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Abstract

There exists over 2.5 million publicly available gene expression sam-
ples across 101,000 data series in NCBI’s Gene Expression Omnibus (GEO)
database. Due to the lack of the use of standardised ontology terms in
GEO’s free text metadata to annotate the experimental type and sample
type, this database remains difficult to harness computationally without sig-
nificant manual intervention.

In this work, we present an interactive R/Shiny tool called GEOracle
that utilises text mining and machine learning techniques to automatically
identify perturbation experiments, group treatment and control samples and
perform differential expression. We present applications of GEOracle to dis-
cover conserved signalling pathway target genes and identify an organ specific
gene regulatory network.

GEOracle is effective in discovering perturbation gene targets in GEO
by harnessing its free text metadata. Its effectiveness and applicability has
been demonstrated by cross validation and two real-life case studies. It opens
up new avenues to unlock the gene regulatory information embedded inside
large biological databases such as GEO. GEOracle is available at https:

//github.com/VCCRI/GEOracle.
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learning

1. Introduction

The NCBI Gene Expression Omnibus (GEO) is one of the largest pub-
lic repositories for genome-wide omic data, including mostly transcriptomic
data [1]. As of August 2018, GEO contains over 101,136 data series (GSE),
consisting of over 2.5 million individual gene expression samples (GSM). This
database harbours biological insights that are not apparent when studying
each data set individually [11]. Several packages are available to program-
matically access GEO data, including GEOquery [3], GEOmetadb [14], com-
pendiumdb [7] and shinyGEO [5], allowing keyword based search and down-
load of GSE and GSM, with few standard analysis options.

One major challenge in effectively reusing public gene expression data
is the availability of good quality metadata. The need for standardisation
of metadata is the reason for the development of the Minimum Information
About a Microarray Experiment (MIAME) standard [2], and more recently
the MINSEQE standards for sequencing data [11]. While some fields in GEO
metadata use controlled vocabularies (e.g., species name, gene symbols), the
majority of the metadata appears as free text, describing the context of sam-
ples (e.g., tissue type or developmental stage) and the experimental design
(e.g., perturbation experiment). Although this free text is often readily in-
terpretable by humans, there is no simple means to process this information
from GEO in an automated fashion. Ultimately this imposes a major lim-
itation on effectively re-using the huge amount of public data in GEO [11].
While we believe it is important to push for the use of standard annotations,
we nonetheless wish to reuse the large amount of data that exists in GEO.

A gene expression experiment can typically be classified based on its
experimental design (e.g., perturbation, time-series and case-control experi-
ments). In many cases, data sets from perturbation experiments (e.g., gene
knock-out, signalling stimulation, or physical stimulation) are valuable be-
cause they allow us to identify the set of genes that are causally downstream
of the perturbation agent. This has important applications in determining
signalling pathway targets and regulatory networks [8, 4, 13, 12]. There are
tens of thousands of perturbation studies in GEO, likely containing millions of
experimentally determined perturbation data. Nonetheless, currently there
is no simple way to determine whether a GSE contains perturbation data.
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Furthermore, even when a GSE is known to contain perturbation data, it is
not trivial to automatically match the treatment samples with their respec-
tive control samples since a single GSE may contains multiple treatment and
control groups.

In light of these challenges, we propose to harness the wealth of informa-
tion embedded in the free text metadata associated with each GEO entry.
In GEO, free text metadata include GSE title, GSE experiment type, GSE
summary, GSE overall design, GSM title, GSM characteristics, and GSM
treatment protocol. These metadata fields are considered ‘free text’ because
submitters are not required or do not customarily use standardised ontology
terms. In GEO, only very few fields enforce the use of standard ontology
terms, such as gene symbols, and organism. Our approach is to use text
mining and machine learning techniques to classify GSE that contain pertur-
bation data, and to identify and match the treatment and control samples
(GSM) in a perturbation data set. Text mining of free text metadata has
previously been used to identify related experiments through semantic simi-
larity [6], and to automatically process large amounts of the GEO database
with limited quality control or user oversight [15].

Using our R Shiny tool called GEOracle, we can quickly annotate many
perturbation experiments from GEO in a semi-automated fashion with full
user control. GEOracle then performs differential expression analysis to iden-
tify gene targets of the perturbation agent.

