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The precision with which items are encoded in working memory and attention decreases with 25 

the number of encoded items. Current theories typically account for this “set size effect” by 26 

postulating a hard constraint on the allocated amount of some kind of encoding resource, 27 

such as samples, spikes, slots, or bits. While these theories have produced models that are 28 

descriptively successful, they offer no principled explanation for the very existence of set size 29 

effects: given their detrimental consequences for behavioral performance, why have these 30 

effects not been weeded out by evolutionary pressure, for example by allocating resources 31 

proportionally to the number of encoded items? Here, we propose a theory that is based on 32 

an ecological notion of rationality: set size effects are the result of an optimal trade-off 33 

between behavioral performance and the neural costs associated with stimulus encoding. We 34 

derive models for four visual working memory and attention tasks and show that they 35 

account well for data from eleven previously published experiments. Our results suggest that 36 

set size effects have a rational basis and that ecological costs should be considered in models 37 

of human behavior.  38 

 39 

Cognitive performance is strongly constrained by set size effects in working memory and attention: 40 

the precision with which these systems encode information rapidly declines with the number of 41 

items, as observed in for example delayed estimation, change detection, visual search, and 42 

multiple-object tracking tasks (1–8). By contrast, set size effects seem to be absent in long-term 43 

memory, where fidelity has been found to be independent of set size (9). The existence of set size 44 

effects is thus not a general property of neural coding, but rather a phenomenon that requires 45 

explanation. Despite an abundance of models, such an explanation is still lacking.  46 

A common way to model set size effects has been to postulate that stimuli are encoded 47 

using a fixed total amount of resources, formalized as “samples” (1, 3, 10), slots (11), information 48 

bit rate (12), Fisher information (8), or neural firing (13): the larger the number of encoded items, 49 

the lower the amount of resource available for each item and, therefore, the lower the precision 50 

per item. There are two problems with this explanation. Firstly, they predict that precision is 51 

inversely proportional to set size, which is often not the case (e.g., (14–16)). Secondly, it is unclear 52 

whether keeping the amount of encoding resources constant across set sizes serves any 53 

ecologically relevant function: why has the brain not evolved to counter set size effects by 54 

increasing the amount of allocated resource as more items are encoded, as seems to be the case in 55 
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long-term memory? To address the first problem, models have been proposed in which encoding 56 

precision is postulated to be a power-law function of set size (5, 6, 15–21). These models tend to 57 

provide excellent fits, but have been criticized for lacking a principled motivation for the 58 

postulated power-law (22, 23), thus failing to address the second problem. 59 

Here, we take an ecological approach to explain set size effects, starting from the principle 60 

that neural firing is energetically costly (24–26). This cost may have pressured the brain to balance 61 

behavioral benefits of high precision against the neural loss that it induces (8, 25, 27, 28). What 62 

level of encoding precision establishes a good balance might depend on multiple factors, such as 63 

set size, task, and motivation. Indeed, performance on perceptual decision-making tasks can be 64 

improved by increasing monetary reward (29–31), which suggests that the total amount of resource 65 

spent on encoding has some flexibility that is driven by ecological factors. Based on these 66 

considerations, we hypothesize that set size effects on encoding precision reflect an ecologically 67 

rational strategy that balances behavioral performance against neural costs. Below, we derive 68 

formal models from this hypothesis for four visual working memory and attention tasks, fit them 69 

to data from eleven previously published experiments, and discuss implications of our findings.  70 

