New Results
A robust statistical framework to detect multiple sources of hidden variation in single-cell transcriptomes
Donghyung Lee, Anthony Cheng, Duygu Ucar
doi: https://doi.org/10.1101/151217
Donghyung Lee
1 The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, Unites States of America,
Anthony Cheng
1 The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, Unites States of America,
2 University of Connecticut Health Center, Farmington, Connecticut, Unites States of America
Duygu Ucar
1 The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, Unites States of America,

Article usage
Posted June 18, 2017.
A robust statistical framework to detect multiple sources of hidden variation in single-cell transcriptomes
Donghyung Lee, Anthony Cheng, Duygu Ucar
bioRxiv 151217; doi: https://doi.org/10.1101/151217
Subject Area
Subject Areas
- Biochemistry (7563)
- Bioengineering (5517)
- Bioinformatics (20777)
- Biophysics (10316)
- Cancer Biology (7973)
- Cell Biology (11629)
- Clinical Trials (138)
- Developmental Biology (6602)
- Ecology (10197)
- Epidemiology (2065)
- Evolutionary Biology (13605)
- Genetics (9537)
- Genomics (12842)
- Immunology (7919)
- Microbiology (19536)
- Molecular Biology (7653)
- Neuroscience (42050)
- Paleontology (307)
- Pathology (1257)
- Pharmacology and Toxicology (2199)
- Physiology (3266)
- Plant Biology (7036)
- Synthetic Biology (1951)
- Systems Biology (5426)
- Zoology (1115)