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ABSTRACT

Background: Absent adaptive, individualized dose-finding in early-phase oncology trials, subsequent
registration trials risk suboptimal dosing that compromises statistical power and lowers the probability
of technical success (PTS) for the investigational drug. While much methodological progress has been
made toward adaptive dose-finding, and quantitative modeling of dose-response relationships, most such
work continues to be organized around a concept of ‘the’ maximum tolerated dose (MTD). But a new
methodology, Dose Titration Algorithm Tuning (DTAT), now holds forth the promise of individualized
‘MTDi’ dosing. Relative to such individualized dosing, current ‘one-size-fits-all’ dosing practices amount to
a constraint that imposes costs on society. This paper estimates the magnitude of these costs.
Methods: Simulated dose titration as in (Norris 2017) is extended to 1000 subjects, yielding an empirical
MTDi distribution to which a gamma density is fitted. Individual-level efficacy, in terms of the probability of
achieving remission, is assumed to be an Emax-type function of dose relative to MTDi, scaled (arbitrarily)
to identify MTDi with the LD50 of the individual’s tumor. (Thus, a criterion 50% of the population
achieve remission under individualized dosing in this analysis.) Current practice is modeled such that all
patients receive a first-cycle dose at ‘the’ MTD, and those for whom MTDi < MTDthe experience a
‘dose-limiting toxicity’ (DLT) that aborts subsequent cycles. Therapy thus terminated is assumed to confer
no benefit. Individuals for whom MTDi ≥ MTDthe tolerate a full treatment course, and achieve remission
with probability determined by the Emax curve evaluated at MTDthe/MTDi. A closed-form expression is
obtained for the population remission rate, and maximized numerically over MTDthe as a free parameter,
thus identifying the best result achievable under one-size-fits-all dosing. A sensitivity analysis is performed,
using both a perturbation of the assumed Emax function, and an antipodal alternative specification.
Results: Simulated MTDi follow a gamma distribution with shape parameter α≈ 1.75. The population
remission rate under one-size-fits-all dosing at the maximizing value of MTDthe proves to be a function
of the shape parameter—and thus the coefficient of variation (CV)—of the gamma distribution of MTDi.
Within a plausible range of CV(MTDi), one-size-fits-all dosing wastes approximately half of the drug’s
population-level efficacy. In the sensitivity analysis, sensitivity to the perturbation proves to be of second
order. The alternative exposure-efficacy specification likewise leaves all results intact.
Conclusions: The CV of MTDi determines the efficacy lost under one-size-fits-all dosing at ‘the’ MTD.
Within plausible ranges for this CV, failure to individualize dosing can effectively halve a drug’s value
to society. In a competitive environment dominated by regulatory hurdles, this may reduce the value of
shareholders’ investment in the drug to zero.
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INTRODUCTION

Dose Titration Algorithm Tuning (DTAT), a new methodology for individualized dose-finding in
early-phase oncology studies, holds forth a promise of individualized dosing from the earliest
stages of oncology drug development (Norris 2017). Most immediately and obviously, such
individualized dosing serves the imperative of individual ethics in seeking to optimize the care of
each person who enrolls in a Phase I study. But by increasing the efficiency of drug development
overall, individualized dosing also serves wider social aims. Less effective, ‘one-size-fits-all’ dosing
may condemn valuable drugs to failure in later registration trials. More efficacious, individualized
dosing may therefore avert financial losses to shareholders in pharmaceutical innovation, while
preserving innovations valuable to society at large. This brief technical note estimates the
magnitude of the social costs incurred by one-size-fits-all dose-finding studies. The argument
should be of interest to shareholders in pharmaceutical innovation, and to executives having
fiduciary responsibilities to them.

THE DISTRIBUTION OF MTDi

In (Norris 2017), DTAT was demonstrated by simulated dose titration in 25 simulated subjects
drawn randomly from a population model of the pharmacokinetics and myelosuppressive dynamics
of docetaxel. By extending this simulation to 1000 subjects, we obtain the empirical distribution
of individualized maximum tolerated dose (MTDi) shown in Figure 1.
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Figure 1. MTDi is approximately Gamma distributed.

Whether the fitted Gamma density in Figure 1 represents a true distribution in any actual
human population matters less for what follows than establishing the basic plausibility of a
Gamma-distributed MTDi generally.