 71 

Table 1. Overview of experimental datasets used. Task responses were continuous in the delayed-72 

estimation experiments and categorical in the other tasks. DE5 and DE6 differed in the way color 73 

was reported (DE5: color wheel; DE6: scroll).  74 

Experiment Reference Task Feature Set sizes #subj 

DE1 (6) Delayed estimation Color 1, 2, 4, 8 15 

DE2 (11) Delayed estimation Color 1, 2, 3, 6 8 

DE3 (17) Delayed estimation Color 1, 2, 4, 6 12 

DE4 (18) Delayed estimation Orientation 1-8 6 

DE5 (18) Delayed estimation Color 1-8 13 

DE6 (18) Delayed estimation Color 1-8 13 

CD1 (14) Change detection Color 1, 2, 4, 8 7 

CD2 (14) Change detection Orientation 2, 4, 6, 8 10 

CL1 (18) Change localization Color 2, 4, 6, 8 7 

CL2 (18) Change localization Orientation 2, 4, 6, 8 11 

VS (4) Visual search Orientation 1, 2, 4, 8 6 

 75 
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 76 

 77 

THEORY 78 

We first present our theory in the context of the delayed-estimation paradigm (6) and will later 79 

show how it generalizes to other tasks. In single-probe delayed-estimation tasks, subjects briefly 80 

hold a set of items in memory and report their estimate of a randomly chosen target item (Fig. 1A; 81 

Table 1). Estimation error ε is the (circular) difference between the subject’s estimate and the true 82 

stimulus value s. Set size effects in this task are visible as a widening of the estimation error 83 

distribution (Fig. 1B). As in previous work (4, 5, 14, 15, 18, 32), we assume that a memory x 84 

follows a Von Mises distribution with mean s and concentration parameter κ, and define encoding 85 

Figure 1. An ecologically rational model of set size effects in delayed estimation. (A) Example of a

delayed-estimation experiment. The subject is briefly presented with a set of stimuli and, after a short delay,

reports the value of a randomly chosen target item. (B) Estimation error distributions widen with set size,

suggesting a decrease in encoding precision (data from Experiment DE5 in Table 1; estimated precision

computed in the same way as in Fig. 2C). (C) Stimulus encoding is assumed to be associated with two kinds

of loss: a behavioral loss that decreases with encoding precision and a neural loss that is proportional to

both set size and precision. In the delayed-estimation task, the expected behavioral error loss is independent

of set size. (D) Total expected loss has a unique minimum that depends on the number of remembered

items. The mean precision per item that minimizes expected total loss is referred to as the optimal mean

precision (arrows) and decreases with set size. The parameter values used to produce panels C and D were

λ=0.01, β=2, and τ↓0.
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precision J as Fisher information (33), which is one-to-one related to κ (see Supplementary 86 

Information). We assume that response noise is negligible, such that the estimation error is equal 87 

to the memory error, ε=x−s. Moreover, we assume variability in J across items and trials (5, 15, 88 

18, 32, 34), which we model using a gamma distribution with a mean J  and a scale parameter τ 89 

(see Supplementary Information).  90 

The key novelty of our theory is the idea that stimuli are encoded with a level of mean 91 

precision, ,J  that minimizes a combination of behavioral loss and neural loss. Behavioral loss is 92 

induced by making an error ε, which we formalize using a mapping Lbehavioral(ε). This mapping may 93 

depend on both internal incentives (e.g., intrinsic motivation) and external ones (e.g., the reward 94 

scheme imposed by the experimenter). For the moment, we choose a power-law function, 95 

Lbehavioral(ε)=|ε|β with β>0 as a free parameter, such that larger errors correspond with larger loss. 96 

The expected behavioral loss, denoted , is obtained by averaging loss across all possible 97 

errors, weighted by the probability that each error occurs, 98 

 99 

      behavioral behavioral, | , ,L J N L p J N d      (1) 100 

 101 

where  | ,p J N  is the estimation error distribution for given mean precision and set size. In 102 

single-probe delayed-estimation tasks, the expected behavioral loss is independent of set size and 103 

subject to the law of diminishing returns (Fig. 1C, black curve).  104 

The second kind of loss is a neural loss induced by the neural spiking activity that represents 105 

a stimulus. For many choices of spike variability, including the common one of Poisson-like 106 

