in E . Suppose they are interior with respect to the i-th taxon. Now consider the scalar function
p(�) = f

i

(x

I

+ �(x

K � x

I

)). Note that p(�) is a non-zero meromorphic function because x

I and
x

K belong to different isolated sets of equilibria. Furthermore, p(0) = p(1) = 0 as both x

I and x

K

are interior equilibria for f
i

(x). Together, this implies that the slope of p(�) needs to change sign at
least once. Since the slope of p(�) equals the Jacobian of f

i

in the direction of the vector x

I � x

K ,
this implies that the Jacobian changes sign, contradicting Assumption 2. ⇤
Remark 6.

a. Proposition 1 actually provides a simple criterion to falsify Assumption 2. Namely, if a mi-
crobial community displays true multi-stability, then Assumption 2 is invalid, i.e., the sign-
pattern of its Jacobian matrix is not constant. In practice, we can detect the presence of true
multi-stability in the available samples X (e.g., two or more steady-state samples have the
same collection of present taxa but totally different abundance profiles). If multi-stability is
detected, then we know immediately that Assumption 2 is invalid. If multi-stability is not
detected, then at least Assumption 2 is consistent with the collected steady-state samples.
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In short, by introducing a criterion to falsify our assumption, we significantly enhance the
applicability of our method for inferring interaction types.

b. In case the sign-pattern of the Jacobian matrix is not constant but the steady-state samples were
still collected from a microbial community under the same or similar environmental conditions
(e.g., nutrient availability), we can interpret our inferred sign-patterns as the overall inhibition
or promotion effect between different taxa during the transitions between steady states. To see
this point, note that regardless of the sign-pattern of the Jacobian matrix is constant or not, our
method can correctly infer the sign of

R 1

0 J

ij

(x

I

+ �(x

K � x

I

))d�, which reflects an overall
impact (inhibition or promotion) of taxon j on taxon i during the transition from the steady
state x

I

(� = 0) to x

K

(� = 1).

Example 4. To illustrate Remark 6.b, let’s consider a toy model of two species X and Y . Each species
has a per capita growth rate that is modulated by its mutualistic partner as well as the resource. The
population dynamics of this toy model is given by

(S6)

8
<

:

˙

X = r

x

X(

Y+a

Y+a+

)(1 � X � Y ) � �X,

˙

Y = r

y

Y (

�X+a

�X+a+

)(1 � X � Y ) � �Y.

Here r
x

and r

y

are the growth rates of the species, a is the amount of resource, � is the death rate,  is
an effective Monod constant, and � > 0 quantifies the asymmetry of benefit that each species receives
from its partner. The elements of the Jacobian matrix of this community are given by

8
>>>>>>>>><

>>>>>>>>>:

J11 = �r

x

Y+a

Y+a+

,

J12 = r

x

(1 � X � Y )



(Y+a+)2 � r

x

Y+a

Y+a+

,

J21 = r

y

(1 � X � Y )

�

(�X+a+)2 � r

y

�X+a

�X+a+

,

J22 = �r

y

�X+a

�X+a+

.

Note that J11 and J22 are always negative, while J12 and J21 may change their signs depending on
the particular abundances of X and Y , as well as the model parameters. This model captures the
transition between the different regimes of ecological interaction depending on the amount of resource
(determined by a). Indeed, Supplementary Fig. 3a shows that there are three regimes with different
inter-species interactions starting from mutualism and then leading to parasitism and competition.
Here, the overall or “effective” interaction types are determined by comparing the difference of steady
states between monocultures (dashed lines in Supplementary Fig. 3a) and co-cultures (solid lines in
Supplementary Fig. 3a). This allow us to calculate the relative yield, which indicates the promotion
or inhibition impact between two taxa. For this model, because that Jacobian may change its sign-
pattern over time, the sign of relative yields can be interpreted as the effective impact between two
taxa, denoted as Je↵ (Supplementary Fig. 3a).

We now apply our method using steady states of this model. Supplementary Fig. 3b-d shows
the diagrams of our inference method under different resource amounts. We found that the inferred
inter-species interaction types are consistent with the ground truth (shown in Supplementary Fig.
3a). Supplementary Fig. 3e-g shows the value of J12(x{1,2}

+ �(x

{2} � x

{1,2}
))d� and J21(x

{1,2}
+

�(x

{2} � x

{1,2}
))d� as a function of � corresponding to the transition between x

{1,2}
(� = 0) and

x

{2}
(� = 1). The shade areas in this figure denote the value of

R 1

0 J12(x
{1,2}

+ �(x

{2} � x

{1,2}
))d�

and
R 1

0 J21(x
{1,2}

+�(x

{2} �x

{1,2}
))d�. For example, when a = 0.15, both

R 1

0 J12(x
{1,2}

+�(x

{2} �
x

{1,2}
))d� and

R 1

0 J21(x
{1,2}

+ �(x

{2} � x

{1,2}
))d� are positive (shaded areas in Supplementary Fig.

3e). Although J12 and J21 display both negative and positive values as � changes, the positive J12

and J21 dominate in the transition between two steady states. Hence, overall taxon X and taxon Y
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are mutualistic. Supplementary Fig. 3f,g shows the result of this analysis applied to J12 and J21 for
a = 0.2 and a = 0.5.

2. BRUTE-FORCE AND HEURISTIC ALGORITHMS

Here we introduce the methodology for inferring the zero- or sign-patterns of the Jacobian matrix
associated with the population dynamics of a microbial community. In essence, the inference of the
zero-pattern is similar to the inference of the sign-pattern. Indeed, the only difference is that the
former doesn’t care if the non-zero values are positive or negative. This implies that the complexity
for inferring the network topology and interaction types are roughly the same. Here, for simplicity
we describe the algorithms for inferring sign-patterns. All the algorithms (and pseudo codes) can be
easily modified to infer the zero-pattern.

2.1. Brute-force algorithm. Theorems 1 and 2, together with Remarks 3 and 5 can be used to con-
struct an algorithm to obtain all admissible sign-patterns for given steady-state data. Indeed, by enu-
merating all possible sign-patterns, we can use the liner program in Eq. (S5) to check if each of the
possible 3

N sign-patterns is admissible for taxon i, see Algorithm 1.

Algorithm 1 A brute-force algorithm to compute ˆS
i

Input:
The collection of matrices M

i

, being the difference between all two samples containing species
i. M

i

2 R(

N⇥|Ii|
2 ), |I

i

| is the number of samples
Output:

The sign-pattern set of ˆS
i

1: ˆ

E

i

 Enumeration of all the possible combinations of {�, 0,+}N

2: for each j-th row in M

i

do
3: S

j

 ;
4: for each kth-subset in ˆ

E

i

do
5: if find v 2 RN subject to v

|
M

i

[j, :] = 0 and sign(v) = ˆ

E

i

[k] then
6: S

j

= S

j

S
ˆ

E

i

[k]

7: end if
8: end for
9: ˆS

i

=

T
j

S

j

10: end for

Below, we illustrate the application of the brute-force algorithm for a microbial community with
N = 3 taxa.