DOSE-RESPONSE MODEL

To estimate the cost of sub-MTDi dosing, one must model individual-level efficacy as a function
of dose. A traditional approach in this context is to posit a dose-effect model of a standard
‘Emax’ type. Taking the tumor’s point of view, we may write in fact a ‘toxicology’ form of the
model:
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Pr(D) = D

D+ LD50
,

where Pr(D) is the probability of achieving remission as a function of D, the dose received, and
LD50 is the dose that would be ‘lethal’ to the tumor in 50% of patients—that is, the dose that
would achieve remission with probability 0.5. By supposing further that MTDi is the LD50 for
the tumor in individual i, we obtain:

Pr = D

D+ MTDi
=
(

1 + MTDi
D

)−1
=
(

1 + 1
θi

)−1
.

Thus, identifying MTDi with the LD50 of the tumor yields a modeled remission probability
that is a function of θi = D/MTDi, the fraction of MTDi received. The reasonableness of
this identification will be explored in the Discussion below. As it turns out, a slightly different
functional form for Pr(θ) supports obtaining an intermediate result in terms of standard functions:

Pr(θ) = 1
2θ

1
2 . (1)

The reader suspicious of this departure from tradition should take reassurance in noting that this
revised functional form is uniformly more forgiving of suboptimal dosing than the standard form:

1
2θ

1
2 ≥

(
1 + 1

θ

)−1
for θ ≥ 0.

THE DISTRIBUTION OF θi = MTDthe/MTDi

If MTDi ∼Gamma(α,β), then 1
MTDi

∼ Inv-Gamma(α,β) and consequently

θi = MTDthe
MTDi

∼ Inv-Gamma(α,β ·MTDthe). (2)

THE TWO COSTS OF ONE-SIZE-FITS-ALL DOSING

Under the prevailing practice of one-size-fits-all dosing at ‘the’ MTD, we take the following to
occur: (1) Those individuals i for whom MTDi > MTDthe will receive suboptimal dosing at
a fraction θi < 1 of their optimal dose; (2) those for whom MTDi < MTDthe will experience
intolerable adverse effects with a first dose, and will not receive subsequent cycles of therapy.
(Those rare individuals for whom MTDi = MTDthe holds exactly will receive their optimal θi = 1
dose, and enjoy the full benefit of the drug.) Thus, dosing everyone at MTDthe has two social
costs: individuals who cannot tolerate ‘the’ MTD derive no benefit from the drug, while those
who could have tolerated higher doses derive suboptimal benefit. This latter cost is well described
in a literature stretching back 2 decades, documenting (across many types of cancer) that patients
who experience milder adverse effects from chemotherapy tend to have worse outcomes (Saarto
et al. 1997, Cameron et al. (2003), Di Maio et al. (2005), Yamanaka et al. (2007), Y. H. Kim et
al. (2009), Lee et al. (2011), Shitara et al. (2011), McTiernan et al. (2012), Liu, Zhang, and Li
(2013), Shiozawa et al. (2014), Su et al. (2015), Osorio et al. (2017)).
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Figure 2 depicts the balance of these costs under 3 different choices of MTDthe ∈{100,200,300}mg.
If MTDi ∼Gamma(α= 1.75,β = 1/200), then θi = MTDthe/MTDi will follow the inverse gamma
distribution:

θi = MTDthe
MTDi

∼ Inv-Gamma(α= 1.75,β ∈ {100
200 ,

200
200 ,

300
200})

These 3 densities are plotted in green in Figure 2, superimposed on the dose-response relationship
of Equation 1. Here, it is readily seen that setting MTDthe = 100mg causes most individuals
to receive doses below half of their MTDi’s (θ < 0.5). Conversely, setting MTDthe = 300mg
causes few individuals to be dosed at θ ≤ 0.5, but excludes a large fraction of the population
from treatment—as indicated by the large area under the dashed curve to the right of θ = 1.
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Figure 2. Social costs of one-size-fits-all dosing at 3 different choices of ‘the’ MTD.
Against the purple dose-response function, the distribution of θi = MTDthe/MTDi is plotted for
3 different values of MTDthe. When ‘the’ MTD is set low (100 mg), few individuals are excluded
from treatment (area under dashed curves), but most are treated at a low fraction (θi < 0.5) of
their MTDi’s. Conversely, when ‘the’ MTD is set high (300 mg), fewer individuals are dosed so
low, but many (large area under dashed curve) cannot tolerate the drug and do not receive a full
course of treatment.