variability (35), the precision (Fisher information) of a stimulus encoded in a neural population is 107 

proportional to the neural spiking rate (36, 37). Moreover, it has been estimated that the energetic 108 

loss induced by each spike increases with spiking rate (24, 25). When combining these two 109 

premises, the expected neural loss associated with the encoding of an item is a supralinear function 110 

of encoding precision, which can be modeled using for example a power-law function, 111 

 neuralL J J  , with α and ω as free parameters. However, to minimize the number of free 112 

parameters, we assume for the moment that the function is linear (β=1) and will later present a 113 

mathematical proof that our theory generalizes to supralinear functions (β>0; condition (iv) at the 114 

behavioralL
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end of this section). Further assuming that stimuli are encoded independently of each other, neural 115 

loss is also proportional to the number of encoded items, N. We thus obtain  116 

 117 

  neural , ,L J N JN   (2) 118 

 119 

where α is a free parameter that represents the amount of neural loss incurred by a unit increase in 120 

mean precision (Fig. 1C, colored lines).  121 

We combine the two types of expected loss into a total expected loss function (Fig. 1D),  122 

 123 

 
     

 
total behavioral neural

behavioral

, , ,

, ,

L J N L J N L J N

L J N JN





 

 
  (3) 124 

  125 

where the weight λ≥0 represents the importance of keeping neural loss low relative to the 126 

importance of good performance. Since λ and α have interchangeable effects on the model 127 

predictions, they can be fitted as a single free parameter   . We refer to the level of mean 128 

precision that minimizes the total expected loss as optimal mean precision,  129 

 130 

    optimal total, argmin , .
J

J J N L J N   (4) 131 

 132 

Under the loss functions proposed above, we find that optimalJ is a decreasing function of set size 133 

(Fig. 1D), which is qualitatively consistent with set size effects observed in experimental data (cf. 134 

Fig. 1B).  However, it can be shown (see Supplementary Information) that the conditions under 135 

which this model predicts a set size effect generalize to any choice of loss functions, as long as the 136 

four, rather general conditions are satisfied: (i) the expected behavioral loss is a strictly decreasing 137 

function of encoding precision, i.e., an increase in precision results in an increase in performance; 138 

(ii) the expected behavioral loss is subject to a law of diminishing returns (38): the higher the initial 139 

precision, the smaller the behavioral benefit obtained from an increase in precision; (iii) the 140 

expected neural loss is an increasing function of encoding precision; (iv) the expected neural loss 141 

associated with a fixed increase in precision increases with precision. Next, we evaluate the model 142 

by fitting it to data from a range of previously published experiments.  143 
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 144 

Figure 2. Model fits to data from six delayed-estimation experiments. (A) Maximum-likelihood fits to

raw data of the worst-fitting and best-fitting subjects (based on R2). (B) Subject-averaged fits to the two

statistics that summarize the estimation error distributions (circular variance kurtosis) as a function of set

size, split by experiment. Here and in subsequent figures, error bars and shaded areas represent 1 s.e.m. of

the mean across subjects. (C) Best-fitting precision values in the rational model scattered against the best-

fitting precision values in the unconstrained model. Each dot represents the estimate for a single subject.

(D) Estimated mean encoding precision per item (red) and total encoding precision (black) plotted against

set size.

C
ir
c
u
la

r 

v
a
ri
a
n
c
e

2 4 6 8

C
ir
c
u
la

r 

k
u
rt

o
s
is

2 4 6 8

0.5

0

1

0

0.5

1

2 4 6 8 2 4 6 8 2 4 6 82 4 6 8

DE1 DE2 DE3 DE4 DE5 DE6

Set size

Rational modelData

C

Mean precision in rational model

M
e
a
n
 p

re
c
is

io
n
 i
n
 

u
n
c
o
n
s
tr

a
in

e
d
 m

o
d
e
l

0

20

40

0 20 40

R2=0.88

0 20 40

R2=0.93

0 20 40

R2=0.99

0 20 40

R2=0.98

0 20 40

R2=0.94

0 20 40

R2=0.85

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8

Estimation error

N=1

-π π0 -π π0 -π π0 -π π0 -π π0 -π π0 -π π0 -π π0

P
ro

b
a
b
ili

ty
Worst-fitting subject (R2=0.81)