Example 5. Here we consider the case of a microbial community with N = 3 taxa and population
dynamics given by the so-called Crowley-Martin functional response [5]. The ODEs are:
(S7)8

>>>>>>><

>>>>>>>:

ẋ1 = x1

✓
r1 + a11x1 + a12

x2

0.1h+ 9x1 + 6x1x2 + x2
+ a13

x3

2h+ 0.1x1 + 0.4x1x3 + x3

◆
,

ẋ2 = x2

✓
r2 + a21

x1

h+ x1 + 2.5x1x2 + 2x2
+ a22x2 + a23

x3

0.5h+ 2.3x2 + 1.1x2x3 + x3

◆
,

ẋ3 = x3

✓
r3 + a31

x1

0.5h+ x1 + 10x1x3 + 4x3
+ a32

x2

2.1h+ x2 + 0.2x2x3 + 0.5x3
+ a33x3

◆
.
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We set the parameters r1 = 1, r2 = 5, r3 = 1.5, h = 0.2 and

A =

0

@
�1 0 3

0 �1 0

0.5 5 �0.4

1

A
.

Notice again that sign(J) = sign(A). We focus on reconstructing sign(J1), as the same procedure
applies to the other taxa. With the given parameters, the feasible steady states of Eq. (S7) where
taxon 1 is present are:

X1 = {(1., 0., 0.), (2.4069, 0., 3.77772), (2.45168, 5., 7.51002), (1., 5., 0)},

constituting the available steady-state samples for taxon 1. We apply Algorithm 1 to this dataset
obtaining

ˆS1 = {(�, 0,+), (0, 0, 0), (+, 0,�)}.
Note that sign(J1) 2 ˆS1. Providing for example sign(J11) < 0 as prior information, we correctly infer
that sign(J1) = (�, 0,+).

2.2. Computational complexity of the brute-force algorithm. Algorithm 1 strongly relies on the
enumeration of all 3N possible sign-patterns in RN , since it needs to test if each one of them is
admissible for the given data. If the set X

i

has n
i

elements, there will be n

i

(n

i

� 1)/2 vectors of the
form x

I � x

K with (x

I

,x

K

) 2 X
i

⇥ X
i

. According to Algorithm 1, for each of those vectors and
each of the possible 3

N sign-patterns, we will need to run the linear program (S5) to check if there is
an orthogonal vector with the desired sign-pattern.

If we assume that the linear program can be solved with N operations, then, for each taxon, Algo-
rithm 1 requires to perform a number of operations in the order of

C = N3

N

n

i

(n

i

� 1)

2

.

If we have more than two samples (i.e., n
i

> 2), then n

i

(n

i

� 1)/2 > 1 and consequently C > N3

N .
Hence, for 100 taxa, we will need to perform at least 5.19 ⇥ 10

49 operations for the reconstruction of
each taxon —which is a number with the same order of magnitude as the number of atoms in Earth.
Further, the linear programming used in the brute-force method can also be time consuming even for a
small microbial community with N ⇠ 10. Consequently, applying the enumeration procedure is only
reasonable for a community with N ⇠ 10, since in this case only around 10

6 operations are needed to
infer the sign-pattern of the Jacobian corresponding to each taxon.

The above two limitations motivated us to develop a more efficient reconstruction method. This
method has two main ingredients. First, a graph-based approach to quickly check whether a region
can be crossed by a hyperplane, circumventing the need to solve the linear program. Second, an
heuristic algorithm efficiently explore the solution space and to infer the ecological interaction types.

2.3. Inference using the heuristic algorithm. In practice, for large microbial communities with
unknown dynamics, the inference of ecological interactions according to Algorithm 1 has two major
drawbacks:

1. Checking if an orthant is crossed by a given hyperplane using the linear program of Eq. (S5)
is computationally expensive.

2. The number of orthants that is necessary to check (i.e., the solution space) increases as 3

N ,
that is, exponentially in the number of taxa.

To circumvent the first drawback, we introduce an alternative method based on the notion of sign-
satisfaction. To address the second challenge, we propose an heuristic algorithm with user-defined
time complexity to infer the sign-pattern of J

i

.
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2.3.1. Formulating the sign-satisfaction problem. Consider a real-valued vector y 2 RN . Then,
solving the linear program Eq. (S5) is equivalent to solving the following sign-satisfaction problem:

(S8) Find sign(y) 2 {�, 0,+}N subject to y

|
(x

I � x

K

) = 0.

Notice that from a geometrical viewpoint, solving Eq. (S8) is just finding the orthants of RN crossed
by the hyperplane orthogonal to (x

I � x

K

).
In the next example, we illustrate how the sign-satisfaction formulation allows us to quickly discard

orthants of RN that cannot be crossed by such hyperplane:

Example 6. In vector form, Eq. (S3) in Example 5 can be written as
✓Z

{1},{1,3}
J11d�,

Z

{1},{1,3}
J12d�,

Z

{1},{1,3}
J13d�

◆>

· (�1.4069, 0, �3.77772) = 0

if we take two samples sharing taxon 1. Thus, the sign-satisfaction for Example 5 can be written as

Find sign(y) 2 {�, 0,+}3 subject to y

|
(�1.4069, 0, �3.77772) = 0.

Note that, for example, the choice sign(y) = (�, 0,�) cannot satisfy the above condition regardless
of the particular value of y, because the inner product is the sum of two positive numbers, which can
never be zero.

A systematic method to extend the above example and solve the sign-satisfaction problem is dis-
cussed next.

2.3.2. A graph-based approach to solving the sign-satisfaction problem. We illustrate the basic idea
using a small example, and then discuss the general case.

In Example 6, the sign-satisfaction problem required that

(�1.4069 ⇥ y1) + (0 ⇥ y2) + (�3.77772 ⇥ y3) = 0,

where sign(y1, y2, y3) = sign(J11, J12, J13). We map the above equation to the sign-satisfaction graph
in Supplementary Fig. 4, where each element of J1 corresponds to a column and each element of
sign(J1) has three possibilities (i.e., ‘�’,‘0’ or ‘+’). Each node in Supplementary Fig. 4 is divided
in two parts: the left is an entry of sign(xI � x

K

) and the right is an entry of sign(J1). The color
of each node encodes the sign of the product of left and right parts: grey is zero, red is positive and
blue is negative. Next we introduce edges starting from each node and pointing to all nodes located
in the next column to its right. With this formulation, the solutions to the sign-satisfaction problem
(S8) reduces to finding the paths in the sign-satisfaction graph that satisfy one of the following two
conditions:

(i) the path contains red (representing positive values) and blue (representing negative values)
nodes simultaneously, or

(ii) the path contains only gray (representing zero values) nodes.
The above two conditions guarantee that the sum of the product of sign(J

ij

) and (x

I � x

K

) can be
zero. At this step, it is also useful to introduce the prior information that is available, such as J

ii

< 0,
allowing us to collapse columns of nodes in the sign-satisfaction graph to single nodes (Supplementary
Fig. 4).