POPULATION-LEVEL EFFICACY OF ONE-SIZE-FITS-ALL DOSING

Given that θi is distributed as in Equation 2, and that the individual-level probability of remission
is as given by Equation 1, then the population rate P̄r of achieving remission may be calculated
by integrating Pr(θi) over the treated population 0≤ θi ≤ 1. Normalizing β̃ = β ·MTDthe, we
can calculate:
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P̄r =
∫ 1

0
Pr(θ) · Inv-Gamma(θ;α,β̃)dθ

=
∫ 1

0

1
2θ

1/2 · β̃
α

Γ(α)θ
−α−1exp

(
− β̃
θ

)
dθ

= 1
2
β̃

1
2 Γ(α− 1

2 )
Γ(α)

∫ 1

0

β̃α−
1
2

Γ(α− 1
2 )
θ−(α− 1

2 )−1exp
(
− β̃
θ

)
dθ

= 1
2
β̃

1
2 Γ(α− 1

2 )
Γ(α)

∫ 1

0
Inv-Gamma(θ;α− 1

2 , β̃)dθ

= 1
2
β̃

1
2 Γ(α− 1

2 )
Γ(α) Q(α− 1

2 , β̃),

where Q denotes the regularized gamma function.

The best-case population rate of remission is obtained by choosing MTDthe optimally:

P̂r(α) = max
β̃

[
1
2
β̃

1
2 Γ(α− 1

2 )
Γ(α) Q(α− 1

2 , β̃)
]

= 1
2

Γ(α− 1
2 )

Γ(α) max
β̃

[
β̃

1
2 Q(α− 1

2 , β̃)
]
, (3)

in which it should be noted particularly that P̂r is a function of the ‘shape parameter’ α, which
determines the coefficient of variation (CV) of our gamma-distributed MTDi via CV = α−1/2.
The maximand on the right-hand side of Equation 3 is readily evaluated using the implementation
of the regularized gamma function Q provided in R package zipfR (Evert and Baroni 2007), and
the maximum obtained numerically. The dependence of P̂r on CV(MTDi) is plotted in Figure 3.
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Figure 3. Estimated minimum cost of one-size-fits-all dosing, as a function of the coefficient of
variation (CV) of MTDi in the population. It is assumed that ‘the’ MTD is chosen to maximize
the population-level remission rate, under the constraint of one-size-fits-all dosing. The cost of
the one-size-fits-all constraint is calculated relative to a reference remission probability of 50%
for optimal individualized dosing at each patient’s MTDi. The more MTDi varies within the
population, the more untenable one-size-fits-all dosing becomes.
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SENSITIVITY ANALYSIS

One assumption essential to the development of my argument thus far was that individual-
level outcomes are a function of θi =D/MTDi, the fraction of MTDi received by individual i.
This assumption would hold in the limiting case where inter-individual variation in MTDi was
driven entirely by pharmacokinetic heterogeneity. (Consider the particularly simple example of
an oral drug for which otherwise-identical individuals differed only regarding bioavailability.)
Nevertheless, the sensitivity of my results to this assumption does seem to warrant further
examination.

Consider the following perturbation of Equation 1:

Pr(D,MTDi) = 1
2

(
D

MTDi

) 1
2
[
1 + δ

(
MTDi
α/β

−1
)]

, (4)

where the factor in brackets induces a dependence of Pr on MTDi that is not accounted for
by θi = D/MTDi. This factor is motivated as a first-order Taylor expansion of a general
functional dependence, centered on the population mean E[MTDi] = α/β. Not only do we
recover Equation 1 in the limit as δ → 0, but we also preserve independently of δ the same
population-average remission rate of 1/2 under individualized ‘MTDi’ dosing. (To appreciate
this latter point, set D = MTDi in Equation 4 then take expectations on both sides.)

To obtain P̄r as previously, we rearrange Equation 4 as follows

Pr(D,MTDi) = 1
2

{
(1− δ)

(
D

MTDi

) 1
2

+ δ
D

α/β

(
MTDi
D

) 1
2
}
,

and then integrate as before:

P̄r(MTDthe) =1
2

∫ MTDthe

0
Pr(MTDthe,MTDi) · Inv-Gamma(MTDi;α,β)dMTDi

=1
2

∫ 1

0

[
(1− δ)θ

1
2 + δ

MTDthe
α/β

θ−
1
2

]
· Inv-Gamma(θ;α,β̃)dθ

=1
2

∫ 1

0

[
(1− δ)θ

1
2 + δ

β̃

α
θ−

1
2

]
· Inv-Gamma(θ;α,β̃)dθ

=1
2(1− δ)