Best-fitting subject (R2=0.97)

N=2 N=3 N=4 N=5 N=6 N=7 N=8

0

1

0

1

2

A

DE1 DE2 DE3 DE4 DE5 DE6

Rational modelUnconstrained model
D

T
o
ta

l 
p
re

c
is

io
n
 /

Set size

0

10

20

30

40

Rational modelData

P
re

c
is

io
n
 p

e
r 

it
e
m

2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8

per item

DE1 DE2 DE3 DE4 DE5 DE6
total

B

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2017. ; https://doi.org/10.1101/151365doi: bioRxiv preprint 

https://doi.org/10.1101/151365
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

 

RESULTS 145 

 146 

Model fits 147 

We used maximum-likelihood estimation to fit the three model parameters ( , τ, and β) to 67 148 

individual-subject data sets from a delayed-estimation benchmark set* (Table 1). The model 149 

accounts well for the raw error distributions (Fig. 2A) and the two statistics that summarize these 150 

distributions (Fig. 2B). Model comparison based on the Akaike Information Criterion (AIC) (39) 151 

indicates that the goodness of fit is comparable to that of a descriptive model variant in which the 152 

relation between encoding precision and set size is assumed to follow a power law 153 

(ΔAIC=5.27±0.70 in favor of the rational model). Hence, the rational model provides a principled 154 

explanation of set size effects in delayed-estimation tasks without sacrificing quality of fit. 155 

 156 

Comparison with an unconstrained model 157 

We next try to falsify our theory by testing whether a mapping between set size and encoding 158 

precision can be found that fits the data better than the relation imposed by the loss-minimization 159 

strategy of the rational model. To this end, we fit an unconstrained variant of the model in which 160 

memory precision is fitted as a free parameter at each set size. We find only a minimal difference 161 

in goodness of fit (ΔAIC=3.49±0.93 in favor of the unconstrained model), suggesting that the fits 162 

of the rational model are close to the best possible fits. This finding is corroborated by examination 163 

of the fitted parameter values: the estimated precision values in the unconstrained model closely 164 

match the precision values in the rational model (Fig. 2C). Hence, it seems that no relation exists 165 

that fits these data substantially better than the constrained set of relations that are possible in the 166 

rational model.  167 

 168 

Total amount of allocated resource as a function of set size 169 

We estimate the total amount of allocated encoding resource as the mean precision (Fisher 170 

information) per item summed across all items, . In fixed-resource models totalJ  is by 171 

                                                
* The original benchmark set (15) contains 10 data sets with a total of 164 individuals. Two of these data sets were 

published in papers that later got retracted and another one contained data for only two set sizes, which is not very 

informative for our present purposes. While our model accounts well for these data sets (Fig. S1 in Supplementary 

Information), we decided to exclude them from the main analyses.  
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definition constant and in power-law models it is a monotonic function of set size. However, an 172 

interesting qualitative feature of the rational model is that in some of the experiments the best-173 

fitting parameters produce a non-monotonic relation between totalJ  and set size (Fig. 2D, gray 174 

curves). This means that at small set sizes it apparently sometimes pays off (in terms of total-loss 175 

minimization) to increase the total amount of allocated resource when an item is added, while the 176 

opposite is true at large set sizes†. Using the best-fitting precision values in the unconstrained 177 

model as an estimate of how much encoding resource subjects allocated on average at each set 178 

size, we find that the data show clear signs of a similar non-monotonicity (Fig. 2D, black circles); 179 