In a general case, for a given (xI�x

K), the construction of the sign-satisfaction graph is as follows:
(1) the graph consists of N columns, with each column having three nodes;
(2) each node in the graph is divided into two parts: the left correspond to an entry of sign(xI �

x

K

) and the right to an entry of sign(J
i

);
(3) each node is colored according to the sign of the product of the left and right parts: zero is

grey, positive is red and negative is blue;
(4) directed edges are included from a node to all the nodes in next column.
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Finally, a solution to the sign-satisfaction problem of Eq. (S8) corresponds to a path from the first
column to N -th column satisfying either condition (i) or (ii) listed above. In such case, a possible
sign-pattern of J1 consists of the sign in the right part of each node in the path. For instance, the paths
with yellow directed edges in Supplementary Fig. 4 correspond to the possible sign-pattern of J1, i.e.,
(�,+,+), (�,�,+) and (�, 0,+).

By using the sign-satisfaction graph, it is very efficient to test if the hyperplane orthogonal to
(x

I � x

K

) crosses some orthants of RN , because it reduces to checking if its corresponding vector
in {�, 0,+}N satisfies either condition (i) or (ii). However, finding all orthants crossed by such
orthogonal hyperplane remains challenging, since the sign-satisfaction graph did not decrease the
dimension of the solution space (that remains with exponential size 3

N ). To address this issue, next
we introduce a method to efficiently sample paths in the sign-satisfaction graph.

2.3.3. Use the intersection of hyperplanes to sample paths in the sign-satisfaction graph. As dis-
cussed before, with the sign-satisfaction graph the solution space is still exponential (with size 3

N�1,
where the term N � 1 comes from assuming we know that J

ii

< 0 as prior information). One pos-
sibility to circumvent this problem would be to randomly sample paths in the sign-satisfaction graph
and check if they satisfy conditions (i) or (ii). This would not work, however, since the probability of
sampling the true “sign(J

i

)” is only X/3

N�1 — where X is the number of sampled paths — and this
probability approaches zero as N increases. To alleviate this problem, next we propose a method to
sample paths in the sign-satisfaction graph with certain preference.

This method has four steps and depends on an user-defined parameter � 1 specifying the number
of times the procedure is repeated:

(1) Construct the matrix of the difference of all the sample pairs. Consider the set of all
vectors {x

I � x

K |xI

,x

K 2 X
i

}. Let M
i

2 RN⇥
(

|Xi|
2 ) be a matrix constructed by stacking all

the
�|Xi|

2

�
vectors, where |X

i

| is the number of samples containing taxon i. By construction,
each column of M

i

is the normal vector of a hyperplane orthogonal to the difference of the
corresponding sample pair.

(2) Randomly sample (N � 1) hyperplanes. Choose randomly N � 1 columns from M

i

.
(3) Find the intersection of the (N � 1) sampled hyperplanes to obtain an intersection line.

This can be done by finding the kernel of the matrix obtained by stacking the chosen columns.
Note that the randomly sampled (N � 1) hyperplanes not always intersect in a line, because
some hyperplanes might be parallel. However, this situation is non-generic in RN . Thus, if
the randomly sampled hyperplanes do no intersect as a line, we return to step 2 and choose a
new subset of columns.

(4) Count how many hyperplanes cross the region of the intersection line using the sign-
satisfaction graph. The sign-pattern of this intersection line represent the three orthants in
RN crossed by all those (N � 1) hyperplanes. For the remaining hyperplanes in M

i

(i.e., the
rest of the columns in M

i

), let ˜

� be the number of those hyperplanes that cross these three
orthants. We normalize ˜

� using � =

˜

�/

�|Xi|
2

�
, so that � 2 [0, 1]. Notice that � = 1 means that

this sign-pattern of the intersection line meets the requirements of sign-satisfaction for all the
sample pairs. Therefore, the magnitude of the computed � can be seen as the confidence of
this potential solution to be a solution of the sign-satisfaction problem.

(5) Go back to Step (2) until � 1 intersection lines have been computed.

In summary, selecting the intersection line can be seen as a “preference” sampling in the sign-
satisfaction graph, because this intersection line can be crossed by at least (N � 1) hyperplanes in
M

i

.
We illustrate the basic idea of the above discussion in the following example:
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Example 7. We compute the difference vector of all the sample pairs (the samples contains taxon 1)
in Example 5 and stack them in the following matrix:

M1 =

0

@
�1.4069 �1.4517 0 �0.0448 1.4069 1.4517

0 �5.0000 �5.0000 �5.0000 �5.0000 0

�3.7777 �7.5100 0 �3.7323 3.7777 7.5100

1

A
.

Each column of M1 is the difference of a sample pair, corresponding to the normal vector of a plane
orthogonal to the associated (x

I � x

K

). In Supplementary Fig. 5a, the intersection line (black line)
is intersected by the planes where each of normal vectors respectively corresponds to the 1-st and
5-th column of the above M1. The black line crosses the regions with sign-pattern (�, 0,+)

| and
(+, 0,�)

|. At least these two regions have been crossed by two planes. Due to the fact that we know
that J11 < 0, for the next step we need to count the number of the remaining hyperplanes that cross the
region with the sign-pattern (�, 0,+)

|. In Supplementary Fig. 5b we find that four of the remaining
hyperplanes cross this intersection line, that is, the normalized � satisfies � = 1. It means that the
sign-pattern of this intersection line is the inference of sign(J1) because it meets the requirements of
sign-satisfaction for all the sample pair.

2.3.4. The heuristic algorithm combing sign-satisfaction and intersection of hyperplanes. Combin-
ing the sign-satisfaction graph with the sampling procedure described above, we propose a heuristic
algorithm to infer the sign-pattern of J

i

.
Our heuristic algorithm has two inputs: the steady-state dataset for the i-th taxon X

i

and a user-
defined parameter  determining how many intersection lines of hyperplanes will be constructed.
The algorithm has of four steps, as described in Supplementary Fig. 6. Applying this procedure for
i = 1, . . . , N , we can get the sign-pattern of the whole Jacobian matrix.