β̃
1
2 Γ(α− 1

2 )
Γ(α) Q(α− 1

2 , β̃) + 1
2δ

β̃

α

β̃−
1
2 Γ(α+ 1

2 )
Γ(α) Q(α+ 1

2 , β̃)

=1
2
β̃

1
2 Γ(α− 1

2 )
Γ(α) Q(α− 1

2 , β̃)
[
1− δ

2α

]
+ β̃αe−β̃

Γ(α)

(
δ

2α

)
,

in which the final step requires applications of the recurrence relations for Γ and Q.

The best-case population rate of remission is obtained, as before, by choosing MTDthe optimally:

P̂r(α) = max
β̃

[
1
2
β̃

1
2 Γ(α− 1

2 )
Γ(α) Q(α− 1

2 , β̃)
[
1− δ

2α

]
+ β̃αe−β̃

Γ(α)

(
δ

2α

)]
. (5)

Equation 5 generalizes Equation 3, and reduces to it on setting δ = 0.
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Without attempting to develop an interpretation of δ, we plot in Figure 4 the relative efficacy of
one-size-fits-all dosing at selected values of CV , for δ ∈ [−1,1]. Evidently, the perturbation is of
second order. Moreover, absolute deviations from the picture of Figure 3 prove small over the
range of what seems from Equation 4 to be the natural scale for δ.
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Figure 4. Sensitivity of efficiency loss estimate to perturbation as in Equation 4.

Sensitivity under an interpretable alternative

As an alternative to the foregoing perturbation analysis, we might instead posit a single, readily
interpretable alternative to Equation 1. A possibility that immediately presents itself as a
‘diametrically opposed’ alternative is to suppose Pr(D,MTDi) independent of MTDi, as in:

P ∗r (D,MTDi)≡ P ∗r (D) = γ

(
D

α/β

) 1
2

= γ

(
D

E[MTDi]

) 1
2
. (6)

Under one-size-fits-all dosing, Equation 6 yields a population-level efficacy of

P̄ ∗r (D) =
∫ ∞
D

P ∗r (D) ·Gamma(x;α,β)dx= γ

(
D

α/β

) 1
2

Q(α,β ·D). (7)

In contrast to the cases considered above, here the integration extends into a region where
Pr > 1; but, by taking γ → 0, we can push this region as far as desired into the tail of our
Gamma-distributed MTDi. (As will be seen presently, γ drops out of our analysis of relative
efficacy.) Differentiating with respect to D, and employing the same normalization β̃ = β ·D
introduced previously, we find that Equation 7 is maximized at β̃ = β̂ defined by

Q(α,β̂) = 2 β̂
αe−β̂

Γ(α) . (8)

Substituting (8) into (7), we find that this maximum value is:

P̂ ∗r = γ

(
β̂

α

) 1
2

2 β̂
αe−β̂

Γ(α) = 2γ β̂
α+ 1

2 e−β̂√
αΓ(α)

. (9)
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Under the MTDi-independent remission probability (6), optimal individualized dosing does not
reduce trivially to a constant 1/2. Rather, we must calculate as follows:

P̄r
∗,i =

∫ ∞
0

P ∗r (D) ·Gamma(D;α,β)dD = γ
Γ(α+ 1

2 )
√
αΓ(α)

. (10)

Dividing (9) by (10), we obtain the following expression for relative efficacy of one-size-fits-all
dosing under Equation 6:

P̂ ∗r

P̄r
∗,i = 2 β̂

α+ 1
2 e−β̂

Γ(α+ 1
2 )
. (11)

Solving Equation 8 numerically for β̂ = β̂(α), and substituting this into Equation 11, we obtain
the following counterpart to Figure 3:
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Figure 5. Sensitivity of Figure 3 to alternative specification of an MTDi-independent dose-effect
relation as in Equation 6. The solid curve shows efficacy loss under this alternative specification,
while the dotted curve shows, for comparison, the original curve derived from Equation 1.
Evidently, this alternative specification does little to redeem one-size-fits-all dosing.

DISCUSSION

At two points in this argument, I have adopted modeling assumptions that are relatively forgiving
of one-size-fits-all dosing, and therefore would tend to underestimate its costs. Firstly, my highly
concave square-root Emax model (Equation 1) regards under-dosing more favorably than does
a typical Emax model, such as appears in the dotted purple curve in Figure 2. Secondly, the
optimization itself in Equation 3 surely overestimates the population-level outcomes achieved by
one-size-fits-all dosing as implemented in current Phase I designs. Indeed, these designs tend to
target DLT rates without explicit reference or regard to outcomes.