to our knowledge, this has not previously been reported. 180 

 181 

Alternative loss functions 182 

To evaluate the necessity of a free parameter in the behavioral loss function, Lbehavioral(ε), we also 183 

test the following three parameter-free choices: |ε|, ε2, and −cos(ε). Model comparison favors the 184 

original model with AIC differences of 14.0±2.8, 24.4±4.1, and 19.5±3.5, respectively. While there 185 

may be other parameter-free functions that give better fits, we expect that a free parameter is 186 

unavoidable here, as it is likely that the error-to-loss mapping differs across experiments (due to 187 

differences in external incentives) and possibly also across subjects within an experiment (due to 188 

differences in internal incentives). We also test a two-parameter function that was proposed 189 

recently (Eq. (5) in (40)). The main difference with our original choice is that this alternative 190 

function allows for saturation effects in the error-to-loss mapping. However, this extra flexibility 191 

does not increase the goodness of fit sufficiently to justify the additional parameter, as the original 192 

model outperforms this variant with an AIC difference of 5.3±1.8. 193 

 194 

Generalization to other tasks 195 

We next examine the generality of our theory, by testing whether it can also explain set size effects 196 

in two change detection tasks (Table 1). In these experiments, the subject is on each trial 197 

sequentially presented with two sets of stimuli and reports whether there was a change at any of 198 

the stimulus locations (Fig. 3A). A change was present on half of the trials, at a random location 199 

                                                
† Upon reflection, it is perhaps not surprising to occasionally find a non-monotonic relation: when multiplying a 

decreasing function of set size ( J as a function of N) with an increasing one (N itself), it easy to obtain a function 

that is not monotonic but peaks at an intermediate value. 
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and with a random change magnitude. The behavioral error, ε, takes only two values in this task: 200 

“correct” and “incorrect”. Therefore,  | ,p J N  specifies the probabilities of correct and 201 

incorrect responses for a given level of precision and set size, which depend on the observer’s 202 

decision rule. Following previous work (14, 32), we assume that subjects use the Bayes-optimal 203 

rule (see Supplementary Information) and that there is random variability in encoding precision. 204 

This decision rule introduces one free parameter, pchange, specifying the subject's degree of prior 205 

belief that a change will occur. Due to the binary nature of ε in this task, the free parameter of the 206 

behavioral loss function drops out of the model, as its effect is equivalent to changing parameter 207 

 (see Supplementary Information). The model thus has three free parameters ( , τ, and pchange). 208 

We find that the maximum-likelihood fits account well for the data in both experiments (Fig. 3B).  209 

So far, we have considered tasks with continuous and binary judgments. We next consider 210 

two change localization experiments (Table 1) in which judgments are non-binary but categorical. 211 

The task is identical to change detection, except that a change is present on every trial and the 212 

observer reports the location at which the change occurred (out of 2, 4, 6, or 8 locations). We again 213 

assume variable precision and an optimal decision rule (see Supplementary Information). 214 

Although the rational model has only two free parameters (   and τ), it accounts well for both 215 

datasets (Fig. 3C).  216 

The final task to which we apply our theory is a visual search experiment (4) (Table 1). 217 

Unlike the previous three tasks, this is not a working memory task, as there was no delay period 218 

between stimulus offset and response. Set size effects in this experiment are thus likely to stem 219 

from limitations in attention rather than memory, but our theory applies without any additional 220 

assumptions. Subjects judged whether a vertical target was present among one of N briefly 221 

presented oriented ellipses (Fig. 3D). The distractors were drawn from a Von Mises distribution 222 

centered at vertical. The width of the distractor distribution determined the level of heterogeneity 223 

in the search display. Each subject was tested under three different levels of heterogeneity. We 224 

again assume variable precision and an optimal decision rule (see Supplementary Information). 225 