In summary, the algorithm works as follows. After generating an intersection line, we get the
three orthants corresponding to this intersection line. Then we count how many hyperplanes cross
the orthants determined by this intersection line using the sign-satisfaction graph, and this count can
be normalized as � 2 [0, 1] indicating the confidence of this potential solution to be a solution of
final inference. Finally, we select the intersection line with the maximal � among the generated  
intersection lines as the final inferred sign-pattern ˆS

i

.
Note that if the algorithm is stuck in generating an intersection line for some subset of (N � 1)

hyperplanes, the heuristic algorithm will fail. Numerical experiments suggest this situation happens
only when the data is not informative enough or the number of samples is smaller than the threshold
⌦

⇤. In Fig. 3 of the main text, we presents the results of the minimal number of samples ⌦⇤ required
for a community with size N .

2.4. Limitations of the inference when using relative abundance data. High-throughput amplicon
sequencing of 16S RNA has become a well-established approach for profiling microbial communities.
The result of this procedure are measurements of the relative abundance of each taxa in the microbial
community, meaning that these quantities have been normalized to sum to one (or some other arbitrary
constant). This implies that an increase of the relative abundance of one taxon must be accompanied
by a decrease in the relative abundance of other taxa. This severely limits the application of system
identification methods based on temporal data, as discussed with details in [8, 9].

The use of steady-state samples containing relative abundance also leads to inference errors. Con-
sider, for example, that there exists three relative abundance profiles containing taxon i, say ¯

x

I

,

¯

x

J

,

¯

x

K .
Since they are relative abundances, the sum of each of these samples must equal 1. This also im-
plies that sum(

¯

x

I � ¯

x

J

) = sum(

¯

x

I � ¯

x

K

) = sum(

¯

x

J � ¯

x

K

) = 0. Consequently, the vector
1 = (1, · · · , 1) 2 RN satisfies

1 · (¯xI � ¯

x

J

) = 1 · (¯xI � ¯

x

K

) = 1 · (¯xJ � ¯

x

K

) = 0.

In other words, this vector 1 is always in orthogonal to all sample differences and the intersection
line of the (N � 1) hyperplanes generated by relative abundance is always 1. Therefore, the heuristic
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algorithm fails in correctly inferring the sign-pattern of Jacobian matrix using relative abundances,
because it always predicts that one possible sign-pattern is sign(1) = (+, · · · ,+).

3. INFERRING THE TOPOLOGY OF ECOLOGICAL NETWORKS

In essence, inferring the zero-pattern is similar to inferring the sign-pattern. Indeed, it is only
necessary to recognize any non-zero entry of the inferred sign-pattern as a non-zero entry in the
inferred zero-pattern. Notice how the zero-pattern corresponds to hyperplanes exactly aligned to the
orthants of RN . Therefore, any measurement noise will make the difference of sample pairs deviate
from the axis, easily leading to inference errors (see Supplementary Fig. 1d,f). To alleviate this
problem, we introduce a user-defined cutoff value to judge the zero-pattern of J

ij

based on the angle
between the axis and the intersection line (Supplementary Fig. 1).

For the brute-force method, first we set an element in the difference of sample pair x

I � x

K to
0 if the magnitude of that element is less than the user-defined cutoff. Second, we construct the
hyperplanes respectively orthogonal to these modified difference of sample pairs. Third, we count
how many hyperplanes cross each orthant in the RN . Finally, we select the region crossed by the
maximal hyperplanes as the inferred zero-pattern. Recall that the brute-force method is limited to
infer the microbial community with N  10.

For larger microbial communities, we also developed a heuristic algorithm that is very similar to
our heuristic algorithm for inferring the sign-pattern. In that algorithm, notice how the deviation of
an intersection line from an axis is directly given by its directional vector. Indeed, this vector contains
the cosine of the angles between the axis and the intersection line. This algorithm works as follows:

(1) Construct the matrix of the difference of all the sample pairs. Consider the set of all
vectors {x

I � x

K |xI

,x

K 2 X
i

}. Let M
i

2 RN⇥
(

|Xi|
2 ) be a matrix constructed by stacking all

the
�|Xi|

2

�
vectors, where |X

i

| is the number of samples containing taxon i. By construction,
each column of M

i

is the normal vector of a hyperplane orthogonal to the difference of the
corresponding sample pair.

(2) Randomly sample (N � 1) hyperplanes. Choose randomly N � 1 columns from M

i

.
(3) Find the intersection of the (N � 1) sampled hyperplanes to obtain an intersection line.

This can be done by finding the kernel of the matrix obtained by stacking the chosen columns.
Note that the randomly sampled (N � 1) hyperplanes not always intersect in a line, because
some hyperplanes might be parallel. However, this situation is non-generic in RN . Thus, if
the randomly sampled hyperplanes do no intersect as a line, we return to step 2 and choose a
new subset of columns.

(4) Set the elements in the directional vector of this intersection line as zero if their absolute
values are less than the cutoff value. Then we get a new directional vector. Note that
we scale the 2-norm of this directional vector to 1. The absolute value of i-th element in
the directional vector represents the cosine of the angle between the intersection line and x

i

-
axis. If the value is large enough, it means the intersection line almost locates at the x

i

-axis.
Therefore, if the absolute value of directional vector is smaller than the cutoff, we set this
entry to 0.

(5) Count how many hyperplanes cross the region of the new directional vector using the
sign-satisfaction graph. The sign-pattern of new directional vector represent the orthants in
RN crossed by all those (N � 1) hyperplanes. For the rest hyperplanes of M

i

(i.e., the rest
of the columns in M

i

), let ˜

� be the number of those hyperplanes that cross the orthants. We
normalize ˜

� using � =

˜

�/

�|Xi|
2

�
, so that � 2 [0, 1]. Notice that � = 1 means that the sign-

pattern of the new directional vector meets the requirements of sign-satisfaction for all the
sample pairs. Therefore, the magnitude of the computed � can be seen as the confidence of
this potential solution to be a solution of the sign-satisfaction problem.

(6) Go back to Step (2) until � 1 intersection lines have been computed.
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We validated this method using steady-state data generated from four different population dynam-
ics. Except the Generalized Lotka-Volterra (GLV), the other three population dynamics models have
non-linear functional responses: Holling Type II (H), DeAngelis-Beddington (DB) and Crowley-
Martin (CM). Supplementary Fig. 7 shows the inferred network topology on four different population
dynamics models. We found that in case the noise level is ⌘ = 0.1, the accuracy of inference can be
around 0.8, if the cutoff is between 0.1 and 0.2. However, in the noiseless case, increasing the cutoff
can decrease the accuracy, because larger cutoff induces more false positives of interactions.

4. INFERRING THE ECOLOGICAL INTERACTION TYPES

Using the brute-force method to infer the interaction types is deterministic because we search all
the combinations of {+, 0,�}N , and accuracy increases with the increment of sample size. However,
due to the time complexity, application of the brute-force method is limited to small microbial com-
munities, e.g., N  10. This motivated us to develop the heuristic method of Supplementary Note 2
that is suitable for larger microbial communities.