2. Methods

The GEOracle workflow mimics the steps a bioinformatician would em-
ploy when identifying and analysing perturbation data in GEO. GEOracle
uses GEOmetaDB [14] to access GEO metadata. Given a list of GSE acces-
sion number (or results from a GEO keyword search), GEOracle will carry
out the following six steps:

1. Classification of perturbation GSE

2. Grouping of GSM into replicate sample groups

3. Classification of each GSM sample group as ‘perturbation’ or ‘control’

4. Matching each ‘perturbation’ sample group with the most relevant ‘con-
trol’ group

5. Manual inspection and adjustment of predicted annotation through the
GEOracle graphical user interface
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6. Automated differential gene expression analysis

In the rest of this section we describe the methodology for performing
these steps and evaluate GEOracle’s performance on manually curated train-
ing and test sets.

2.1. Step 1: Classification of perturbation GSE data sets

To build a classifier for identifying perturbation experiments, we curated
a training set of 277 randomly selected GSE IDs, which we manually anno-
tated with the experimental design (Additional File 1). Based on 31 manu-
ally defined textual features from the free text metadata that can differenti-
ate perturbation experiments (including keywords such as ‘knockout’, ‘KO’,
‘wildtype’, ‘WT’, ‘null’, ‘-/-’, ‘transgenic’, ‘’TG’; Additional File 2), a sup-
port vector machine (SVM) classifier was built to predict perturbation GSE.
When evaluated on our training set by 100 rounds of 10-fold cross-validation
with internal feature selection, we found that the use of a SVM with a ra-
dial basis function (RBF) kernel produced the highest mean Area Under the
Receiver Operating Characteristic curve (AUROC) of 0.89, suggesting high
sensitivity and specificity (Figure 1)

2.2. Step 2: Grouping of replicate GSM samples

Once a GSE is identified as a perturbation GSE, GEOracle will then au-
tomatically group samples (GSM) into replicates. We manually curated a
second set of 73 perturbation GSE. We annotated the 832 constituent GSM
samples into 259 groups labelled as ‘perturbation’ or ‘control’, and paired the
‘perturbation’ sample groups with their appropriate ‘control’ groups (Addi-
tional File 3).

For each identified perturbation GSE, GEOracle groups replicate sam-
ples using the available GSM metadata. Replicates could mean biological
or technical replicates that together form a unit of analysis for differential
expression. GSM titles are processed via a series of string manipulations
to remove replicate identifiers and tokenise the titles. A simple hierarchi-
cal clustering approach is used, based on Gower distance between tokenised
GSM titles, with the tree cut at height 0, resulting in identical GSM titles
being assigned to one cluster. The same approach is applied to GSM char-
acteristics to produce a second clustering of samples. Based on these two
sample clusterings, we identify the most valid clustering outcome and assign
confidences to the output, removing datasets with insufficient metadata or
invalid clustering results from further analysis (Figure 2a).
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Figure 1: Comparison of the performance of different SVM kernels for predicting GSE
‘Perturbation’ label based on the manually curated training set of 277 GSE IDs. Shown
are boxplots of the Area Under the Receiver Operating Characteristic (AUROC) curve
from 100 repetitions of 10-fold cross-validation. The radial basis function kernel has the
best performance.

Our multi-stage clustering approach produces a grouping sensitivity of
93.2% at the GSE level (meaning every sample in a GSE must be correctly
grouped for that GSE to be considered a positive result) based on our training
set. All incorrectly clustered GSE can be explained by typographical errors
and other anomalies in the metadata. This was an improvement over more
naive clustering approaches, based solely on the GSM characteristics, GSM
titles, or a simple concatenation of the two, producing sensitivities of 64.4%,
86.3% and 74% respectively (Figure 2b). Although samples can often be
grouped by either the titles or the characteristics, the process of deciding
which information to use is non-trivial. Figure 2c shows a complex example
where a simple concatenation of GSM titles with GSM characteristics fails
to group samples correctly, while our multi-stage decision process succeeds.