This decision rule has one free parameter, ppresent, specifying the subject's prior degree of belief 226 

that a target will be present. We fit the three free parameters ( , τ, and ppresent) to the data from all 227 

three heterogeneity conditions at once and find that the model accounts well for the dependencies 228 

of the hit and false alarm rates on both set size and distractor heterogeneity (Fig. 3E). 229 
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 230 

 231 

DISCUSSION 232 

A key strength of our theory is that it uses a single principle of rationality and relatively few 233 

parameters to produce well-fitting models across a range of quite different tasks. Nevertheless, 234 

consideration of additional mechanisms could further improve the fits and lead to more complete 235 

models of human behavior. For example, previous studies have incorporated response noise (15, 236 

18), non-target responses (17), and a (variable) limit on the number of remembered items (12, 15, 237 

41) to improve fits. We did not consider such components here, as they come with additional 238 

parameters, some are task-specific (such as non-target responses), and they have so far not been 239 

Figure 3. Model fits to three categorical decision-making tasks. (A) Experimental paradigm in the

change-detection experiments. The paradigm for change localization was the same, except that a

change was present on each trial and subjects reported the location of change. (B) Model fits to

change-detection data. Top: hit and false alarm rates; bottom: psychometric curves. (C) Model fits to

change-localization data. (D) Experimental paradigm in the visual-search experiment. (E) Model fits

to visual-search data.
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motivated in a principled manner. Regarding the latter point, it might be possible to treat some of 240 

these mechanisms using an ecologically rational approach as well. For example, the level of 241 

response noise might be set by optimizing a trade-off between performance and motor control 242 

effort (42). 243 

Our findings suggest that set size effects in working memory and attention may reflect a near-244 

optimal compromise reached by a system that strives to simultaneously maximize performance 245 

and minimize spiking activity. A possible explanation why long-term memory does not seem to 246 

suffer from set size effects (9) and has much larger capacity (43) is that loss incurred by 247 

maintaining synaptic connections is likely to be lower than the loss incurred by persistent activity.  248 

The work presented in this paper speaks to the relation between descriptive and rational 249 

theories in psychology and neuroscience. The main motivation for rational theories is to reach a 250 

deeper level of understanding by analyzing a system in the context of the ecological needs and 251 

constraints that it evolved under. Besides the large literature on ideal-observer decision rules (44–252 

47), rational approaches have been used to explain properties of receptive fields (48–50), tuning 253 

curves (51–53), neural wiring (54, 55), and neural network modularity (56). A transition from 254 

descriptive to rational explanations might be an essential step in the maturation of theories of 255 

biological systems, and in psychology there certainly seems to be more room for this kind of 256 

explanation. 257 

Although several previous models in the field of working memory and attention contain 258 

rational aspects, none of them accounts for set size effects in a principled way. Sims and colleagues 259 

have examined how errors in visual working memory can be minimized by optimally taking into 260 

account statistics of the stimulus distribution, but assume a fixed total amount of available 261 

encoding resource (12, 57). Moreover, in our own previous work on visual search (4, 5), change 262 

detection (14, 32), and change localization (18), we used optimal-observer models for the decision 263 

stage, but assumed an ad hoc power law for the encoding stage. An alternative explanation of set 264 

size effects has been that the brain is unable to keep neural representations of multiple items 265 

segregated from one another (23, 58–60): as the number of encoded items increases, so does the 266 

level of interference in their representations, resulting in lower task performance. However, these 267 

models offer no principled justification for the existence of interference and some require 268 

additional mechanisms to account for set size effects; for example, the model by Oberauer and 269 

colleagues requires three additional components – including a set-size dependent level of 270 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2017. ; https://doi.org/10.1101/151365doi: bioRxiv preprint 

https://doi.org/10.1101/151365
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

 

background noise – to fully account for set size effects (23). That being said, our theory does not 271 

rule out the possibility of interference, and it could be added onto any of the models we presented. 272 

Our approach shares both similarities and differences with the concept of bounded rationality 273 