To validate the effectiveness of our heuristic algorithm, we tested it using simulated steady-state
data generated by models of the form Eq. (S1). In particular, we considered a model with pair-wise
interactions of the form

(S9) ẋ

i

= x

i

"
r

i

+

NX

j=1

a

ij

g(x

i

, x

j

)

#
, i = 1, · · · , N,

where r

i

2 R is the intrinsic growth rate of the i-th taxon, A = (a

ij

) 2 RN⇥N is a constant matrix
and the function g(x

i

, x

j

) : R ⇥ R ! R is the so-called functional response [1, 2, 3, 4, 5, 6]. Recall
that these functional responses model the intake rate of a consumer as a function of food density, and
thus different functional responses correspond to different mechanisms of interaction between taxa.

We used Eq. (S9) to generate synthetic steady-state datasets for 4 different functional responses
with different complexity. The first was the linear functional response

gLV(xi

, x

j

) = x

j

,

for which Eq. (S9) actually reduces to the classical Generalized Lotka-Volterra (GLV) model. In this
case, the accuracy of the heuristic algorithm on inferring the sign-pattern sign(J) = sign(A) is 100%
if there are enough steady-state samples, see Fig. 3a in the main text. Indeed, this is a consequence of
the following proposition:

Proposition 2. In the noiseless case, if the functional response is linear, the directional vector of
intersection line of any (N � 1) hyperplanes orthogonal to {x

I � x

K |I,K 2 I
i

} is the same and
parallel to J

i

.

Proof. Due to the fact that the functional response is linear, the Jacobian matrix become simple and
constant for different samples, that is, J = A. Therefore, Eq. (S3) is equal to

a

i

M

i

= 0,

where M

i

2 RN⇥
(

|Ii|
2 )

= {x

I � x

K |8(I,K) 2 I
i

} denotes the difference of all sample pairs. As
we know, a

i

6= 0, representing the interaction vector in the A matrix, is unique to M

i

. Thus the
non-trivial solution of a

i

in the above equation array must meet the requirement

rank(M

i

) = N � 1.

That is to say, if we randomly select (N � 1) columns in M

i

as ¯

M

i

2 RN⇥(N�1), then

a

i

¯

M

i

= 0.

Actually, the randomly selected ¯

M

i

corresponds to (N � 1) hyperplanes respectively orthogonal to
each columns of ¯

M

i

in the geometric perspective. The directional vector of intersection line of these
(N � 1) hyperplanes can be calculated by null(

¯

M

>
i

) 2 RN , which is parallel to a

i

. ⇤
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The remaining three functional response were Holling Type II (H), DeAngelis-Beddington (DB)
and Crowley-Martin (CM), given by the following equations

gH(xi

, x

j

) =

c1xj

1 + c1c2xj

, gDB(xi

, x

j

) =

c1xj

1 + c1c2xi

+ c3xj

, gCM(xi

, x

j

) =

c1xj

(1 + c1c2xi

)(1 + c3xj

)

.

Here c1, c2, c3 are constants. Note that these nonlinear functional responses lead to more complicated
population dynamics. For the results presented in Fig. 3 of the main text, we used c1 = 1, c2 = c3 =

0.1. Those results show that the heuristic algorithm accurately infers the sign-pattern of Jacobian
matrix for these three functional responses and its accuracy is above 95%.

5. INFERRING INTERACTION STRENGTHS WITH GLV DYNAMICS

A particular class of systems in (S1) is when the Jacobian J

i

is constant, implying that f
i

(x) =

a

|
i

x + r

i

for some constant vector a

i

2 RN and scalar r
i

. In such case, the system reduces to the
Generalized Lotka-Volterra (GLV) model
(S10) ẋ

i

= x

i

(a

|
i

x + r

i

), i = 1, · · · , N,

where a

i

= (a

ij

) 2 RN is the i-th row of the so-called interaction matrix A 2 RN⇥N , and r

i

2 R
is the intrinsic growth rate of taxon i. As discussed in the main text, the GLV models also allows
defining the interaction strength of taxon j on taxon i as a

ij

.

5.1. A condition for detecting GLV dynamics. Our first observation is that the steady-state samples
X can be used to decide if they could be produced by a GLV model:

Theorem 3. A necessary condition for the dynamics of the i-th species to be GLV is that all samples
{x

I 2 X , I 2 I
i

} align into a hyperplane.

Proof. If for all I 2 I
i

the samples x

I align into a hyperplane, then f

i

(x) should be a hyperplane
whose general equation is a|

i

x+ r

i

. ⇤
As discussed in the main text, with real data containing measurement noises and other errors,

the samples will not align exactly into a hyperplane. In such case, the coefficient of determination
(denoted by R

2) of a hyperplane fitted to the samples containing taxon i can be used to judge if its
dynamics can be adequately described by the GLV model. For a given dataset X , if the average of R2

of the hyperplanes fitted to the samples of the i-th taxon is > 0.9, then we consider that it is possible
to infer the inter-taxa interaction strengths and intrinsic growth rates using the GLV model for this
taxon. Otherwise, we recommend to infer only the interaction types. The pipeline for detecting GLV
dynamics is described as Supplementary Fig. 8.

5.2. Inference of interaction strengths and intrinsic growth rates. Under the GLV model, Eq.
(S3) reduces to
(S11) a

|
i

· (xI � x

K

) = 0, 8(I,K) 2 I
i

.

If we denote by P

i

the (N � 1) dimensional hyperplane spanned by all the steady-state samples
sharing the i-th taxon X

i

, Eq. (S11) implies that the a

i

belongs to the one-dimensional space orthog-
onal to P

i

. Thus the normal vector of the fitted hyperplane according to X
i

is parallel to a

i

. To infer
the precise value of interaction strengths, additional prior information, at least one non-zero element
in a

i

, is needed. Otherwise, we can only infer the relative strength of the interactions between taxa.

5.3. Applying the Knockoff filter to control the false discovery rate. Eq. (S11) shows that a

i

can be inferred by fitting a hyperplane based on all the steady-state samples sharing the i-th taxon
X

i

= row{x

I 2 RN

, I 2 I
i

}, provided that we know at least one non-zero element in a

i

, say a

ii

(or
an estimate â

ii

of it). Consider that the ecological network to be inferred is sparse. Then, a natural
method to find a sparse solution is by using the so-called Lasso regression:

min

�2RN

⇢
1

N

ky � X�k2
2 + �k�k1

�
,
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where � is the Lasso (regularization) parameter. Here y is the i-th column of X
i

, and

X = col{x1, · · · ,xi�1,xi+1, · · · ,xN

,1, } 2 R|Ii|⇥N

is the matrix obtained from X
i

by deleting the i-th column and adding 1 in the end. x

i

is the i-
th column of X

i

. This structure happens because for the GLV we have r

i

+ a

i1x1 + · · · + a

ii

x

i

+

a

i,i+1xi+1 + · · · + a

iN

x

N

= 0 and we assumed for the numerical results that a
ii

= �1. Once a
solution � to the above Lasso problem is found, the estimation ˆ

a

i

for a

i

is given by

ˆ

a

i

= â

ii

[�(1 : j � 1),�1,�(j : N � 1)],

where �(i0 : if ) is the vector obtained by concatenating the elements i0 to i

n

of the vector �. Recall
that the parameter � in the Lasso is crucial for accuracy. A classical method to optimally choose this
parameter is using cross validation.