2.3. Step 3: Labelling of GSM sample groups

After grouping GSM samples into groups of replicates, GEOracle pro-
ceeds to use a SVM to classify whether each of these replicate group belongs
to the ‘treatment group’ or the ‘control group’ in a perturbation experiment.
Both the GSM titles and characteristics were analysed for the presence of 33
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Figure 2: Grouping of GSM samples into groups of replicates. (a) The logic flow for
assessing the most valid clustering of GSM samples. This schematic diagram shows the
decision making process during the multi-stage clustering procedure that combines in-
formation from the GSM titles and characteristics. Informativeness and validity means
that there is more than 1 cluster in the GSE and that there are fewer than N clusters,
where N is the number of GSM in the GSE. (b) Comparing the performance of clustering
using GSM titles and characteristics. Shown is the relative sensitivity of different clus-
tering methods, using GSM characteristics only, GSM titles only, a simple concatenation
of GSM characteristics and titles and our multi-stage clustering approach. (c) Sample
titles from GSE41674. Title based clustering was not able to correctly cluster this GSE,
whereas GEOracle’s multi-stage clustering approach could, by utilizing the information in
the GSM characteristics.
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textual features that represent molecular concepts that can differentiate ‘per-
turbation’ from ‘control’ samples (Additional File 4). Using cross-validation,
we found the linear kernel for the SVM gave the best results, with a prediction
sensitivity of 73.3% (Figure 3). This is what we called the raw prediction.

To further increase the classification performance, we adjust the predicted
labels of some groups when only one label is predicted for all samples in a
GSE. A confidence associated with the final outcome of group labelling is
determined (Figure 3a). After this adjustment, we can achieve a sensitivity
of 94.6% for group classification at the GSE level. This is a large improvement
over the 73.3% sensitivity produced by the basic approach of choosing the
highest scoring label based on the occurrence of the subset of 20 features
that unambiguously distinguish between ‘perturbation’ and ‘control’ samples
(Figure 3b).

2.4. Step 4: Matching perturbation with control groups

Next, GEOracle matches each perturbation group to the most appropriate
control group. GEOracle matches each predicted ‘perturbation’ group to the
‘control’ group with the lowest Gower distance based on the tokenised GSM
titles and characteristics, and determines the confidence for each pairing of
groups (Figure 4). We observe a sensitivity of 83.1% for group matching
at the GSE level. Furthermore, we attempt to determine the identity of
the perturbation agent and perturbation direction for each group pair by
searching for gene names and keywords in the GSM and GSE metadata.
The keywords used represent the concepts of addition (i.e., ‘overexpress’)
and removal (i.e., ‘knockout’) of a perturbation agent. The direction with
the most keyword matches becomes the assigned direction.

2.5. Step 5: Manual adjustment using the GEOracle graphical user interface

The GEOracle interface (Figure 5) guides users through the entire pro-
cess. Importantly the interface allows a user to manually verify and adjust
all the details of the predicted GSM labels and pairings, and create their own
pairings from all GSM within each GSE. This allows the user to be 100%
confident in the setup of samples for differential expression analysis.

2.6. Step 6: Automated differential expression analysis

The paired ‘perturbation’ and ‘control’ groups are then used to com-
pute differential gene expression using GEO2R, which implements the limma
pipeline [10]. The results can then be downloaded by the user. GEOracle is
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currently tailored for microarray data analysis as this is the most prevalent
data type in GEO, but it can be extended to analyse RNA-seq data or even
other functional genomic data sets such as ChIP-seq.

3. Case studies

A conserved response to TGFβ stimulation in human cells

We used GEOracle to process six GSE containing TGFβ perturbation
experiments (Additional File 5) and discovered the consensus target genes of
TGFβ signalling stimulation in human cells (Additional File 6 describes the
process in detail). The total time required for classifying the GSE and GSM
groups, matching the treatment and control samples, manually verifying the
results, downloading the gene expression data from GEO and performing
differential expression analysis is less than 12 minutes. This analysis required
minimal human intervention and essentially no bioinformatics expertise.

Based on these results we could identify a consensus TGFβ target gene
signature in human cells consisting of 82 genes (Figure 6). Many of the ob-
served transcriptional changes matched the literature about the TGFβ path-
way, including increased transcription of CTGF, JUN, JUNB and WNT5B,
and repression of TGFBR3, FZD7 and SPRY1 (Additional File 7). A gene
ontology analysis of the 82 genes from the consensus signature using g:Profiler
[9] showed significant enrichment for the term ‘response to transforming
growth factor beta’, with Benjamini-Hochberg (BH) adjusted p-value of 8.93
x 10−08.