(61), which states that human behavior is guided by mechanisms that provide “good enough” 274 

solutions rather than optimal ones. The main similarity is that both approaches acknowledge that 275 

human behavior is constrained by various cognitive limitations. However, an important difference 276 

is that bounded rationality postulates these limitations as a given fact, while our approach explains 277 

them as rational outcomes of ecological optimization processes. The suggestion that cognitive 278 

limitations are themselves subject to optimization may also have implications for theories outside 279 

the field of psychology. One example concerns recent models of value-based decision-making that 280 

incorporate constraints imposed by working memory and attention limitations (e.g., (62)). Another 281 

example is the theory of “rational inattention” in behavioral economics, which examines optimal 282 

decision-making under the assumption that decision makers have a fixed limit on the total amount 283 

of attention that they can allocate to process economic data (63). It might be interesting to extend 284 

that theory by treating the amount of allocable attention as the outcome of an optimization process 285 

rather than a constant.  286 

While our results show that set size effects can in principle be explained as the result of an 287 

optimization strategy, they do not necessarily imply that encoding precision is fully optimized on 288 

every trial at any given task. First, encoding precision in the brain most likely has an upper limit, 289 

due to irreducible sources of noise such as Johnson noise and Poisson shot noise (64), as well as 290 

suboptimalities early in sensory processing (65). This prohibits subjects to reach the near-perfect 291 

performance levels that our model may predict when the behavioral loss associated to errors is 292 

huge. Second, precision might have a lower limit: task-irrelevant stimuli are sometimes 293 

automatically encoded (66), perhaps because in natural environments few stimuli are ever 294 

completely irrelevant. This would prevent subjects from sometimes encoding nothing at all, in 295 

contradiction to what our theory predicts to happen at very large set sizes. Third, all models that 296 

we tested incorporated variability in encoding precision. Part of this variability is possibly due to 297 

stochastic factors such as neural noise, but part of it may also be systematic in nature (e.g., 298 

particular colors and orientations may be encoded with higher precision than others (67, 68)). 299 

Whereas the systematic component could have a rational basis (e.g., higher precision for colors 300 

and orientations that occur more frequently in natural scenes (53, 69)), this is unlikely to be true 301 
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for the random component. Indeed, when we jointly optimize J  and τ, we find estimates of τ that 302 

are consistently 0, meaning that any variability in encoding precision is suboptimal form the 303 

perspective of our model. Finally, even if set size effects are the result of a rational trade-off 304 

between behavioral and neural loss, it may be that the solution that the brain settled on only works 305 

well on average rather than being tailored to every possible situation. In that case, set size effects 306 

could be more rigid across environmental changes (e.g., in task or reward structure) than predicted 307 

by a fully optimal model that incorporates every such change.  308 

Future work could further examine optimality of encoding precision in working memory and 309 

attention by experimentally varying factors that affect the loss functions. In delayed estimation, an 310 

obvious choice for this would be the delay period. Assuming that working memories are 311 

maintained in persistent activity (70, 71), a longer delay would induce a higher cost and decrease 312 

optimal encoding precision.  Another experimental parameter that could be varied is the error-to-313 

loss mapping. A previous study that performed this manipulation found a behavioral effect in one 314 

experiment, but did not vary set size (72). None of the experiments modeled here contained this 315 

manipulation (DE4-DE6 imposed an explicit loss function but did not vary it; the other 316 

experiments had no explicit scoring system). Future studies could measure effects of changes in 317 

explicitly imposed scoring systems and test how well a rational model accounts for such effects. 318 

Related to this, it would be relevant to examine whether subjects are able to internalize 319 

experimental loss functions in the timespan of a single experiment and, if not, to further 320 

characterize their "natural" loss functions (40). Another line of possible future work would be to 321 

examine whether our theory can be generalized to the level of objects (73, 74). 322 

Developmental work has shown that working memory capacity estimates change with age (75, 323 