Dose reduction protocols, as seen both in trials and in clinical practice, do somewhat relax the
extreme form of one-size-fits-all dosing constraint that I have modeled in this paper. Clearly,
such protocols exist precisely to recover some part of the lost value I calculate here. But given
that these protocols are readily interpreted as a (very) poor man’s DTAT, their existence only
underscores the urgent need for rational dose individualization in oncology. This conclusion fully
withstands the rather vigorous sensitivity analysis performed above.
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CONCLUSIONS

Taking population-level efficacy as a proxy, I have estimated the social cost of one-size-fits-
all dosing organized around a concept of ‘the’ maximum tolerated dose (MTD) in oncology.
The magnitude of this cost is seen to depend primarily on the coefficient of variation (CV)
of individually optimal MTDi doses in the population. Within plausible ranges for this CV,
the failure to individualize dosing can effectively halve a drug’s value to society. Notably, in
a competitive environment dominated by regulatory hurdles, this may reduce the value of
shareholders’ investment in a drug to zero.

DATA AVAILABILITY

Open Science Framework: Data for Figure 1 may be found in R package DTAT (v0.1-1),
available together with code for reproducing all of this paper’s Figures and analyses, at doi:
10.17605/osf.io/vtxwq.

Competing interests

The author operates a scientific and statistical consultancy focused on precision-medicine method-
ologies such as those advanced in this article.

Grant information

The author declared that no grants were involved in supporting this work.

9/10

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2017. ; https://doi.org/10.1101/150821doi: bioRxiv preprint 

doi:10.17605/osf.io/vtxwq
doi:10.17605/osf.io/vtxwq
https://doi.org/10.1101/150821
http://creativecommons.org/licenses/by/4.0/


REFERENCES

Cameron, D. A., C. Massie, G. Kerr, and R. C. F. Leonard. 2003. “Moderate Neutropenia with
Adjuvant CMF Confers Improved Survival in Early Breast Cancer.” Br. J. Cancer 89 (10): 1837–42.
doi:10.1038/sj.bjc.6601366.

Di Maio, Massimo, Cesare Gridelli, Ciro Gallo, Frances Shepherd, Franco Vito Piantedosi, Silvio Cigolari,
Luigi Manzione, et al. 2005. “Chemotherapy-Induced Neutropenia and Treatment Efficacy in Advanced
Non-Small-Cell Lung Cancer: A Pooled Analysis of Three Randomised Trials.” Lancet Oncol. 6 (9):
669–77. doi:10.1016/S1470-2045(05)70255-2.

Evert, Stefan, and Marco Baroni. 2007. “zipfR: Word Frequency Distributions in R.” In Proceedings of
the 45th Annual Meeting of the Association for Computational Linguistics, Posters and Demonstrations
Sessions, 29–32. Prague, Czech Republic.

Kim, Yun Hwan, Hyun Hoon Chung, Jae Weon Kim, Noh-Hyun Park, Yong-Sang Song, and Soon-Beom
Kang. 2009. “Prognostic Significance of Neutropenia During Adjuvant Concurrent Chemoradiotherapy
in Early Cervical Cancer.” J Gynecol Oncol 20 (3): 146–50. doi:10.3802/jgo.2009.20.3.146.

Lee, C. K., H. Gurney, C. Brown, R. Sorio, N. Donadello, G. Tulunay, W. Meier, et al. 2011. “Carboplatin-
Paclitaxel-Induced Leukopenia and Neuropathy Predict Progression-Free Survival in Recurrent Ovarian
Cancer.” Br. J. Cancer 105 (3): 360–65. doi:10.1038/bjc.2011.256.

Liu, Wei, Cui-Cui Zhang, and Kai Li. 2013. “Prognostic Value of Chemotherapy-Induced Leukopenia in
Small-Cell Lung Cancer.” Cancer Biol Med 10 (2): 92–98. doi:10.7497/j.issn.2095-3941.2013.02.005.