However, even after using cross validation, the Lasso tends to induce a high false discovery rate
(FDR), i.e., many zero interactions are inferred as non-zeros ones. Formally, the FDR of a inference
procedure y = X� + z, returning the inferred parameters ˆ

�, is defined as

FDR = E
"
#{j : �

j

= 0 and j 2 ˆ

�}
#{j : j 2 ˆ

�} _ 1

#
.

Here a _ b = max{a, b}.
Recently, the so-called Knockoff filter has been proposed as an enhancement to the Lasso algorithm

to maintain the FDR below a certain user-defined level q > 0, regardless of the value of the coeffi-
cients � (see [10]). This method works by constructing the so-called “knockoff variables” that mimic
the correlation structure found in the real data. The knockoff copy of each variable act as a “control
group”, allowing to assign a “trust” to each inferred variable. It has been shown this strategy success-
fully controls the FDR. In our work we used the Matlab package of the Knockoff filter as provided
in https://web.stanford.edu/

~

candes/Knockoffs/package_matlab.html. The validation of
the network inference with GLV dynamics is shown in Fig. 4 of the main text.

5.4. Blinded inference of interaction strengths by assuming GLV dynamics. Here we show that,
if the steady-state samples were collected from a microbial community without GLV dynamics, the
inference of interaction strengths by assuming GLV dynamics systematically leads to inference errors.

To illustrate this point, we first generated steady-state samples using Holling Type-II functional
response. Then, we applied the GLV-based inference method to the steady-state samples in order
to infer the interaction strengths. Supplementary Fig. 9 shows that the accuracy (the percentage of
correct sign of the inferred interaction strengths compared with the sign of ground truth) of inferred
results is very low, even in the absence of noise. This is consistent with the small value of R2 of fitted
hyperplanes, which describe the deviations of samples to those fitted hyperplanes. This suggest that
inferring the interactions strengths of a real microbial community without first testing if its dynamics
can be described by the GLV model can produce significative errors.

6. REAL DATASETS

6.1. A synthetic microbial community of 8 soil bacteria. In [11] a set of eight heterotrophic soil-
dwelling bacterial species were studied for predicting species persistence in different assembled mi-
crobial microcosms. The steady-state dataset X consists of a total of 101 different species combi-
nations: 8 solos, 28 duos, 56 trios, 8 septets and 1 octet (Supplementary Fig. 10a). Each species
combination of cultivation was carried out in duplicate and started from different configurations of
initial abundance. We averaged the steady states from different initial conditions.

First we find that R2 of each fitted hyperplane is less than 0.9 (Supplementary Fig. 10b), which
indicates that this microbial community could not be properly described by the GLV model. Hence
we focus on the inference of interactions types between any two species. To be fair, without consid-
ering the 8 solos and 28 duos, we analyze the rest steady-state samples. We use both the brute-force
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algorithm (see Fig. 5 of main text) and the heuristic algorithm (Supplementary Fig. 10c,d) to infer
the ecological interaction types. In Supplementary Fig. 10c, blue (or red) means inhibition (or pro-
motion) effect of species j on species i, respectively. We found that 11 signs were falsely inferred, 5
signs were undetermined by the analyzed steady-state samples. The inferred results are very similar
with the brute-force method shown in Fig. 5b of main text. Furthermore, Supplementary Fig. 10d
shows that once  is larger than a certain value, the accuracy in the inference does not increase any
more.

6.2. A synthetic community of maize roots with 7 bacterial species. (Fig. 6b in the main text).
There are in total 7 bacterial species (Ecl, Sma, Cpu, Opi, Ppu, Hfr and Cin) in this community [12].
The available steady-state data consists of 7 sextets (i.e., data from seven experiments in which six
different species grow together) and 1 septet (i.e., data from one experiment in which the seven species
grow together). This leads to a total of 8 steady-state samples, see Supplementary Fig. 11a.

First, based on our theoretical result showing that in the generalized Lotka-Volterra (GLV) model
the steady states that share common species will align into a hyperplane, we concluded that this
bacterial community does not follow the GLV dynamics (see Supplementary Fig. 11b). Thus, we
have to focus on inferring the interaction types, rather than interaction strengths.

Second, only using the 7 sextets we inferred the sign-pattern of the Jacobian matrix (Fig. 6a in
the main text). Based on the inferred sign of J

ij

, we can predict how the abundance of species i will
change, when we add species j to the community (see results in the Main Text).

6.3. A synthetic microbial community of two cross-feeding partners. In this community [13],
two non-mating strains of the budding yeast, Saccharomyces cerevisiae, were engineered to be defi-
cient in the biosynthesis of one of two essential amino acid tryptophan (Trp) or leucine (Leu), and to
overproduce the amino acid required by their partner. It has been demonstrated that these two strains
form a community with cross-feeding mutualism, where each strain provides the amino acid needed
by its partner. In [13], the authors inoculated monocultures and co-cultures at a range of concentra-
tions of supplemented amino acids in a well-mixed liquid batch. Supplementary Fig. 12a-c shows
the abundance of the co-cultures and monocultures for the Trp and Leu strains at low, medium and
high levels of supplemented amino acids. After 7 days cultivation, the abundance of each species
approaches its steady state. Note that for each scenario, the experiments inoculate a constant amount
of resources at the beginning. Here the type of interaction is defined by comparing the abundance
of co-cultures with monocultures at the end of cultivation. As the supply of amino acids increases
from low, to medium to high concentrations, the interaction between this pair of strains shifts from
obligatory mutualism (Supplementary Fig. 12a), to facultative mutualism (Supplementary Fig. 12b),
and to parasitism (Supplementary Fig. 12c), respectively.

We applied our inference method to each scenario. Supplementary Fig. 12d-f shows the diagrams
of our inference results that are consistent with the empirical observations. For example, in Supple-
mentary Fig. 12e,f, the cyan line orthogonal to the red line is very close to the Leu axis, which indicate
the effect of Trp on Leu is very weak. Especially in Supplementary Fig. 12f, this promotion effect
can be ignored.