76). Viewed from the perspective of our proposed theory, this raises the question why the optimal 324 

trade-off between behavioral and neural loss would change with age. A speculative answer could 325 

be that a subject's encoding efficiency (formalized by parameter α in Eq. (2)) may improve during 326 

childhood. An increase in encoding efficiency (i.e., lower α) has the same effect in our model as a 327 

decrease in the set size (i.e., higher N), which we know is accompanied by an increase in encoding 328 

precision. Hence, our model would predict subjects to increase encoding precision over time, 329 

which is qualitatively consistent with the findings of the developmental studies. 330 

Finally, our results raise the question what neural mechanisms could implement the kind of 331 

near-optimal resource allocation strategy that is the core of our theory. Some form of divisive 332 
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normalization (13, 77) would be a likely candidate, as it has the effect of lowering the gain when 333 

set size is larger. Moreover, divisive normalization is already a key operation in neural models of 334 

attention (78) and visual working memory (13, 58). 335 

 336 

METHODS 337 

Data and code sharing 338 

All data analyzed in this paper and model fitting code are available at [url to be inserted].  339 

 340 

Model fitting 341 

Delayed estimation. We used Matlab’s fminsearch function to find the parameter vector 342 

 , ,  θ  that maximizes the log likelihood function, , where n is the 343 

number of trials in the subject’s data set, εi the estimation error on the ith trial, and Ni the set size 344 

on that trial. To reduce the risk of converging into a local maximum, initial parameter estimates 345 

were chosen based on a coarse grid search over a large range of parameter values. The predicted 346 

estimation error distribution for a given parameter vector θ was computed as follows. First, optimalJ  347 

was computed by applying Matlab's fminsearch function to Eq. (5). In this process, the integrals 348 

over ε and J were approximated numerically by discretizing the distributions of these variables 349 

into 100 and 20 equal-probability bins, respectively. Next, the gamma distribution over precision 350 

with mean optimalJ  and scale parameter τ was discretized into 20 equal-probability bins. Thereafter, 351 

the predicted estimation error distribution was computed under the central value of each bin. 352 

Finally, these 20 predicted distributions were averaged. We verified that our results are robust 353 

under changes in the number of bins used in the numerical approximations. 354 

Change detection. Model fitting in the change detection task consisted of finding parameter 355 

vector  , ,  changep θ  that maximizes , where n is the number of trials in 356 

the subject’s data set, Ri is the response (“change” or “no change”), Δi the magnitude of change, 357 

and Ni the set size on the ith trial. For computational convenience, Δ was discretized into 30 equally 358 

spaced bins. To find the maximum-likelihood parameters, we first created a table with predicted 359 

probabilities of “change” responses for a large range of ( J , τ, pchange) triplets. One such table was 360 
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created for each possible (Δ, N) pair. Each value p(R=“change” | N, Δ, J , τ, pchange) in these tables 361 

was approximated using the optimal decision rule (see Supplementary Information) applied to 362 

10,000 Monte Carlo samples. Next, for a given set of parameter values, the log likelihood of each 363 

trial response was computed in two steps. First, the expected total loss was computed as a function 364 

of J , using    total incorrect, ,L J N p J N JN  , where  incorrect ,p J N  was estimated using the 365 

pre-computed tables. Second, we looked up log p(Ri | Ni, Δi, optimalJ  , τ, pchange) from the pre-366 

computed tables, where 
optimalJ   is the value of J  for which expected total loss was lowest. To 367 

estimate the best-fitting parameters, we performed a grid search over a large set of parameter 368 

combinations, separately for each subject.  369 

Change localization and visual search. Model fitting methods for the change-localization 370 

and visual-search tasks were identical to the methods for the change-detection task, except for 371 

differences in the parameter vector (no prior in the change localization task; ppresent instead of pchange 372 

in visual search) and the optimal decision rules (see Supplementary Information). 373 

 374 
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