McTiernan, Anne, Rachel C. Jinks, Matthew R. Sydes, Barbara Uscinska, Jane M. Hook, Martine
van Glabbeke, Vivien Bramwell, et al. 2012. “Presence of Chemotherapy-Induced Toxicity Predicts
Improved Survival in Patients with Localised Extremity Osteosarcoma Treated with Doxorubicin and
Cisplatin: A Report from the European Osteosarcoma Intergroup.” Eur. J. Cancer 48 (5): 703–12.
doi:10.1016/j.ejca.2011.09.012.

Norris, David C. 2017. “Dose Titration Algorithm Tuning (DTAT) Should Supersede ‘the’ Max-
imum Tolerated Dose (MTD) in Oncology Dose-Finding Trials.” F1000Research 6 (March): 112.
doi:10.12688/f1000research.10624.2.

Osorio, J. C., A. Ni, J. E. Chaft, R. Pollina, M. K. Kasler, D. Stephens, C. Rodriguez, et al. 2017.
“Antibody-Mediated Thyroid Dysfunction During T-Cell Checkpoint Blockade in Patients with Non-
Small-Cell Lung Cancer.” Ann Oncol. Accessed March 6. doi:10.1093/annonc/mdw640.

Saarto, T., C. Blomqvist, P. Rissanen, A. Auvinen, and I. Elomaa. 1997. “Haematological Toxicity: A
Marker of Adjuvant Chemotherapy Efficacy in Stage II and III Breast Cancer.” Br. J. Cancer 75 (2):
301–5.

Shiozawa, Yusuke, Junko Takita, Motohiro Kato, Manabu Sotomatsu, Katsuyoshi Koh, Kohmei Ida,
and Yasuhide Hayashi. 2014. “Prognostic Significance of Leukopenia in Childhood Acute Lymphoblastic
Leukemia.” Oncol Lett 7 (4): 1169–74. doi:10.3892/ol.2014.1822.

Shitara, Kohei, Keitaro Matsuo, Isao Oze, Ayako Mizota, Chihiro Kondo, Motoo Nomura, Tomoya
Yokota, Daisuke Takahari, Takashi Ura, and Kei Muro. 2011. “Meta-Analysis of Neutropenia or
Leukopenia as a Prognostic Factor in Patients with Malignant Disease Undergoing Chemotherapy.”
Cancer Chemother Pharmacol 68 (2): 301–7. doi:10.1007/s00280-010-1487-6.

Su, Zhen, Yan-Ping Mao, Pu-Yun OuYang, Jie Tang, Xiao-Wen Lan, and Fang-Yun Xie. 2015. “Leu-
copenia and Treatment Efficacy in Advanced Nasopharyngeal Carcinoma.” BMC Cancer 15 (May): 429.
doi:10.1186/s12885-015-1442-3.

Yamanaka, T., S. Matsumoto, S. Teramukai, R. Ishiwata, Y. Nagai, and M. Fukushima. 2007. “Predictive
Value of Chemotherapy-Induced Neutropenia for the Efficacy of Oral Fluoropyrimidine S-1 in Advanced
Gastric Carcinoma.” Br J Cancer 97 (1): 37–42. doi:10.1038/sj.bjc.6603831.

10/10

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2017. ; https://doi.org/10.1101/150821doi: bioRxiv preprint 

https://doi.org/10.1038/sj.bjc.6601366
https://doi.org/10.1016/S1470-2045(05)70255-2
https://doi.org/10.3802/jgo.2009.20.3.146
https://doi.org/10.1038/bjc.2011.256
https://doi.org/10.7497/j.issn.2095-3941.2013.02.005
https://doi.org/10.1016/j.ejca.2011.09.012
https://doi.org/10.12688/f1000research.10624.2
https://doi.org/10.1093/annonc/mdw640
https://doi.org/10.3892/ol.2014.1822
https://doi.org/10.1007/s00280-010-1487-6
https://doi.org/10.1186/s12885-015-1442-3
https://doi.org/10.1038/sj.bjc.6603831
https://doi.org/10.1101/150821
http://creativecommons.org/licenses/by/4.0/

	Introduction
	The distribution of MTD_\MakeLowercase{i}
	Dose-response model
	The distribution of \MakeLowercase{\theta_i} \defeq \mathrm{MTD}_\MakeLowercase{\mathrm{the}} / \mathrm{MTD}_\MakeLowercase{i}
	The two costs of one-size-fits-all dosing
	Population-level efficacy of one-size-fits-all dosing
	Sensitivity Analysis
	Sensitivity under an interpretable alternative

	Discussion
	Conclusions
	Data availability
	Competing interests
	Grant information

	References