3.1. Identifying a causal gene regulatory network of mouse heart

We further used GEOracle to analyse all perturbation microarray data
from mouse cardiac tissues. We searched GEO using the following query:
”mus musculus”[Organism] AND (”heart”[MeSH Terms] OR heart[All Fields]
OR cardiac[All Fields]) AND (”gse”[Filter] AND ”Expression profiling by
array”[Filter]). This resulted in 851 GSE (Additional File 8).

Processing these 851 GSE though GEOracle, including manually verify-
ing and modifying the predicted sample comparisons, required approximately
8 hours of user time, again with minimal bioinformatics expertise required.
164 relevant GSE were included for further processing. The primary reason
for exclusion was that the tissue profiled was not of cardiac origin or rele-
vance. We obtained significantly differentially expressed genes for 87 genetic
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perturbations (i.e., gene knockdown or over expression) and 10 non-genetic
factors (diet, chemicals etc.) using standard thresholds (absolute log 2 fold
change > 1 and BH adjusted P value < 0.05). GEOracle automatically
outputs significant differentially expressed genes as an edge list for gene reg-
ulatory network construction. From the genetic perturbation experiments
we constructed a gene regulatory network of 23,347 causal and directed re-
lationships between 9,152 genes (Figure 7). Of these 14,120 were activating
relationships and 9,681 were inhibitory. This case study illustrates how we
can construct a large organ-specific gene regulatory network from published
experimental perturbation data in GEO.

4. Discussion

In this paper, we present a general framework and an open source R/shiny
tool for identifying and processing perturbation gene expression data sets
through free text metadata mining. Using GEOracle, we can automatically
identify GEO data sets that use a perturbation experimental design, and
identify the treatment and matching control groups within these data sets.
Our cross validation experiments demonstrate that GEOracle achieve high
sensitivity and specificity. Furthermore, GEOracle provide a user-friendly
Shiny interface to enable users to manually check and confirm the classifica-
tion made by GEOracle.

One major innovation of this approach is that GEOracle turns free text
metadata in GEO into useful structured information that enables automated
mining of a large amount of perturbation gene expression experimental data
in GEO. As demonstrated by our two case studies, GEOracle can be used
effectively to identify downstream target genes from multiple data sets in
GEO.

The current version of GEOracle is implemented in as an R package be-
cause it is a widely used programming language for gene expression bioin-
formatics analysis. Even thought the performance is reasonable for up to
hundreds of GSE, it will likely not be able to deal with a larger proportion
of GSE in GEO. In the future, we plan to scale up GEOracle by utilising
cloud-based parallel and distributed computing technology such as Hadoop
MapReduce and Spark.
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Figure 3: Labelling of GSM. (a) The logic flow for assessing the most valid label for
a cluster of GSM. This schematic diagram shows the decision making process for fixing
labels (‘perturbation’ or ‘control’) predicted by the SVM based on textual features. This
process is particularly important when only one cluster label is generated for every cluster
in a GSE. (b) Comparing the performance of different SVM kernels to predict the label of
GSM clusters (‘perturbation’ vs ‘control’). Sensitivity is calculated as the fraction of GSE
for which the GEOracle output perfectly matches the manually annotated set of 73 GSE.
Shown is sensitivity calculated on the raw label predictions (blue) and after cluster label
adjustment (red).
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Figure 4: The logic flow for pairing labelled clusters. This schematic diagram shows the
decision making process for matching a ‘perturbation’ cluster which its closest ‘control’
cluster. This can be non-trivial when multiple ‘control’ clusters exist within a GSE.
Dissimilarity is Gower distance.
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Figure 5: The GEOracle user interface.
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Figure 6: A conserved gene expression signature upon TGFβ stimulation in human cells.
This heat map summarises the genes that are up-regulated (red) and down-regulated (blue)
based on various gene expression data sets (GSE).
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Figure 7: A mouse heart gene regulatory network inferred based on perturbation data
mined by GEOracle. (a) Using causal gene regulatory evidence extracted from 97 pertur-
bation data sets by GEOracle, we can construct a murine cardiac gene regulatory network
of 23,347 causal edges between 9,152 genes. (b) A sub-network of 7 genes focusing the
regulatory relationships among several key cardiac transcription factors.
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