Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

FactorNet: a deep learning framework for predicting cell type specific transcription factor binding from nucleotide-resolution sequential data

View ORCID ProfileDaniel Quang, Xiaohui Xie
doi: https://doi.org/10.1101/151274
Daniel Quang
1Department of Computer Science, University of California, Irvine, CA 92697, USA
2Center for Complex Biological Systems, University of California, Irvine, CA 92697, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Daniel Quang
Xiaohui Xie
1Department of Computer Science, University of California, Irvine, CA 92697, USA
2Center for Complex Biological Systems, University of California, Irvine, CA 92697, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Article usage

Article usage: January 2018 to January 2023

AbstractFullPdf
Jan 2018114089
Feb 20181350103
Mar 20181640106
Apr 20182350107
May 20182510131
Jun 20181800110
Jul 20181940104
Aug 2018209098
Sep 20181430102
Oct 20181230133
Nov 2018129074
Dec 2018110059
Jan 2019396085
Feb 2019507082
Mar 20196943109
Apr 20191961386
May 2019104959
Jun 20191001455
Jul 20191131477
Aug 2019791645
Oct 20191091167
Nov 2019661642
Dec 201972949
Jan 2020761543
Feb 2020972937
Mar 2020802249
May 202083980
Jun 2020641042
Jul 202053335
Aug 202040745
Sep 202066544
Oct 202059271
Nov 2020561349
Dec 202037339
Jan 202140336
Feb 202147929
Mar 2021671243
Apr 202151526
May 202114111
Jun 20213039
Jul 202113217
Aug 2021331318
Sep 202117812
Oct 202140955
Nov 202131529
Dec 2021351013
Jan 202237417
Feb 202224416
Mar 202228215
Apr 202225013
May 202228416
Jun 20222009
Jul 2022391618
Aug 202215010
Sep 202220014
Oct 202257213
Nov 202253027
Dec 202215611
Jan 20232739
Back to top
PreviousNext
Posted June 28, 2017.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
FactorNet: a deep learning framework for predicting cell type specific transcription factor binding from nucleotide-resolution sequential data
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
FactorNet: a deep learning framework for predicting cell type specific transcription factor binding from nucleotide-resolution sequential data
Daniel Quang, Xiaohui Xie
bioRxiv 151274; doi: https://doi.org/10.1101/151274
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
FactorNet: a deep learning framework for predicting cell type specific transcription factor binding from nucleotide-resolution sequential data
Daniel Quang, Xiaohui Xie
bioRxiv 151274; doi: https://doi.org/10.1101/151274

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Genomics
Subject Areas
All Articles
  • Animal Behavior and Cognition (4086)
  • Biochemistry (8758)
  • Bioengineering (6477)
  • Bioinformatics (23337)
  • Biophysics (11747)
  • Cancer Biology (9145)
  • Cell Biology (13244)
  • Clinical Trials (138)
  • Developmental Biology (7412)
  • Ecology (11366)
  • Epidemiology (2066)
  • Evolutionary Biology (15085)
  • Genetics (10397)
  • Genomics (14006)
  • Immunology (9116)
  • Microbiology (22038)
  • Molecular Biology (8777)
  • Neuroscience (47354)
  • Paleontology (350)
  • Pathology (1420)
  • Pharmacology and Toxicology (2480)
  • Physiology (3703)
  • Plant Biology (8048)
  • Scientific Communication and Education (1431)
  • Synthetic Biology (2207)
  • Systems Biology (6015)
  • Zoology (1249)