6.4. A synthetic community of 14 auxotrophic Escherichia coli strains. Starting from a pro-
totrophic E. coli derivative MG1655, the authors of [14] generated 14 strains, each containing a gene
knockout that lead to an auxotrophic phenotype unable to produce 1 of 14 essential amino acids. By
convention, the authors labeled each auxotrophic strain by the amino acid it lacks. For example, the
methionine auxotroph �metA auxotroph is strain M. It was confirmed that the 14 auxotrophs (C, F,
G, H, I, K, L, M, P, R, S, T, W, Y) show no growth in M9-glucose minimal media after 4 days. Indeed,
they grow only when supplemented with the essential amino acid they were not able to produce. This
dataset consists of co-cultures of all 91 possible strain pairs from the 14 characterized auxotrophic
strains. For each pairwise co-culture, we are able to calculate the total fold growth, i.e., the yield of
the community calculated by (total final cell density)/(total initial cell density), as well as the fold
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growth of each strain. Since these auxotrophic strains cannot grow by themselves, if strain i is able to
grow as a co-culture when paired with strain j, and strain i’s fold growth is F

ij

> 1, this implies that
strain j promotes the growth of strain i, i.e., J

ij

> 0. By contrast, if F
ij

< 1, we cannot conclusively
say that J

ij

< 0 because we lack the monoculture data. Therefore, the fold-growth metric can only be
used to detect a promotion effect between two strains.

First, we found that R2 of all fitted hyperplanes are smaller than 0.9, implying that the population
dynamics of this microbial community cannot be properly described by the GLV model (Supplemen-
tary Fig. 13a). Second, we used the heuristic algorithm to infer the interaction types (Supplementary
Fig. 13b). Note that the complexity of the inference approaches 314 ⇠ 4 ⇥ 10

6 if we use the brute-
force algorithm. We found that the types of 14 pairwise interactions cannot be determined with the
given dataset (marked in gray in Supplementary Fig. 13b). Third, we showed the fold growth matrix
F = (F

ij

) from experimental observations (Supplementary Fig. 13c), with F

ij

the fold growth of
strain i (row) in the co-culture paired with strain j (column). Here we set F

ij

� 20 as an indication
of promotion effect of strain j on strain i. There are in total 71 promotion interactions with such a
large confidence (shown in red, Supplementary Fig. 13c). We will use them as the ground truth to
check our inference results on promotion effects (i.e., positive signs, shown in red in Supplementary
Fig. 13b). We found we inferred 13 wrong positive signs (marked as ‘⇥’ in Supplementary Fig. 13c),
and missed 5 positive signs (marked as ‘?’ in Supplementary Fig. 13c). Therefore, our inference of
positive signs has an accuracy of 74.65% (53/71), if we set the fold growth threshold 20 as the indica-
tion of promotion effect. We also observed that the accuracy on the inference generally increased by
increasing this threshold (Supplementary Fig. 13d).
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7. RELATIONSHIP TO EXISTING NOTIONS OF INTER-TAXA INTERACTIONS

In Assumption 2, we considered that the Jacobian of (S1) determines the interaction types between
microbial taxa. This assumption was then used to build our network reconstruction method. Here
we discuss how this consideration compares to other existing definitions and notions of “interactions”
available in the ecological literature.

In general ecological systems, understanding the interactions between taxa and their strengths is key
for developing predictive models and conservation strategies. This has motivated the introduction of
several empirical indices for inter-taxa interactions, specially for consumer-prey ecosystems [15, 16].
Let x1 and x2 denote the abundances of prey and consumer, respectively. Consider two samples for
this ecosystem consisting of an experiment with the prey in isolation x

{1} 2 R2 —that is, with the
consumer or predator deleted— and other with both prey and consumer present x{1,2} 2 R2. Here we
discuss the four empirical indices as used in [16]:

a) Raw difference: R =

x

{1,2}
1 �x

{1}
1

x

{1,2}
2

.

b) Paine’s index: PI = x

{1,2}
1 �x

{1}
1

x

{1}
1 x

{1,2}
2

.

c) Community importance: CI = x

{1,2}
1 �x

{1}
1

x

{1}
1 p

, where p = x

{1,2}
2 /(x

{1,2}
1 + x

{1,2}
2 ).

d) Dynamic index: DI = ln(x
{1,2}
1 /x

{1}
1 )

t x

{1,2}
2

, where t is time.

Remark 7.
a. All the above indices have identical signs, solely determined by x

{1,2}
1 � x

{1}
1 . As shown in

Example 3, such sign coincides with one of the possible sign-patterns obtained by applying our
reconstruction method for N = 2 taxa. More precisely, the above indices coincides with our
reconstruction method provided we assume this as prior information. Such prior information
can be interpreted as adopting a “convention” for the sign of self-interactions (i.e., a kind of
“relative sign-pattern”).

b. Compared to the analysis in [16], our reconstruction method provides more general conditions
under which the above indices provide the correct sign of the interactions according to a
mathematical model.

c. Our reconstruction method also generalizes the application of the above indices to ecosystems
with an arbitrary number of taxa, and beyond the consumer-prey interactions.

d. Our reconstruction method provides conditions under which the available steady-state data is
informative enough to infer the correct sign of a desired microbial interaction.

e. According to our framework, note there are two different interactions that is possible to infer:
x1 ! x2 and x2 ! x1. The above indices and discussions are concerning the interaction
x2 ! x1 —that is, the effect of the consumer on the prey. In order to infer the sign of
the interaction x1 ! x2, we need to evaluate x

{1,2}
2 � x

{2}
2 . In the case of consumer-prey

ecosystem with N = 2 taxa, it might be impossible to measure a non-zero x

{2}, since it
corresponds to a steady-state abundance of consumers in the absence of prey. In such case,
the set I2 contains only one sample x

{1,2}, and thus the given data is not informative enough
to infer this interaction. This argument could explain cases when for N taxa it is impossible to
infer some interaction due to the absence of the needed sample, simply because in the absence
of some taxa other become extinct.
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SUPPLEMENTARY FIGURE 1. Inferring the zero-pattern of the Jacobian matrix.
a. The temporal evolution of the abundance of each species. b. The sign of J22 is time
varying, while the signs of the other elements in the Jacobian matrix are time-invariant.
c. Inference of J12. According to the position of x

{1,2} � x

{1}, the green line which is
orthogonal to the red line cannot produce a zero entry for J1, implying that J11 6= 0 and
J12 6= 0. This is consistent with the ground truth. d. Inference of J12. The green line
(orthogonal to the blue line) is aligned with the x2-axis, indicating that J21 = 0 and
J22 6= 0, consistent with the ground truth. e. When noise level ⌘ = 0.1, the light green
line is orthogonal to the light red line corresponding to the difference of two noisy
samples x

{1} and x

{1,2}. The bold red and green lines correspond to the noiseless case.
There are in total 1000 different measurements (replicates). We found that the angles
between the green lines and x1-axis are large enough, letting us conclude that J12 6= 0

even if there exists some noise. f. When noise level ⌘ = 0.1, the light green line is
orthogonal to the light blue line corresponding to the difference of two noisy samples
x

{1} and x

{1,2}. The bold blue and green lines correspond to the noiseless case. There
are in total 1000 replicates. Among the 1000 replicates, the light green line is equally
distributed to the left and right side of x2-axis, indicating that the deviation of the light
green line from the x2-axis is likely due to measurement noises. This behavior let us
introduce a user-defined cutoff value to judge the zero-pattern of J

ij

based on the angle
between the x1-axis (or x2-axis) and green lines.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 26, 2017. ; https://doi.org/10.1101/150649doi: bioRxiv preprint 

https://doi.org/10.1101/150649


22 Y. XIAO, M.T. ANGULO, J FRIEDMAN, MK WALDOR, ST WEISS, AND Y.-Y. LIU

0 10
0

5

10
0
0

5

a. b.

