Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

A robust statistical framework to detect multiple sources of hidden variation in single-cell transcriptomes

Donghyung Lee, Anthony Cheng, Duygu Ucar
doi: https://doi.org/10.1101/151217
Donghyung Lee
1 The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, Unites States of America,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: donghyung.lee@jax.org duygu.ucar@jax.org
Anthony Cheng
1 The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, Unites States of America,
2 University of Connecticut Health Center, Farmington, Connecticut, Unites States of America
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Duygu Ucar
1 The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, Unites States of America,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: donghyung.lee@jax.org duygu.ucar@jax.org
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Article usage

Article usage: June 2017 to July 2022

AbstractFullPdf
Jun 20179820245
Jul 2017212075
Aug 2017152056
Sep 201744022
Oct 201735019
Nov 201749024
Dec 201725018
Jan 201850018
Feb 201876012
Mar 201847036
Apr 2018425095
May 2018174040
Jun 201881019
Jul 201858017
Aug 2018114016
Sep 201880024
Oct 20183509
Nov 201859024
Dec 20181807
Jan 20192406
Feb 201921016
Mar 201939115
Apr 2019161012
May 2019231010
Jun 201913311
Jul 201917916
Aug 201916108
Sep 201930148
Oct 2019401612
Nov 20193058
Dec 20192262
Jan 202021811
Feb 202040138
Mar 202024914
Apr 202012513
May 20201868
Jun 20201814
Jul 202013010
Aug 20201857
Sep 20202116
Oct 20201626
Nov 202012811
Dec 20201051
Jan 20211538
Feb 2021655
Mar 20211052
Apr 2021895
May 2021412
Jun 20211210
Jul 2021523
Aug 20211144
Sep 2021578
Oct 20216419
Nov 20219524
Dec 20211042
Jan 20221012
Feb 2022630
Mar 2022215
Apr 2022600
May 2022625
Jun 2022625
Jul 2022011
Back to top
PreviousNext
Posted June 18, 2017.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
A robust statistical framework to detect multiple sources of hidden variation in single-cell transcriptomes
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
A robust statistical framework to detect multiple sources of hidden variation in single-cell transcriptomes
Donghyung Lee, Anthony Cheng, Duygu Ucar
bioRxiv 151217; doi: https://doi.org/10.1101/151217
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
A robust statistical framework to detect multiple sources of hidden variation in single-cell transcriptomes
Donghyung Lee, Anthony Cheng, Duygu Ucar
bioRxiv 151217; doi: https://doi.org/10.1101/151217

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Bioinformatics
Subject Areas
All Articles
  • Animal Behavior and Cognition (3597)
  • Biochemistry (7563)
  • Bioengineering (5517)
  • Bioinformatics (20777)
  • Biophysics (10316)
  • Cancer Biology (7973)
  • Cell Biology (11629)
  • Clinical Trials (138)
  • Developmental Biology (6602)
  • Ecology (10197)
  • Epidemiology (2065)
  • Evolutionary Biology (13605)
  • Genetics (9537)
  • Genomics (12842)
  • Immunology (7919)
  • Microbiology (19536)
  • Molecular Biology (7653)
  • Neuroscience (42050)
  • Paleontology (307)
  • Pathology (1257)
  • Pharmacology and Toxicology (2199)
  • Physiology (3266)
  • Plant Biology (7036)
  • Scientific Communication and Education (1294)
  • Synthetic Biology (1951)
  • Systems Biology (5426)
  • Zoology (1115)