SUPPLEMENTARY FIGURE 2. Reconstructing sign(J1) for N = 2 in Example 3.
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SUPPLEMENTARY FIGURE 3. In case the sign-pattern of the Jacobian matrix is
time varying, the results of our inference can be interpreted as the overall inhi-
bition or promotion impact between different taxa. Here we consider a toy model
of two species X and Y . Each has a per capita growth rate that is modulated by its
mutualistic partner as well as the resource amount (denoted as a). The population dy-
namics model is shown in Eq. (S6), with model parameters  = 0.12, � = 0.5, � = 2.
a. Three regimes of the interaction types emerge from different resource amount, from
mutualism, parasitism to competition. The ground truth of the interaction types is
determined by comparing the abundance of coculture (solid lines) with that of mono-
culture (dashed lines). b-d. Diagrams of our inference method under different resource
amount. e-g. J

ij

(x

I

+�(x

K �x

I

)) as a function of � under different resource amount.
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SUPPLEMENTARY FIGURE 4. Sign-satisfaction graph and its solution for Example
6. Each node is divided in two parts: the left is an entry of sign(xI�x

K

) and the right is
an entry of sign(J1). The color of each node represents the multiplication of the sign of
left and right part (red is positive, gray is zero and blue is negative). The yellow paths
are the solutions to the sign-satisfaction graph, determining sign(J1), i.e., (�,+,+),
(�,�,+), and (�, 0,+). Note that since we assume J11 < 0 as prior information, the
first column of the sign-satisfaction graph only has one node.
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SUPPLEMENTARY FIGURE 5. Intersections of planes provides a preference sam-
pling in the sign-satisfaction graph. a. The black line is the intersection of the light
orange and blue planes. Each of normal vectors (blue lines) corresponds to the first
and fifth column of the matrix M1 in Example 5, respectively. Note that the orthants
to which the intersection line belongs implies that those orthants are at least crossed
by two planes. b. If there 4 samples sharing taxon 1, we will have a total of

�
4
2

�
= 6

planes. Thus, � will be the normalized count of how many of those hyperplane cross
the orthants determined by the black intersection line.
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SUPPLEMENTARY FIGURE 6. Pipeline of the heuristic algorithm for inferring in-
teraction types.
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SUPPLEMENTARY FIGURE 7. The inference of network topology for four different
population dynamics models. Here the ecological network is generated using random
network with N = 20 taxa and the connectivity equal to 0.4. The simulated steady-
state samples are generated using the constants c1 = 1, c2 = c3 = 0.1 for Holling, DB
and CM. The inference used ⌦ = 5N = 100 samples and  = 5N = 100 intersection
lines in the heuristic algorithm. The error bars represent standard deviation for 10
different realizations.
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SUPPLEMENTARY FIGURE 8. Pipeline of the heuristic algorithm for inferring in-
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SUPPLEMENTARY FIGURE 9. Inference assuming GLV dynamics for a microbial
community without GLV dynamics. a. Here we generated the steady states from a
microbial community of N = 8 taxa with Holling Type-II functional response. The
A matrix is shown here. b. R2 of fitted hyperplanes in the noiseless (circle) or noisy
(triangle) samples. c,d. The inferred A matrix. The accuracy of the inference in the
noiseless and noisy cases are 0.7812 and 0.6719, respectively.
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SUPPLEMENTARY FIGURE 10. Inference of interaction types of a synthetic soil
microbial community using our heuristic algorithm. a. 101 different species com-
binations: all 8 solos, 28 duos, 56 trios, all 8 septets, and 1 octet. b. We find that
R

2 of all fitted hyperplanes are smaller than 0.9. This suggests that the given samples
cannot be properly described by the GLV model, and we should focus on the inference
of interaction types. c. Inferred interaction types. Compared with the ground truth in
Fig. 5a in the main text, there are 11 falsely inferred signs (false labels) and 5 signs
cannot be determined by the given samples. We take the number of intersection line as
 = 50. d. The accuracy as a function of  . Once  is larger than a certain value, the
accuracy could not increase any more. The error bar represents standard deviation for
30 different realizations.
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SUPPLEMENTARY FIGURE 11. Inferring interaction types in a synthetic commu-
nity of maize roots with 7 bacterial species. a. 8 different species combinations: all
7 sextets and 1 septet. b. We find that R2 of all fitted hyperplanes are smaller than 0.9.
This indicates that the given samples cannot be properly described by the GLV model,
and we should focus on the inference of interaction types.
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SUPPLEMENTARY FIGURE 12. Inferring interaction types in a synthetic microbial
community of two cross-feeding partners with different amount of resource avail-
ability. a-c. The abundance of the co-cultures (solid line) and monocultures (dashed
line) for the Trp (green) and Leu (red) strains with the resources of low, medium and
high amino acid. Leu and Trp strains are auxotrophic for each other. However, their
co-cultures under different amount of resources exhibit different interaction types. d-f.
Diagrams of our inference method. The inferred results are consistent with the experi-
mental observations.
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SUPPLEMENTARY FIGURE 13. Inferring interaction types in a synthetic commu-
nity of 14 strains each containing a gene knockout that lead to an auxotrophic
phenotype of 1 of 14 essential amino acids. The dataset consists of 91 steady-state
samples, each involving a particular pair of the 14 strains. a. We find that R2 of
all fitted hyperplanes are smaller than 0.9, suggesting that this community cannot be
properly described by the GLV model. b. Inferred interaction types by our heuristic
algorithm (with 1000 user-defined intersection lines) using only 91 steady-state sam-
ples. c. The experimentally measured fold growth matrix F = (F

ij

), with F

ij

the fold
growth of strain i (row) in the co-culture paired with strain j (column). We set F

ij

� 20

as the indication of promotion effect of strain j on strain i. There are in total 71 promo-
tion interactions with such a large confidence (shown in red). Among them, 53 were
correctly inferred, 13 (marked as ‘⇥’) were not correctly inferred, and 5 (marked as
‘?’) were undetermined by our method, resulting in accuracy 53/71 = 74.65%, at this
particular fold growth threshold. d. The inference accuracy of promotion effect as a
wide range of threshold value of fold growth.
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